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A B S T R A C T   

Digital rock physics is at the forefront of characterizing porous media, leveraging advanced tomographic imaging 
and numerical simulations to extract key rock properties like permeability. However, fully capturing the het
erogeneity of natural rocks necessitates imaging increasingly larger sample volumes, presenting a significant 
challenge. Direct numerical simulations at these scales become either prohibitively expensive or computationally 
unfeasible due to limitations in resolution and field of view (FOV). This issue is particularly pronounced in 
carbonate rocks, known for their complex, multiscale pore structures, which exacerbate the resolution-FOV 
tradeoff. To address this, we introduce a machine learning strategy that merges multiscale imaging data from 
various resolutions with a 3D convolutional neural network (CNN) model. This approach is innovative in its 
ability to identify cross-scale correlations, thereby enabling the estimation of transport properties in larger 
volumes—properties that are difficult to simulate directly—using trainable proxies. The integration of multiscale 
imaging with deep learning allows for accurate permeability predictions at scales beyond those feasible with 
traditional direct simulation methods. By employing transfer learning across different scales during the training 
phase, our multiscale machine learning model achieves robust performance, with an R2 exceeding 0.96 when 
evaluated on diverse lower-resolution domains with larger FOVs. Notably, this method significantly enhances 
computational efficiency, reducing the computational time by orders of magnitude. Originally developed for the 
intricate pore structures of carbonate rocks, our approach shows promise for application to a wide range of 
multiscale porous media, offering a viable solution to the longstanding tradeoff between imaging resolution and 
FOV in digital rock physics.   

1. Introduction 

Characterizing transport properties in porous materials represents a 
significant challenge across various scientific and engineering domains, 
including capillary water absorption in the building stones of cultural 
heritages (Çelik and Sert, 2021), hydrocarbon recovery from under
ground resources (Qajar and Arns, 2022), geological storage of CO2 and 
hydrogen (Aftab et al., 2022; Schultz et al., 2023), reactive transport in 
the subsurface (Poonoosamy et al., 2022), and blood filtration in kidneys 
(Kahshan et al., 2020). The complexity of pore space geometry, often not 
fully understood and varying across multiple scales due to heterogene
ities, plays a crucial role in this challenge. Understanding the impact of 

these small-scale heterogeneities on reservoir performance is a complex 
task that requires the integration of multidisciplinary studies (Khodja 
et al., 2020). 

In recent years, the use of pore-scale imaging and modeling, known 
as digital rock physics (DRP), has emerged as a powerful technique for 
accurately quantifying flow through complex porous media. X-ray 
micro-computed tomography (µ-CT) has become the preferred method 
for producing 3D pore structures with a large field of view (FOV), 
facilitating representative property calculations (Bultreys et al., 2016; 
Cnudde and Boone, 2013; Withers et al., 2021). However, the resolution 
limitation of digital images and the difficulty in characterizing pore 
space features in a computationally manageable model pose significant 
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challenges in DRP (Blunt et al., 2013). Pore-scale models bridge the gap 
between sub-pore and core-scale estimates of transport properties, with 
efforts aimed at making these techniques cost-effective. Accurate 
modeling of extensive porous systems requires information across 
various length scales, from nanometres to meters (Chaaban et al., 2022). 

For media with a wide range of pore sizes, a single µ-CT image may 
not capture all pores. A top-to-bottom strategy involving acquiring 
coarse-scale 3D CT images with large FOVs followed by high-resolution 
µ-CT images of selected locations can overcome this limitation. Addi
tionally, combining various imaging modalities, such as 2D SEM and/or 
3D FIB-SEM, allows for collecting higher-resolution data (Anderson 
et al., 2020; De Boever et al., 2015). Transport features calculated from 
high-resolution pore structures are integrated back into the large-scale 
image, using information from both resolved and unresolved rock fab
rics. This multiscale DRP analysis on the large-scale image determines 
the desired attributes (Mehmani et al., 2020; Sun et al., 2017; Sun et al., 
2017; Sungkorn et al., 2015). Multiscale DRP offers a promising 
approach for characterizing complex porous materials like sedimentary 
rocks. However, the accuracy of the model, both numerically and in 
predicting actual properties at interest scales, such as effective perme
ability, is closely linked to the resolution of the image (Chen and Zhou, 
2017). Classic absorption-based X-ray µ-CT imaging faces inherent FOV 
and resolution trade-offs, with a resolution three orders of magnitude 
below the FOV achievable. Thus, novel methodologies are essential for 
fully understanding, characterizing, and modeling multiscale porous 
systems (Jackson et al., 2021). 

In the context of the aforementioned challenges, machine learning, 
particularly deep learning, has emerged as a powerful tool in data- 
driven, image-based calculations, propelled by advancements in GPU 
processing, optimization techniques, and neural network designs (Da 
Wang et al., 2020; Gärttner et al., 2021; Kamrava et al., 2020; Tembely 
et al., 2021; Tembely et al., 2020; Kalule et al., 2023; Gupta and Gupta, 
2021). These methods have been instrumental in exploring the influence 
of pore-scale geometrical characteristics on macroscale fluid percolation 
processes within porous media. Deep learning algorithms have notably 
enhanced image resolution and expedited image analysis and 
image-based calculations (Da Wang et al., 2021; Sit et al., 2020; Ma 
et al., 2023). Deep learning’s role in pore-scale modeling has evolved 
into two distinct approaches. The first approach involves using 
pore-scale modeling to estimate transport properties, which can then be 
upscaled. This method primarily focuses on extracting geometrical in
formation from pore-scale images, either directly or indirectly, followed 
by employing regression techniques to predict physical properties, with 
permeability being a key focus (Kamrava et al., 2020; Tembely et al., 
2020; Erofeev et al., 2019; Sudakov et al., 2019; Alqahtani et al., 2020; 
Rabbani et al., 2020; Alqahtani et al., 2021; Tian et al., 2021; Hong and 
Liu, 2020; Fu et al., 2023; Najafi et al., 2021; Jiang et al., 2022; Tang 
et al., 2022; Zhang et al., 2022; Tian et al., 2021). 

The second approach utilizes convolutional neural networks (CNNs) 
either as a substitute for or in conjunction with flow simulation solvers 
to predict or accelerate pore-scale modeling. This results in direct pre
dictions of velocity fields, which can be further processed to estimate 
permeability or model other transport phenomena (Da Wang et al., 
2020; Santos et al., 2020; Santos et al., 2021; Ribeiro et al., 2020). 
Unlike traditional methods that rely on the geometric characterization 
of pore-scale images as input to artificial neural networks (ANNs), deep 
learning techniques for permeability prediction use the image itself as 
input to a CNN. This process characterizes the geometry, which is then 
directly fed into an ANN to leverage "hidden features" for permeability 
estimation. This approach offers a more comprehensive and flexible 
"end-to-end" implementation, independent of any extracted geometric 
features. The design incorporates an ANN in the form of dense layers at 
the end, enabling the structure to automatically identify and transfer 
geometric elements of interest directly to an ANN via the CNN. By 
entrusting data interpretation entirely to the network, the success of 
CNN-based regression models becomes more reliant on the architecture 

and dataset rather than on the selection of input parameters. CNNs in 
this context refer to the combined CNN+ANN regression networks, 
highlighting their integral role in advancing pore-scale modeling 
through deep learning. 

Permeability, which quantifies the resistance to fluid flow in porous 
media, is a variable with uncertainty, largely due to the complex, non- 
linear relationship between pore morphology and permeability. 
Capturing this relationship through machine learning, especially within 
the intricate geometries of pore-scale images, poses a significant chal
lenge. Alqahtani et al. (2021) utilized ResNet and ResNext CNN net
works to explore the potential of 3D regression in predicting 
permeability across various lithologies. Their study, focusing on sand
stone images, achieved an R2 value of 0.87 on the testing datasets, 
highlighting the effectiveness of these networks in permeability pre
diction. Kamrava et al. (2020) reported an R2 value of 0.91, testing the 
accuracy of permeability estimation on 500 stochastically generated 
rock image samples with permeabilities ranging from 100 mD to 500 
mD. Zhang et al. (2022) developed a semi-supervised machine learning 
approach combining an auto-encoder (AE) module with CNN to predict 
permeability from low-resolution images. Their AE-CNN model out
performed traditional CNN approaches, achieving an average R2 value 
of 0.896 on the test dataset, thereby demonstrating high accuracy in 
permeability prediction. 

In a comparative study, Tian et al. (2021) introduced a hybrid ma
chine learning method that combines an artificial neural network (ANN) 
with a genetic algorithm (GA) to predict permeability based on pore 
structure parameters. While their ANN model achieved high R values on 
both training and testing sets, it’s important to note that their dataset 
was prepared using artificial porous media. The concept of transfer 
learning has been identified as a promising technique to enhance the 
performance of CNNs in permeability estimation. Tang et al. (2022) 
introduced a CNN model that, through the integration of transfer 
learning, showed significant improvement in estimating the perme
ability of rocks from their three-dimensional images. Model fine-tuning, 
a deep learning technique proposed by Yosinski et al. (2014), was 
employed to adjust the weights of all layers in the pre-trained CNN using 
a new dataset, with further training conducted on 16 new samples 
matching the distribution of the testing sets. Santos et al. (2021) 
developed a computationally efficient multiscale neural network aimed 
at predicting velocity fields through hierarchical regression. However, 
their training utilized simple synthetic geometries to represent porous 
and vuggy media, artificially reducing the resolution of images. 

Recent investigations have sought to address the challenge of 
balancing image resolution and field of view (FOV) in micro-CT imaging 
by employing deep learning super-resolution techniques to enhance the 
resolution of micro-CT images. Ma et al. (2023) introduced an innova
tive deep-learning method that significantly improves the resolution of 
micro-CT images of carbonate rocks. Their super-resolution algorithm, 
based on the diffusion model, effectively enhances image quality 
without introducing noise or blurring, showing great potential in 
generating clear and detailed pore networks essential for calculating the 
petrophysical properties of carbonate rocks. In a comparative study, 
Soltanmohammadi and Faroughi (2023) evaluated four advanced 
CNN-based super-resolution algorithms for their effectiveness in 
increasing the resolution of micro-CT images of heterogeneous carbon
ate rocks. They assessed the algorithms’ accuracy in reconstructing 
high-resolution images and preserving petrophysical properties, such as 
porosity, using various evaluation metrics. While super-resolution 
techniques have demonstrated promising outcomes in improving digi
tal rock images, they face limitations, including significant computa
tional demands and challenges in reconstructing high-frequency details. 
This can lead to oversimplified textures in the super-resolved images, 
potentially resulting in the loss of crucial geological information (Bai 
and Berezovsky, 2020). 

Most prior research has focused on 2D or simplified small 3D pore 
geometries, which may not accurately represent the complexity of real 
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porous materials like microporous carbonate rocks. Furthermore, many 
existing models assume a single-scale pore structure, which may not 
adequately capture the multiscale texture of carbonates. Given the 
proven effectiveness of CNN approaches in estimating transport prop
erties in complex structures and their non-linear correlation with the 
morphological characteristics of porous media, training realistic 3D 
multiscale images of complex tight carbonates at different spatial reso
lutions, digitally aligned through an efficient custom CNN model ar
chitecture, remains a compelling proposition. 

Our research is among the first to apply a multiscale-resolution 
aware CNN framework for permeability estimation in realistic, com
plex porous media, specifically focusing on heterogeneous tight car
bonate rocks. This approach employs a novel transfer learning strategy 
across different image resolutions, encompassing a wide range of pore 
sizes and throat varieties. This significantly enhances the model’s 
adaptability to various resolutions and improves the accuracy and 
generalizability of permeability predictions. By addressing the challenge 
of analyzing low-resolution micro-CT images without compromising 
permeability prediction accuracy, our study tackles the critical issue of 
the resolution-FOV trade-off, offering a novel solution to this long
standing problem and enabling more effective analysis of heterogeneous 
porous materials from coarser domains. The success of this study is 
attributed to the development of an advanced multiscale CNN model 
that leverages standard GPU (graphics processing unit) and hardware 
specifications to provide transport property estimates much faster than 
conventional direct numerical simulations (DNSs) without sacrificing 
accuracy. Capable of operating on lower-resolution domains with larger 

FOVs, which DNSs find impractical, our approach has the potential to be 
adapted for a wide range of applications beyond tight carbonate rocks, 
opening new avenues in the broader field of digital rock physics and 
related fields. 

2. General workflow 

This research focuses on integrating multiscale µ-CT imaging with 
artificial intelligence via a deep learning approach paradigm. Our pro
posed method estimates the permeability across many near- 
representative heterogeneous volumes inside low-resolution images, 
providing information unattainable from conventional laboratory 
methods. In this context, the datasets under consideration consist of 3D 
stacked images produced by X-ray µ-CT scanning of real core plug 
samples. Our methodology leans on multiple image resolutions to detect 
larger-scale heterogeneity. 

While lower-resolution binarized images might not entirely capture 
the pore structures, our assessment indicates that specific pore phase 
features inherently hold about the vital fluid flow pathways. As image 
resolution decreases, there is an increase in the fraction of intermediate 
(or microporous) grayscale voxels. Conversely, the fraction representing 
the clearly-defined macroporous phase decreases. At specific resolution 
thresholds, internal connections (such as pore throats), get included in 
the intermediate grayscale values, excluding direct modeling calcula
tions. This study focuses on extracting information from images in this 
region where flow paths are not fully resolved. Furthermore, local 
averaging with each voxel at lower resolutions covers such a large 

Fig. 1. Workflow of the multiscale CNN development process. The flowchart illustrates the sequential steps undertaken in the study. Each step encompasses detailed 
tasks, progressing from acquiring of 3D Micro-CT images in various resolutions to the final validation of the CNN model. 
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volume that all geometric information is lost. It appears unlikely that 
valuable information can be extracted from the lower-resolution images 
to predict transport properties. 

Our proposed method is to develop a multiscale sequential con
volutional network with a transfer learning scheme from high to low- 
resolution images and high-resolution computed permeability. This 
resultant permeability mapping becomes a pivotal input for extending 
permeability calculations to the core’s entire scale and even further. The 
procedure adopted in this study consists of five important stages sum
marized in Fig. 1, and subsequent sections will delve deeper into the 
details of each section. 

3. Rock sample, multiscale µ-CT imaging, and image analysis 

The multiscale characterization was conducted on a borehole car
bonate sample of 3.8 cm in diameter and 5 cm in length taken from the 
Asmari reservoir located in southwestern Iran. Fig. 2(a) displays a photo 
of the as-received whole core plug. The XRD (X-Ray Diffraction) tests 
indicated the rock was almost made of dolomite. The whole plug was 
imaged using a medical CBCT (Cone Beam Computed Tomography) 
scanner for the initial assessment, and no significant heterogeneity was 
observed (Fig. 3(a)). A subplug of 3 mm in diameter was extracted from 
the whole core, as shown in Fig. 2(b). 

This subplug underwent µ-CT imaging at three different resolutions: 
3 µm (low-resolution, termed LR), 2 µm (middle- resolution, termed 
MR), and 1 µm (high-resolution, termed HR) using µ-CT imaging facility 
at Imperial College London. To assess the pore size distribution (PSD) of 
the specimen, mercury intrusion porosimetry (MIP) measurements were 
executed on the subplug post its multi-resolution imaging, utilizing the 
Micromeritics’ AutoPore IV 9510 mercury porosimeter, capable of 
reaching a peak pressure of 60,000 psia. The attributes of the subplug 
deduced using the MIP technique are tabulated in Table 1. Fig. 3(b) 
portrays both cumulative and incremental MIP graphs of the subplug, 
showcasing a monomodal PSD. 

The sample’s porosity spans pore sizes ranging from 200 nm to 4 µm. 
The cumulative MIP graph shows that approximately 95%, 80%, and 
50% of the total sample porosity, corresponding to resolutions of 3, 2, 
and 1 µm, respectively, are reached solely via the sub-resolution pores 
(microporous phase). Consequently, there is a pronounced variance 
among the multi-resolution images explored in the context of the 
discernible macroporous phase and the associated image-based prop
erties. It’s pivotal to note that the designation of high- and low- 
resolution images is relative and hinges on the complexity of the spec
imen’s pore space. The prudent choice between high and low-resolution 
voxel values is contingent on the pore space structure, with an emphasis 
on the pore size distribution. 

3.1. Image processing 

We undertook several image pre-processing steps prior to the prin
cipal tasks of registration and segmentation. Firstly, images were crop
ped to eliminate empty areas. Next, a histogram equalization was 
applied to enhance the contrast and balance of the histograms of the 
images. While this might compromise some structural data in the image 
(Almotairi, 2020), it remains indispensable for the ensuing stages. The 
third measure involved image enhancement through de-noising. We 
used a non-local means filter set with a one-pixel local neighborhood. 
This method relies on a weighted average of all the image pixels. Here, 
the weights are determined not by the proximity of pixels but by whole 
blocks, facilitating efficient noise reduction in tomographic images 
without diminishing contrast boundaries (Sun et al., 2017). 

Within the workflow we devised, registration plays a crucial role. 
Distinct datasets with varying voxel sizes bridge high-resolution smaller 
volumes to low-resolution larger volumes. Evidently, when the scanning 
size diminishes, the resolution of the 3D digital core augments. Large 
field-of-view (FOV) low-resolution images assist in pinpointing the 
location and size of high-resolution scans with smaller FOV and physical 
sub-samples. Given the meticulous voxel-to-voxel registration of the 
images, this imaging tool permits the probing of cross-scale relation
ships, along with the high-fidelity imaging of notable sample variations 
across multiple scales. We utilized a 3D/3D image registration (Cui 
et al., 2020) to overlay the multiscale (multi-resolution) images of the 
core sample. Fig. 4 presents instances of 2D slices and 3D renderings of 
registered images at varying resolutions. Apart from x-ray micro-CT 
imaging and physical sub-sampling, the sample undergoes 
scaled-down x-ray micro-CT imaging. 

In the segmentation phase, the thresholding step is often undertaken 
using a global histogram method, indicating open pores and micropo
rous areas by identifying significant histogram patterns. As suggested by 
Verri et al. (2017), if the image resolution is sufficiently high and 
microporosity does not overwhelmingly surpass open pores, this process 
can be executed through fully automatic algorithms. Conversely, when 
the image resolution is lower and the rock structures are ambiguous, the 
thresholding procedure should be supplemented by visual image in
spection, leveraging the user’s expertise to confirm the estimation’s 
accuracy. In our study, initial image segmentation was autonomously 
achieved using the Otsu method, a standout global thresholding tech
nique known for its effectiveness in threshold-based segmentation, 
particularly in distinguishing between solid and pore spaces based on 
voxel intensity. It offers a straightforward, computationally efficient 
approach, which is advantageous when dealing with large datasets. 
Furthermore, in several DRP studies, this method was applied to 
segment the pore space (Andrä et al., 2013; Saxena et al., 2017; Abro
simov et al., 2021; Tawfeeq and Al-Sudani, 2020). Subsequently, it was 
refined through an attentive visual examination of the pore space 

Fig. 2. Photographs of (a) the whole core sample and (b) the mini-plug used for µ-CT imaging.  

I. Nabipour et al.                                                                                                                                                                                                                                



Advances in Water Resources 188 (2024) 104695

5

(Miarelli and Della Torre, 2021), and ultimately, the computed porosity 
was validated by the MIP data. Fig. 5 displays the gray intensity histo
grams for the HR, MR, and LR tight carbonate images. 

While the Otsu method may have limitations in handling transitional 
voxels related to the microporosity fraction, we addressed these through 
careful preprocessing and post-segmentation refinement. The choice of 
the Otsu method over several other advanced segmentation techniques, 
such as watershed segmentation, was driven by its suitability for our 
specific dataset and research objectives, balancing accuracy with 
computational efficiency and validation against lab data. The porosity 

distribution of the multiscale segmented images post-registration is 
depicted in Fig. 6, representing local variations in porosity across the 
sample. 

3.2. Direct simulation 

Lattice Boltzmann methods (LBM) and finite volume methods, 
grounded on the discretization of the Navier-Stokes equations, are the 
predominant techniques for direct pore-scale modeling (Mehmani et al., 
2020). In this research, we opted for LBM as the direct simulation 
method for creating ground-truth flow data, as it has been proven to 
reconstruct the Navier-Stokes equation accurately. However, other 
direct simulation techniques could be substituted. LBM directly calcu
lates single and multi-phase flow on pore space images (Rao and 
Schaefer, 2020). Moreover, the bounce-back condition streamlines the 
handling of boundary conditions, permitting straightforward represen
tation of intricate geometries on an orthogonal grid without the need for 
complicated meshing procedures. As a result, LBM has gained traction in 
the porous media sector, which grapples with intricate 3D pore spaces 
showcasing features across multiple scales (Mehmani et al., 2020). In the 

Fig. 3. (a) The medical CT scan of the whole plug, taken at a resolution of 100 µm/voxel; (b) The incremental and cumulative MIP curves of the sub-plug sample.  

Table 1 
The measured/estimated properties from mercury intrusion through the subplug 
sample.  

Hg 
porosity 
(%) 

Swanson 
permeability 
(md) 

Threshold 
pressure 
(psi) 

Total 
pore 
area 
(m2/g) 

Tortuosity Average 
pore 
diameter 
(nm) 

11.075 1.289 45.967 0.506 2.637 399.257  
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context of simulating fluid flow at the pore scale, the lattice boltzmann 
method (LBM) is more mathematically rigorous compared to pore 
network modeling (PNM). Additionally, LBM can provide more reliable 
evaluations of permeability for porous media with complex geometries, 
such as carbonates. This is because the accuracy of using pore networks 
for carbonates has not been established yet (Mehmani et al., 2020). 
Furthermore, unlike PNM, LBM simulation is executed directly on the 
voxel domain of digital microstructures without any simplification. In 
addition, the calculated permeability values within the lattice unit can 
be directly associated with the pore morphological characteristics in the 
voxel unit, thereby eliminating the need for further data conversion or 
processing (Fu et al., 2023). 

LBM represents the fluid flow by simulating the propagation of fluid 
particles on a regular lattice using a time-dependent distribution. Lattice 
nodes in DRP research are situated at the center of pore voxels extracted 

from digital rock images, which function as the regular lattice for LBM to 
simulate fluid flow at the pore scale. In this investigation, the Palabos 
open-source code is utilized to implement the conventional LBM scheme 
(Chen et al., 1992), which features the D3Q19 lattice arrangement and 
the bhatnagar–gross–krook (BGK) collision operator. This model was 
chosen for its balance between computational efficiency and the ability 
to accurately capture the essential physics of fluid flow in porous media. 
The particle distribution function fi(x,t) denotes the probability of 
detecting a fluid particle at time t and location x with lattice velocity ci. 
Initially, in a state denoted as fi(x,t), the system evolves locally while 
progressing from one lattice node to its adjacent nodes during each time 
step while remaining subject to both mass and momentum conservation. 
The expression for the evolution of fi(x,t) in the direction of ci from time t 
to t + Δt is as follows: 

Fig. 4. Examples of 2D slices and 3D visualizations of registered µ-CT images at three resolutions of 3, 2, and 1 µm.  
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fi(x+ ciΔt, t+Δt) − fi(x, t) = −
1
τ [fi(x, t) − f eq

i (x, t)] (1) 

Wheref eq
i (x, t)denotes the equilibrium distribution function,τis the 

single-relaxation time, and the subscript i represents the direction of 
lattice velocity in the vicinity of the lattice node. 

The relaxation time τ is a function of the kinematic lattice viscosity ν 
of the fluid being simulated, i.e.,ν = c2

s Δt(τ − 0.5). The lattice speed of 
sound, denoted as cs is represented by the dimensionless value of 

̅̅̅̅̅̅̅̅
1/3

√
. 

In order to recover the macroscopic Navier–Stokes equation, the equi
librium distribution functionfeq

i (x, t)depicts an ideal state in which the 
particle distributions approach a particular macroscopic state. feq

i (x, t) is 
defined as follows for the D3Q19 lattice arrangement with the BGK 
collision operator (Chen et al., 1992) 

f eq
i (x, t) = wiρ

[

1+ 3(ci.u)+
9(ci.u)2

2
−

3(u.u)
2

]

(2) 

Fig. 5. The gray intensity histograms of the HR, MR and LR images. The area between lower (T1) and upper (T2) thresholds denotes the unresolved micro- 
porosity fraction. 

Fig. 6. Porosity profile of the tight carbonate plug for three registered segmented scales in the x-y plane.  
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where wi represents the weight factor of the D3Q19 lattice structure, u 
denotes the macroscopic fluid velocity, and ρ signifies the fluid density. 
The weight factors wi for the velocity directions of the central lattice 
node, face-connected neighbors, and edge-connected neighbors are12

36 , 
2
36 , and 1

36 respectively, for the D3Q19 lattice model. The macroscopic 
properties of fluid flow, such as velocity u and density ρ, can be 
approximated from fi(x,t) at the end of each time step using the next pair 
of equations. These macroscopic properties will be utilized in the LBM 
computation at the subsequent time step. 

ρ =
∑n

i=1
fi(x, t) (3)  

u =

∑n
i=1fi(x, t)ci

ρ (4) 

Where n represents the number of lattice directions (n = 19 in the 
present study’s D3Q19 lattice structure) (Fu et al., 2023). 

By utilizing the representative elementary volume (REV) analysis 
and the porous phase derived from the segmentation activity, we con
ducted numerical permeability simulations on the finest scale sub
volumes obtained from the HR image, which were driven by a constant 
pressure difference between the inlet and outlet faces. All the simula
tions are set in the laminar steady-state flow regime, where the Reynolds 
number is considerably below one, aligning with the usual flow dy
namics in subsurface structures without fractures or boreholes (Santos 
et al., 2020). 

While LBM boasts high parallelization capabilities, its computational 
time demands surge with the intricacy of the geometry, notably in car
bonates with their tight crystalline makeup. Given recent leaps in 
computer capabilities, modeling more expansive domains is now 
achievable. Yet, computational timeframes—even on formidable su
percomputer clusters—can be protracted, with considerable computa
tional resources being indispensable. The computational needs of these 
methods amplify, at minimum, in accordance with the cube of the do
main’s side length for uniform cubic samples. Therefore, running direct 
simulations on a representative elementary volume using standard 
desktop systems often isn’t viable. Moreover, complex porous materials 
like carbonates possess pore size distributions that extend and vary 
across an extensive scale spectrum. This augments the size of a repre
sentative elementary volume and, consequently, the computational 
duration needed for simulations. Conversely, conducting direct numer
ical simulations such as LBM on LR images might be impractical, given 
that segmenting these lower-resolution images typically omits a 

significant portion of grayscale details relevant to pore structure. 

3.3. REV analysis 

Connecting pore-scale data to continuum-scale characteristics of 
porous media depends on defining an REV. Determining the most 
concise field of view used for a physics-based simulation that accurately 
represents the entirety of the rock sample for a specific property is 
pivotal in the DRP framework (Saxena et al., 2017). The REV signifies 
the smallest volume wherein microscopic fluctuations in the observed 
attributes of a porous media become negligible or where the assessed 
property remains scale-agnostic. Setting an REV is a fundamental step 
for upscaling petrophysical properties across different length scales 
(Singh et al., 2020). In this study, we scrutinized the shifts in derived 
permeability relative to sample size, gauged using the LBM for the HR 
carbonate imagery. Subsequently, we selected the dimensions wherein 
the deviations in calculated permeability were under 20% (Saxena et al., 
2017). Based on this criterion, images spanning 3003 voxels were 
designated as the REV for the core images. A figure of fluid flow through 
a sample REV captured by LBM and the histogram of ground truth 
permeability variations is depicted in Fig. 7. 

It is essential to note that the choice of these voxel numbers for the 
REV is inherently linked to the voxel sizes (resolutions) and the specific 
characteristics of the analyzed rock sample. The decision to use the 
mentioned REV size is based on ensuring that this volume is sufficiently 
large to capture the heterogeneity and characteristic features of the 
rock’s pore structure. While the voxel number is a primary factor, the 
voxel size (resolution) also plays a crucial role. Different resolutions 
provide varying levels of detail, and the appropriateness of the 3003 

voxel volume as the REV is evaluated in the context of the resolution 
used. Higher resolutions may reveal more detailed pore structures, 
which could affect determining what constitutes a representative vol
ume. Based on our research question in this study, calculating perme
ability as our target transport property on the low-resolution images 
with larger and more representative field-of-view (FOV) through direct 
LBM is impractical because lots of resolved pores in high-resolution 
domains that play a significant role in reliable fluid flow simulation 
would be lost in the lower-resolution images. 

Therefore, we ensured that the chosen voxel volume and resolution 
combination adequately represented the core’s heterogeneity while still 
being manageable for computational analysis. We have chosen the 
highest image resolution for direct simulation, REV analysis, and, 
consequently, the generation of reliable reference ground truth for 
developing the multiscale CNN workflow. As a result, the choice of REV 

Fig. 7. LBM Velocity Field on an HR REV Subvolume (left) and the histogram of reference permeability variations (right).  
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size in our study was made in the context of the highest resolution used 
and, therefore, the calculation accuracy of specific characteristics of the 
rock samples, ensuring that the selected volume is genuinely represen
tative of the core’s properties. 

4. The convolutional neural network model 

Extensive studies have delved into predicting permeability through 
convolutional neural network-based deep learning techniques. Howev
er, less focus has been directed towards estimating transport attributes 
in multiscale heterogeneous and genuine porous media. This study 
emphasizes developing a workflow that harnesses a potent multiscale 
convolutional neural network (CNN) model in tandem with multiscale, 
multiresolution 3D visuals of a tight carbonate specimen. Details of the 
model will be discussed in the following sections. Specifically, we 
deployed a CNN-type spatially-aware neural network, which acknowl
edges the spatial configuration inherent in porous media. This network 
adeptly grasps 3D spatial correlations via a sequence of convolutional 
procedures (filters). For these filters, an optimal parameter set can 
mirror the LBM outcome. Additionally, this approach spawns universal 
and reusable models. 

In this study, a multiscale CNN design is employed for sequential 
image regression, aiming to uncover correlations between pore 
morphology and a transport characteristic, predominantly permeability. 
This transition from LBM facilitates the estimation of permeability in the 
LR images where direct simulation remains infeasible. Our methodology 
commences by scrutinizing HR volumetric depictions of the carbonate 
specimen (which encompasses the intricate heterogeneities influencing 
flow). This step lays the foundation for the primary regression-based 
CNN model connecting the inputs and outputs. Subsequent training of 
the model progressively shifts to the synchronized lower-resolution vi
suals, encapsulating grander scale heterogeneities in the process. To 
elaborate, the model initially undergoes training with HR input in the 
registered overlapping region. It then transitions to the encompassing 
MR images and ultimately undergoes fine-tuning with the LR images, 
which possess the broadest FOV. This transfer learning paradigm intends 
to capture the target response fluctuations. Our findings indicate that 
this strategy aptly models the intricate physics inherent in complex 
porous substrates like tight carbonates. Given the intricate pore 
configuration of the carbonate sample in question, we perceived the 
entire texture within the visuals as a singular unit. The current study 
does not explore clustering or grouping of heterogeneities. The outlined 
workflow could potentially encompass more than three imaging levels 
to span an extended range of scales. Within the sphere of reservoir-scale 
modeling and simulation, the permeability values extrapolated through 
this methodology for distinct rock units can be harnessed to gage 
effective permeability at the core level via Darcy simulation techniques 
(Botha and Sheppard, 2016). 

4.1. Creating dataset 

Stable and representative samples bolster spatially aware neural 
networks, enhancing their capability to identify congruent patterns 
within data. To foster uniform behavior, the dimension of the 3D sample 
subset should match or surpass the REV, positively impacting the 
training efficacy of the convolutional network. Utilizing subset sizes 
smaller than the REV might induce data non-stationarities, impeding a 
stable assessment (Santos et al., 2020). While it is feasible to train the 
convolutional network with 3D images smaller than the REV, primarily 
due to GPU memory constraints, we prioritize using subvolumes that 
meet the relatively expansive near-REV size in this work. This is to 
effectively capture the 3D connectivity intrinsic to a heterogeneous 
natural porous stone, like a tight carbonate, and its correlational po
tential with transport properties such as permeability. Contrarily, most 
preceding studies predominantly trained deep learning models using 2D 
imagery or 3D synthetic and/or rudimentary real images of smaller 

dimensions (e.g., 80, 100, 128, 200, and 256 voxels per direction) 
(Gärttner et al., 2021; Kamrava et al., 2020; Tembely et al., 2021; 
Sudakov et al., 2019; Rabbani et al., 2020; Hong and Liu, 2020; Tang 
et al., 2022; Santos et al., 2020; Santos et al., 2021; Araya-Polo et al., 
2020; Takbiri-Borujeni et al., 2020; Srisutthiyakorn*, 2016; Wu et al., 
2018; Graczyk and Matyka, 2020; Alqahtani et al., 2018; Marcato et al., 
2022; Tembely and AlSumaiti, 2019), often within a singular spatial 
resolution. Therefore, we have opted for a 3003 voxel size to extract 
subvolumes from the primary HR image sized at 6003 voxels and the 
synchronized MR and LR imagery with augmented voxel dimensions and 
FOV, respectively. Henceforth, we will term 3D images of this precise 
size as "subvolumes." The extraction of these subvolumes employs the 
sliding window approach, a method commonly used to optimize a given 
data set beyond its division into non-intersecting subsets. Explicitly, a 
300×300×300 voxel window sweeps each directional axis of the orig
inal 600-voxel cube, yielding 59 non-overlapping and overlapping 
subvolumes in each resolution within the registered domain of the three 
resolutions (as illustrated in Fig. 8). Moreover, to train the convolutional 
network using a broader array of sample morphological features, we 
incorporated downsampled images (Alqahtani et al., 2021) with di
mensions ranging from 4003, 5003, and 6003 down to 3003 voxels for 
each image resolution. This inclusion does come at the expense of losing 
certain intrinsic pore structural nuances. Given our use of a supervised 
learning approach, every training input has an associated label refer
encing a transport feature inherent to the input data or a pertinent one. 
To address the image regression dilemma, effective permeability is 
calculated using LBM for all HR subvolumes to ascertain the requisite 
ground truth. These LBM computations were executed on a CPU-centric 
machine equipped with 64 GB of RAM and quad 2.3 GHz Intel Xenon 
processors. It’s crucial to note our exclusive consideration of connected 
pore spaces. The permeability within an isolated cavity is nullified. 
Consequently, we integrate an image processing phase to distill all 
interconnected pores with 26 adjacent spaces (where voxels with a 
solitary shared vertex are deemed connected) from the binary visuals. 

In tandem with binary images, this study employed a 3D normalized 
Euclidean distance transform (EDT) (Rabbani et al., 2020; Santos et al., 
2020; Santos et al., 2021) sourced from all binary subvolumes in each 
resolution distinctly, within the registered overlapping zone. This 
transformation marks every pore voxel based on its proximity to the 
closest solid boundary. Our motivation for including such supplemen
tary inputs springs from the objective of forging a model endowed with 
capabilities to function across varied scales and the multifaceted ge
ometries typical of the carbonate sample. 

By supplying these supplementary descriptor factors, we boost the 
model’s training efficacy. Consequently, the resultant model exhibits 
adequate generalization, empowering it to compute permeability within 
a permissible error bandwidth even when applied to a test dataset 
embodying myriad unfamiliar geometries. Essentially, the model dis
cerns and adapts to unique patterns, thereby orchestrating a sturdy 
function linking the visual imagery to permeability. The preference for 
the normalized Euclidean distance transform (EDT) stems from its 
simplicity, cost-effectiveness, and potential to offer more insight than a 
mere binary image at the outset. This specific transformation offers a 
concise visual representation of the space viable for fluid flow and the 
relative distance to the adjacent solid (impermeable) boundary (Santos 
et al., 2020), and notably, it exhibits a potent correlation with transport 
attributes. 

Furthermore, underpinning our study’s hypothesis, as highlighted 
earlier, is the notion that LR images might not encapsulate the entirety 
of the pore architecture. Hence, we postulate that these discrete fea
tures, being digitally synchronized with the MR and HR images, 
intrinsically embody data indicative of pivotal fluid conduits. In essence, 
this EDT can potentially pinpoint and measure these conduits, but
tressing our primary goal of approximating permeability within LR 
images that possess an expansive field of view (FOV). In line with this 
methodology, we curated 59 standardized EDT 3D datasets for each 
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resolution (refer to Fig. 8). Cumulatively, this results in a compilation of 
354 images (comprising 177 binary and 177 normalized EDT visuals) 
spread across all resolutions (with each resolution containing 118 im
ages), serving the exclusive purpose of training our bespoke CNN model. 

4.2. Network 

In the upcoming sections, we provide a brief overview of how con
volutional networks operate, leading up to the introduction of our 
innovative model, the multiscale CNN. This model amalgamates single- 
scale CNNs that function sequentially to yield predictions for a specified 
sample. Subsequent discussions shed light on our data augmentation 
techniques aimed at enhancing the accuracy and universality of results. 
This is followed by an exposition on the transfer learning framework 
seamlessly integrating these CNNs. 

4.2.1. Convolutional neural network (CNN) 
Past studies have underscored the proficiency of convolutional 

neural networks (CNNs) in dissecting digital rock imagery for tasks such 
as classification, segmentation, resolution amplification, reconstruction, 
and regression. These models have consistently exhibited prowess in 
deciphering intricate relationships within voluminous data sets. Unlike 
traditional matrix multiplication found in fully connected feed-forward 
networks, CNNs harness discrete convolution to distill local spatial as
sociations (sparse interactions) across the domain. Using filters that are 
significantly smaller than the input image, CNNs adeptly glean pertinent 
domain-specific details. This cascading structure of convolutional layers 
enables the network to capture attributes with ever-expanding receptive 
fields at subsequent abstraction tiers. By leveraging this layout in 
conjunction with the backpropagation technique, a network can be 
calibrated to discern intricate, nonlinear interplay between inputs and 
associated outputs (Santos et al., 2020). The CNN model showcased in 
this study is a tailor-made regression model that boasts a straightforward 

Fig. 8. 2D and 3D representations of the binary (upper row) and normalized EDT (lower row) subvolumes derived from registered images of HR, MR, and LR from 
left to right, which serve as input data for the multiscale CNN model. Regarding the HR image, the corresponding MR and LR volumes exhibit a successive increase in 
voxel size and loss of resolution of smaller pores. 

Fig. 9. A diagram of a final CNN design with a single dense or fully-connected layer and four convolution blocks for the multiscale regression problem. The inputs 
consist of 3D carbonate images (EDT and binary) with varying resolutions-scales, and the output is the computed permeability. The dimensions of weights and bias 
terms in each convolution layer depicted below each block. 
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design consistent across all scales. This design was honed through iter
ative experimentation with diverse configurations, with model efficacy 
gauged by monitoring accuracy metrics and the behavior of the loss 
function. 

The network structure is shown in Fig. 9. The final architecture for 
feature extraction comprises four convolution blocks, each containing a 
3D convolution layer, an Instance normalization layer, a nonlinear 
activation function ReLU, and a pooling layer. The end block of the 
network is composed of the layers flatten, drop out, and dense, in that 
order. The brief introduction of the mentioned layers is summarized 
below. For further reading, a detailed explanation of all the main com
ponents of a CNN can be found in (Kamrava et al., 2020; Kamrava et al., 
2021):  

• 3D convolution layer (Da Wang et al., 2021; Santos et al., 2021): This 
layer comprises 33 kernels (or filters) for the aforementioned four 
convolutional layers, and the stride is 1 × 1 × 1 for all kernels that 
are slid along the input to generate feature maps via the convolution 
process (Eq. (5)): 

Y =
∑nf

i=1
X ∗Ki + bi (5)   

Y is the output, nf is the number of filters, X is an input array of shape (nb, 
nx, ny, nz) where nb is the number of batches, and (nx, ny, nz) is the 
number of voxels in each direction of the coordinate system. K repre
sents a collection of convolutional filters of shape (nf, kx, ky, kz) where k 
refers to the size of each filter (kernel size), * is the convolution oper
ation, and b is the bias term. 

• Instance normalization 3D (Ulyanov et al., 2016): This layer nor
malizes its inputs to have a zero mean and one standard deviation 
(Eq. (6)). This makes it easier to train a model using samples with 
significant variations. This is performed on each sample using the 
sample’s unique statistics and without trainable parameters (Santos 
et al., 2021). 

xout =
xin − x
̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2 + ε

√ (6)   

x, σ are the sample mean and its standard deviation, respectively, and ε 
is a small constant to prevent divisions per zero.  

• Nonlinear activation function: This layer contributes to forming 
nonlinear relationships (such as the one between pore geometry and 
permeability). In this work, we employ a Rectified Linear Unit 
(ReLU) activation function. This layer transforms any data that 
passes through using the following equation (Eq. (7)): 

Yrectified = max(0, Y) − αmax(0, − Y) (7)   

where α equals 0 for (ReLU).  

• Maximum pooling 3D (Sit et al., 2020; Rabbani et al., 2020): This 
technique transfers the relevant learned characteristics to the sub
sequent layers while transforming data into a smaller collection 
without losing much information and sacrificing positional knowl
edge. Maximum pooling computes the highest possible value for 
each feature map patch. In our design network (Fig. 9), the max pool 
3D layer in the first and second convolution blocks has a kernel size 

of 2 and stride of 2, whereas, in the third and fourth convolution 
blocks, The kernel size and stride are both 3.  

• Dense block (Kamrava et al., 2020; Da Wang et al., 2021): Finally, 
the subsequent dense neural layer interprets the extracted features. 
These techniques are used to provide input to the fully connected 
layer once data from a CNN block has been "flattened" from its 
multidimensional shape into 1D vectors. The dense or 
fully-connected layer is added to the end of a CNN to produce 
regression results and retains the most significant outputs from all 
the convolutional layers. To prevent overfitting issues, this block 
employs a drop-out filter that randomly eliminates a certain per
centage of neurons (20% in this network). 

4.3. Data augmentation 

Based on the preceding section, the primary dataset of the tight 
carbonate image consists of 59 3D micro-tomography image sub
volumes, both in binary and normalized EDT formats, for each scale. 
This amounts to a total of 354 images across three resolutions within the 
registered region. Given the scarcity of varied and authentic tomography 
data across diverse resolutions and the pressing need for 3D CNNs to be 
trained on substantial image datasets, we turned to morphological fil
ters. These filters enable the manipulation of existing data to craft novel 
representations by tapping into an extensive suite of shape-centric image 
processing capabilities. 

Morphological operations determine the value of each pixel in the 
output image based on a comparative analysis of its counterpart in the 
input image and its surrounding pixels. Among these operations, dila
tion, and erosion take precedence. Dilation can be visualized as placing 
an imaginary sphere within the non-reference phase and gaging its 
extent, assuming the reference phase is impermeable to this sphere. In 
essence, spaces inaccessible to the sphere translate to an expanded 
reference phase. On the other hand, erosion is the reverse operation, 
wherein the reference phase is permeable to this virtual sphere. In the 
digital realm, dilation contributes pixels to the boundaries of objects, 
while erosion detracts pixels from these peripheries. 

Frequently, dilation and erosion operate in tandem in a process 
termed "opening." This dual operation notably elevates the quality of 
reconstructed imagery, proving invaluable for intricate microstructures 
where capturing essential structural nuances via limited statistical cor
relations is challenging (Mandzhieva, 2017). In our research, we har
nessed the morphological filters of dilation, erosion, and opening on 
both binary and normalized EDT datasets, ensuring consistency in image 
dimensions across scales. Fig. 10 provides a pictorial representation of 
the filters’ implementation on a sample. These filters augment training 
by spanning a wide spectrum of probable pore distributions, enriching 
the plausible variations in pore structures and morphologies. Conse
quently, the CNN model is exposed to diverse pore space manifestations 
with differentiated morphologies (Kamrava et al., 2020). 

Moreover, we employed the said morphological filters to devise pore 
structures that, while similar in form and heterogeneity, presented 
nuanced differences in porosity (Santos et al., 2022). The realizations 
emanating from these filters mirror the porosity distribution inherent in 
the original 3D imagery. As a result, the dataset culminated in 472 
training images for each resolution, partitioned into 118 original images 
and 354 crafted realizations. In aggregate, this encompasses 1416 
training 3D images – evenly split between 708 binaries and 708 
normalized EDT subvolumes – spread across the three resolutions, all of 
which are meticulously aligned and bear dimensions of 3003 voxels. 

4.4. Transfer learning 

While classic deep learning algorithms have their merits, they also 
come with challenges. Neural networks tend to excel with larger data
sets. With smaller datasets, the risk of overfitting increases, potentially 
leading to inaccurate test set predictions (Tang et al., 2022). Given the 
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cost of acquiring data via numerical simulations and experiments, the 
effectiveness of our proposed method for a small dataset in a multiscale 
approach is of interest. Transfer learning offers a way to repurpose 
existing deep learning models for new tasks with scarce data. Unlike 
traditional algorithms focusing on specific tasks, transfer learning le
verages knowledge from one task to benefit another. 

CNNs have proven their efficacy in learning image characteristics 
and generalizing image features from vast training sets. Transfer 
learning has the potential to produce outcomes that are comparable to, 
or potentially superior to, initiating a CNN model with random param
eters. This approach involves adapting an already trained neural 
network to a new dataset, capitalizing on previously learned features 
(Anzum, 2021). Especially when computational resources are con
strained, transfer learning offers an advantage, as training extensive 
models on powerful GPUs is time-consuming. It allows leveraging 
pre-trained weights as an initial point (Weiss et al., 2016). Given the 
limited image dataset for the multiscale regression model, our first step 
is to use transfer learning. We then fine-tune the model using various 
transformation techniques to enhance its performance. This fine-tuning 
not only retrains the model but also extends backpropagation to adjust 
the pre-trained network’s weights. While it’s possible to fine-tune the 
entire network, we might retain some early layers and only modify 
higher-level components to mitigate overfitting. For this study, each 
scale uses a distinct dataset to adjust all layers of the previously-trained 
CNN. 

Different transfer learning techniques exist, and our choice depends 
on the specifics of the new dataset relative to the dataset of the pre- 

trained models. We aim to combine scales to predict transport proper
ties, integrating transfer learning within the 3D CNN framework, as 
shown in Fig. 11. To build the multiscale model, we curate datasets for 
each scale, subdividing them into binary and normalized EDT 3D sub
volumes. The first step involves pre-training the model using three-scale 
datasets of normalized EDT maps. The model is designed to recognize 
the physical correlation between the normalized EDT and the velocity 
field and, subsequently, the permeability of the porous media, which is 
inherently nonlinear. 

At each scale, we commence with the weights from the previously 
pre-trained network and then train the system to update these weights. 
As a result, the network starts to grasp the intricate relationship between 
the diverse pore structures and the target transport property, i.e., 
permeability, within the designated region. This foundational under
standing is then built upon through sequential transfer learning, 
employing the binary datasets for each scale and refining them with the 
LR images. For permeability estimation, only the binary LR data from 
the entire core sample will be necessary, streamlining the evaluation 
process with the refined model. It is crucial to note that high-resolution 
(HR) data plays a pivotal role in deciphering the nuanced 3D feature 
distribution’s non-linear correlation with permeability at its respective 
scale. This vital information is relayed to the networks functioning at 
lower resolutions within the registered zone. Here, the less detailed 
images offer insights into the broader scale variances that influence fluid 
movement, as depicted in Fig. 11. 

We achieved a robust and generalizable model for the corresponsive 
heterogeneity of this carbonate sample through the suggested data 

Fig. 10. Visualizations of the 2D cross-sections of the 3D binary and normalized EDT subvolumes generated using morphological filters. All of the resulting images 
are digitally aligned. 

Fig. 11. Workflow for training a multiscale CNN. Initially, the model is pre-trained with the 3D normalized EDT dataset obtained progressively from the HR, MR, and 
LR carbonate images, respectively, in the registered overlap region that can provide information about the original binary map for initial optimization of the model 
parameters. Each scale learns the association between pore space morphology and permeability response at the specific image resolution. The primary image 
regression is accomplished by training binary images in the same order. The final calibrated model calculates the permeability of LR image volumes. 
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augmentation and transfer learning processes, despite the fact that the 
model is calibrated in the registered region of the HR images and limited 
data for training the CNN were available for each scale. Furthermore, 
the relatively large image volumes for inputting the CNNs (3003 voxels) 
and memory restriction of the computational GPU necessitate that we 
accomplish the desired result within an optimal and simplistic network 
architecture. In other words, this method is rigorously optimized inside 
a constrained frame of limited data at each scale underneath a GPU with 
limited memory. 

4.5. Model training 

The multiscale CNN model was developed and trained using Python 
in the PyTorch framework. We also utilized open-source Python pack
ages like Pandas, tifffile, SciPy, Numpy, Seaborn (Waskom, 2021), 
Plotly, and Matplotlib (Hunter, 2007) for pre- and post-processing tasks. 
The backpropagation Adam algorithm (Kingma and Ba, 2014) with a 
learning rate of 1e-4 was used for backpropagation during CNN training, 
aiming to minimize the root mean squared error (RMSE) prediction loss. 
In the realm of supervised learning, RMSE (as given in Eq. (8)) is a 
widely used metric to gage model performance and ascertain prediction 
accuracy. Leveraging the Euclidean distance of the residuals quantifies 
the deviation of predictions from actual values. Furthermore, our 
dataset was divided as 90% for training and 10% for validation. Larger, 
unregistered MR and LR images served as an independent test set. We 
trained our model over 60 epochs per scale, using a batch size of one. 
The input data is provided in tiff format, and Table 2 lists the model’s 
hyper-parameters. The training was executed on a single Nvidia GeForce 
RTX 3060 GPU boasting 12 GB of memory, complemented by 48 GB of 
RAM. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
‖ y(i) − ŷ(i)||2

N

√
√
√
√
√

(8) 

Where N represents the number of samples, y(i) is the ith measure
ment, and ŷ(i)is the corresponding prediction. 

5. Results and discussion 

The primary goal of this study is to establish a swift and precise 
regression connection between the intricate geometry of a tight multi
scale carbonate porous medium and its permeability variations using the 
introduced multiscale CNN model. The workflow for predicting 
permeability encompasses a sequential CNN calibration anchored to the 
registered region across three resolutions. 

The coefficient of determination, R2, serves as an index of the ability 
of the microstructural predictor features to explain variability in the 
response variable. R2 (given by Eq. (9)) is the disparity between 1 and 
the quotient of the total sum of squares (SStot) and the residual sum of 
squares (SSres): 

R2 = 1 −
SSres

SStot
(9)  

SSres =
∑N

i=1

(
kModel

i − kLBM
i

)
(10)  

SStot =
∑N

i=1

(
kLBM

i − kLBM
i

)
(11)  

where N is the number of samples and ki the permeability of each 
sample. We employ R2 to evaluate the predictive accuracy of 3D sub
volumes of pore structure images and their associated contribution to 
estimating permeability variations in multiscale CNN models. Our 
methodology is adaptable across all three scales and particularly 
tailored to map permeability in LR volumes. To refine the CNN archi
tecture, we study the influence of various hyper-parameters on predic
tion performance. These include the number of convolution blocks, 
learning rate, momentum, and weight decay, whose significance in 
impacting CNN’s predictive capability has been underscored in prior 
research (Tang et al., 2022). The optimal model was selected based on 
criteria such as the lowest RMSE loss and the highest R2 value. The 
definitive model structure is showcased in Fig. 9, and the finalized 
hyper-parameters are detailed in Table 3. 

Apart from the data generation method delineated in Section 4.3, we 
also explored data augmentation techniques, like introducing random 
horizontal and vertical flips to the images. This augmentation led to 
discernible improvements in both loss values and R-squared scores. The 
outcomes from the multiscale modeling and characterization process are 
expounded upon in this section and are divided into two parts. The first 
part delves into the results of the calibration model within the registered 
areas across the three image resolutions. The second part focuses on 
assessing the model’s performance on the test data, then scaling up the 
findings from the test phase and validating the overarching model. 

5.1. Calibration model 

The model’s training and subsequent evaluation begin with 
analyzing the learning curves from its final iteration. For each training 
epoch, the model’s validation and training losses are measured in terms 
of the root mean square error to ensure no overfitting and verify that the 
training has attained its optimal stride. The sequential reduction in both 
training and validation losses is detailed in Table 3. The decreasing trend 
of the loss function’s mean error and standard deviation from the HR to 
LR data replicates that while the network continued to learn and adapt 
its parameters, the pre-learned features from the HR dataset provided a 
foundation that required fewer drastic adjustments. This could be 
interpreted as the network sequentially assimilating knowledge from 
datasets of varying resolutions by adopting efficient transfer learning. 
Extending training beyond 60 epochs scarcely reduced the validation 
loss below 0.25. Hence, training was stopped at 60 epochs. 

This section presents the calibration model results to showcase the 
multiscale CNN model’s capacity to interpret the geometric heteroge
neities at different resolutions. Optimal hyper-parameters were selected 
through training, and the model’s accuracy was subsequently validated 
using test data. Our analysis yields statistical insights by examining the 
model’s predictions and loss values. The R2 metric serves as the chosen 
indicator of model precision. The first evaluation phase yielded 
permeability estimates with actual sample data inputs for each resolu
tion within the overlapping zone of the three aligned images. 

Fig. 12 displays the permeability values derived from flow simula
tions in HR images against those predicted from HR, MR, and LR images 
within the registered area using our multiscale regression approach. 
Each scatterplot includes a regression line, a robust method for show
casing the linear relationship between two variables. The plots are an
notated with the R2 value for the test data permeability comparison, 
registering an R2 of approximately 0.96 across all three resolutions. 
Fig. 12(d) also directly compares voxel permeability predictions for LR 

Table 2 
The hyper-parameters of the regulated multiscale CNN model.  

Hyper-parameters Value 

Batch size 1 
Number of epochs for training on each resolution 60 
Momentum 0.8 
Weight decay 5e-3 
Number of initial feature maps 32 
Learning rate 1e-4  
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and MR images with an R2 of 0.99, affirming the close similarity be
tween the computed values. These plots not only illustrate the model’s 
accuracy but also its generalizability across various resolutions of input 
data, which is a cornerstone of robust machine learning models. It is 
important to point out that these results have been underpinned by the 
carefully registered images in three resolutions. Given the variability in 
pore structures and permeability estimates within the registered region, 
the precision achieved is noteworthy. It reflects well on the model’s 
ability to accurately correlate the predicted with the actual permeabil
ities for this carbonate study. The consistency of the approach is further 
evidenced by the minimal number of outliers in these plots. Both the 
plots and Fig. 13—which includes a histogram and box plot comparison 
of true vs. predicted permeabilities—indicate that errors are marginally 
higher for lower permeability values, which occur more frequently. This 
could be attributed to the complex pore structure in denser samples, 
which presents a more significant challenge for the model in capturing 
and generalizing the intricate local spatial interactions related to 
permeability (Dehghan Khalili, 2013). 

Furthermore, direct comparisons in Fig. 12(a,b, and c) show a high 
correlation with the HR target values at higher permeabilities, while at 
permeabilities under one millidarcy (mD), the correlation diminishes. 
This suggests differences in connectivity within the micro-structure of 
tighter areas that are not as precisely captured by lower-resolution im
ages. A consistent offset at higher permeabilities suggests that, although 
porosity is well-aligned across scales, the model does not capture certain 
fine details below a specific resolution threshold. This consistent pattern 
of missing features, as shown in each image scale representing a 
permeability REV, results in an almost constant disparity between pre
dictions and actual targets, mirroring observations from earlier studies 
such as those by Jackson et al. (2021). 

Another interesting observation regarding comparing the R2 values 
in Fig. 12 is the slightly lower R2 for the estimated high-resolution case 
compared to the middle and low-resolutions. This result is related to the 
effective transfer learning scheme implemented during the model 
development phase. Our model was trained using multiscale data, 
aiming to generalize across different resolutions. To achieve the goal in 

Table 3 
The statistics of RMSE for training and validation data.  

Row Dataset RMSE for training data RMSE for validation data 

Min Max Mean STD Min Max Mean STD 

1 HR-EDT 0.6046 1.3002 0.6957 0.1056 0.4714 1.1356 0.6557 0.0905 
2 MR-EDT 0.5281 1.0173 0.6281 0.0766 0.3302 1.0872 0.4524 0.1152 
3 LR-EDT 0.4785 0.8525 0.5603 0.0606 0.3211 0.8199 0.4512 0.0843 
4 HR-Binary 0.4521 0.7618 0.5351 0.0532 0.2662 0.6623 0.3692 0.0675 
5 MR-Binary 0.4481 0.6838 0.5374 0.0451 0.2749 0.5398 0.3741 0.0501 
6 LR-Binary 0.4263 0.6891 0.4887 0.0471 0.2541 0.6681 0.3689 0.0704  

Fig. 12. Permeability estimation performance for the corresponding real samples in HR, MR, and LR subvolumes of the registered area and their calculated R2. A 
solid black 1:1 line shows the perfect correspondence of the LR/MR predictions with the HR data. 
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this work in order to computationally efficient estimation of perme
ability on the low-resolution domains with larger field-of-view (which is 
infeasible by direct numerical simulation) and with high accuracy and 
generalizability but less computational time compared to LBM, the final 
model sequentially fine-tuned on the middle-resolution and low- 
resolution domains respectively after pre-training on the high- 
resolution images. Secondly, the high-resolution datasets inherently 
contain more detailed and complex pore structures than the registered 
middle and low resolutions. This complexity includes finer resolved 
features and subtle variations in pore geometry, which are not present in 
the lower-resolution images and are more challenging to capture and 
accurately predict. As a result, the model’s performance, as measured by 
R2, may appear slightly lower for high-resolution estimations due to the 
increased difficulty in capturing these intricate details. Thirdly, this 
slight increase in R2 from HR to MR and LR data, also implies that the 
model, when trained sequentially, can potentially avoid overfitting to 
the HR details that are not present in lower resolutions. Finally, despite 
the marginally lower R2 in high-resolution predictions, it is essential to 
emphasize that the values obtained are still indicative of robust model 
performance, particularly considering the complexity of the multiscale 
data. The results still validate the effectiveness of our approach in 
multiscale modeling, since the final trained model is a multiscale- 
resolution-aware network and can predict the permeability of multi- 
resolution images with R2 more than 0.96. 

Furthermore, The histogram and box plot of Fig. 13 overlay the 
frequency distributions of predicted permeability values for each reso
lution (LR, MR, HR) and the ground truth. These distributions indicate 
the most and least common permeability values predicted by the model 
and demonstrate that the model’s estimations at different resolutions 
capture the overall trend of the ground truth data. As a result, the 
multiscale CNN suggests a well-tuned model that encompasses the 
essential features necessary for accurate permeability prediction. 

Table 4 details the average predicted and actual permeabilities and 
their average relative error. The results show a low average relative 
error of just 4.5% for the HR data predictions, with a modest stepwise 
decrease in error observed as the network progresses through scales—
down to 3% for LR data predictions. This improvement in the network’s 
predicting ability is attributed to the transfer learning process by further 
fine-tuning or incorporating additional features that compensate for the 
loss of resolution. 

The data also reveal a marginal increase in the standard deviation for 
permeability predictions at the MR and LR scales, reflecting the wider 
permeability range encountered at these resolutions. Moreover, Table 4 
includes the Dykstra-Parson coefficient (V_k), which is the quotient of 

the standard deviation to the mean effective permeability (Jackson 
et al., 2021). Notably, LR predictions exhibit a marginally higher V_k 
value, suggesting a more comprehensive capture of the heterogeneity 
inherent in the plug images, resulting in a broader range of permeability 
variations at a larger scale. Conversely, HR predictions within the 
overlap region typically yield a lower V_k due to the more discernible 
pore-space geometries and their higher connectivity, which equates to 
less permeability variation among the REVs. 

Overall, the findings of this subsection, in conjunction with the 
RMSE loss presented in Table 4, attest to the efficacy of a transfer 
learning workflow augmented by image registration and data genera
tion techniques using normalized EDT and binary maps. Such a strategy 
significantly bolsters the CNN model’s predictive power and general
ization capabilities across various image resolutions within the regis
tered area. 

Fig. 14 plots the modeled response values against the residuals, 
which are the discrepancies between predicted and actual permeabilities 
at each resolution, to showcase the model’s robustness and effective
ness. The figure suggests that residuals’ variance tends to decrease as the 
magnitude of the response variable increases, indicating that the model 
exhibits homoscedasticity, which is a characteristic of a high-quality 
model. Nonetheless, while the coefficient of determination is a useful 
indicator of precision, it cannot be the sole judge of model quality. 
Ideally, model residuals should center around zero without obvious 
clustering or patterns at any scale, as such patterns could suggest sys
tematic bias within the model (Botha and Sheppard, 2016). A visual 
examination of the residuals presented in Fig. 14 reveals a relatively 
scattered distribution, reinforcing the conclusion that our model oper
ates without bias and is suitable for the data it was designed to interpret. 

Fig. 13. A histogram (left) and box plot (right) of permeability predictions in the registered calibration area of the three resolution images and the target values 
obtained from the LBM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

Table 4 
The performance of the model in terms of averaged loss values, relative errors, 
standard deviations, and the Dykstra-Parson coefficient of the actual and esti
mated values.  

Transport 
property 

Mean 
[mD] 

Relative error 
(%)* of Mean 

STD Dykstra-Parson 
coefficient, Vĸ [-] 

K-LBM 2.2067 0 1.7551 0.7953 
K-pred-HR 2.3070 4.5452 1.7652 0.7651 
K-pred-MR 2.2890 3.7295 1.7740 0.7750 
K-pred-LR 2.2740 3.0498 1.7719 0.7792  

* Relative error =|
KLBM − KModel

KLBM
| × 100.
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5.2. Comparison with traditional (Vanilla) CNN 

To validate the effectiveness of our multiscale CNN approach, a 
comparative analysis was conducted against a traditional (or vanilla) 
CNN architecture. The vanilla CNN was trained and tested on the same 
LR dataset and processed just the LR images independently without the 
benefit of multiscale integration or sequential learning. The resulting 
regression plot of this model is depicted in Fig. 15. 

As can be seen, the multiscale CNN demonstrated superior perfor
mance in terms of prediction accuracy, with higher R-squared values 
(~0.96) (Fig. 12) compared to a traditional CNN (R2≈0.83). It means 
the vanilla CNN struggled to capture the multiscale heterogeneity 
inherent in tight carbonate rocks, resulting in less accurate permeability 
predictions, especially at lower resolutions, which is our target. In 
contrast, with its integrated approach, the multiscale CNN showed a 
more robust understanding of these complexities. In traditional CNNs 
training, the CNN is trained by each resolution dataset without inte
gration, which is insufficient to reach the desired accuracy and 
generalization. 

Therefore, here we clearly highlight the novelty and distinctions of 
the proposed multiscale CNN architecture:  

(1). Integration of multiscale approach: Our multiscale 3D CNN 
uniquely combines 3D information across high, middle, and low 

resolutions. This integration addresses the generalization issue by 
training the model on a variety of scales, which is crucial for 
capturing the comprehensive heterogeneity of tight carbonate 
rocks, where pore structures significantly vary across scales. This 
is an advancement over traditional CNNs implemented in previ
ous studies (Kamrava et al., 2020; Rabbani et al., 2020; Jiang 
et al., 2022; Santos et al., 2021; Takbiri-Borujeni et al., 2020; 
Marcato et al., 2022), which typically process single-scale images 
and may overlook critical multiscale features relevant to perme
ability estimation.  

(2). Sequential learning across scales: Unlike a vanilla CNN, which 
learns features from a single resolution (such as these recent 
studies (Elmorsy et al., 2022; Liu et al., 2023)), we employ a 
sequential approach in our CNN, where learning is distributed 
across multiple stages, each focused on a different resolution 
scale. This method is computationally more efficient than 
attempting to process all scales in a single, monolithic model. It 
starts by learning fine-scale details in high-resolution images and 
then progressively adapts to coarser details in lower resolutions. 
This sequential learning strategy, employed by transfer learning, 
enables the model to leverage learned features from 
high-resolution images and efficiently apply them to 
lower-resolution images because of establishing the prior regis
tration of three-resolution images. In the training phase, the 
model was initially pre-trained with the normalized EDT maps 
sequentially in three resolutions, and then the model was 
fine-tuned with multiscale binary maps. In the evaluation phase 
for the model usage, we simply need low-resolution binary im
ages as input. Therefore, the transfer learning workflow in a 
company with data augmentation and generation technique in 
each resolution (generation of abundant various pore structure 
realizations through morphological filters) resulted in a multi
scale aware network with simplistic and straightforward usage 
that can accurately estimate the permeability of the 
low-resolution images with larger FOV that is not possible 
through the LBM. This approach is not commonly seen in stan
dard CNNs implemented in previous studies, where each resolu
tion is typically treated independently.  

(3). Overfitting: Traditional ANNs and CNNs, mainly when they are 
deep and have many parameters, are prone to overfitting, espe
cially with limited training data. Overfitting results in models 
that perform well on training data but poorly on unseen data. By 
employing the transfer learning strategy, the model leverages 
learned features from HR data to enhance performance on LR 
images, thereby mitigating the risk of overfitting, even with 
limited data per scale. 

Fig. 14. Multiscale CNN model calibration over the field of view of the image with the highest resolution. Plotting the residuals of a multiscale CNN model against 
the predicted permeability values at three resolutions reveals no apparent systematic bias. 

Fig. 15. Permeability estimation performance for the corresponding real 
samples in just LR subvolumes of the registered area and their calculated R2. 
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(4). Optimization for limited computational resources: We have 
designed our network to achieve optimal results within the con
straints of limited data and GPU memory capacity. Our model 
uses larger image volumes (3003 voxels) for input, a considerable 
step up from traditional models that often use smaller di
mensions. This is achieved by carefully crafting a network ar
chitecture that is both robust and computationally efficient, 
ensuring that the model is feasible for practical applications 
despite hardware limitations. 

(5). Handling of spatial correlations: Traditional ANNs do not inher
ently account for spatial hierarchies and correlations in image 
data and often require extensive feature engineering to achieve 
optimal performance. CNNs, on the other hand, require less 
manual feature engineering due to their ability to automatically 
learn spatial hierarchies by using convolutional layers, but they 
can still struggle with capturing long-range dependencies within 
3D images. The multiscale nature of our CNN allows for better 
handling of spatial correlations and textures at different scales, 
which is crucial for accurately capturing the heterogeneity in 
porous materials like carbonate rocks. 

5.3. Test data results 

The training data performance, while promising, does not guarantee 
model effectiveness on the diverse range of heterogeneous carbonate 
microstructures encountered in practical scenarios. Consequently, the 
next logical step is to assess the trained multiscale CNN on additional 
test microstructures derived from the various complexities across entire 
volumes of the MR and LR carbonate images. This evaluation will pro
vide a more comprehensive understanding of the model’s practical 
application range, as we explore in this sections. The permeability es
timates generated from our model for individual rock units may be used 
to infer effective permeability at the core scale using Darcy’s simulation 
techniques (Botha and Sheppard, 2016). The modeled porosity was in 
agreement with laboratory observations. 

We cross-verified the model’s predictions with MIP data obtained 
from the same sub-plug for the test data, which includes binary images 
of the whole sub-plug at relatively lower resolutions without corre
sponding target labels as in the registered calibration zone. Conse
quently, the test subvolumes are scaled to match the REV dimensions 
used during training, allowing for comparing their permeability esti
mates to the experimental data after scaling up. The chosen image 
dimension for training was based on a standard REV for the carbonate 
images under study, which typically exhibit 8 to 12% porosity and 
encompass a various range of pore geometries; notably, the LR and MR 
images display a wider pore size distribution than those in the training 
set. We applied two methods to evaluate the calibrated multiscale CNN 
model: 

1) Applying the moving window technique outlined in the methodol
ogy, we manoeuvred a computational cube of 3003 vox
els—corresponding to a REV—across the entire binary carbonate 
images at MR and LR resolutions to extract 102 subvolumes from 
each resolution for testing. These images were then used to assess the 
model’s performance. In the subsequent phase, permeability esti
mated from the lower-resolution cube images of the carbonate core 

plug is scaled up. We adopt a voting-based scale-up method for result 
validation using MIP laboratory data, selecting the geometric mean 
for this purpose (Miarelli and Della Torre, 2021). This approach is 
backed by research indicating that the geometric mean is apt for 
characterizing the most probable permeability behavior in a het
erogeneous porous medium consisting of n regions with distinct 
uniform permeabilities from K1 to Kn. The mean aligns with the 
mode of a log-normal distribution, which often models the perme
ability distribution in such media. Our findings are presented in 
Table 5. The prediction relative error is calculated to be 7.4828% for 
LR test images and 16.9605% for MR test images, respectively. This 
discrepancy may be due to the capacity of the differing resolutions to 
resolve the grain/pore structure despite a similar distribution. The 
model, which was fine-tuned using LR images, yielded a lower error 
rate, showcasing the network’s adaptability across different pore 
geometries found in the non-registered, full-plug lower-resolution 
images. Considering the training set’s representative coverage of 
pore texture and morphology, the results align impressively with the 
MIP laboratory measurements.  

1) In the second testing method, we resize (or downsample) the lower- 
resolution micro-CT images of our carbonate, similar to what 
Alqahtani et al. (2018) carried out with sandstone images. Conse
quently, in this investigation, the LR images of various cube sizes, 
including 4003, 5003, 5503, 6003, and 6503 voxels, are resampled to 
3003 voxels using the bicubic interpolation method. With this pro
cedure, the porosities of the cubes were maintained in the range of 10 
to 11%, as opposed to other approaches such as bilinear (which 
resulted in additional variations in porosity), since we preferred to 
preserve the porosity in this range with the fewest of pore structure 
destruction. The resolution or voxel size of the cubes varied in the 
following order after resampling: 4, 5, 5.5, 6, and 6.5 µm. Again, the 
model was evaluated using these new images with lower resolutions 
than the training LR images but with the same dimensions (3003). As 
shown in Table 6, although the mean estimated permeability is in the 
range of the predicted values in the registered area (Table 4), the 
results in this instance were not as encouraging as anticipated rela
tive to the MIP data. These results imply that downsampling the LR 
larger volumes of such a complex, tight carbonate may not be an 
appropriate method for estimating permeability through the model, 
and even when preserving the porosity of the volumes in the REV 
range, significant features of the original pore structures are sacri
ficed. Like all deep learning algorithms, the performance of the 
network is largely dependent on the quality/quantity of the training 
data and its representativeness with respect to the test data (Jackson 

Table 5 
Model evaluation with the original test images.  

Row Test images Mean Permeability(mD) STD Geometric mean (mD) Relative Error* (%) Total data 

1 Middle resolution 1.9159 0.7255 1.7544 16.9605 102 
2 Low resolution 1.8166 0.7052 1.6122 7.4828 102  

* Relative Error=|
KMICP − KModel

KMICP
| × 100.

Table 6 
Model evaluation with resampled test images.  

Row Resampled LR images to 
3003 voxels 

Predicted Permeability 
(mD) 

Relative Error 
(%) 

1 4003 2.5455 69.3333 
2 5003 3.0924 106.16 
3 5503 2.0176 34 
4 6003 1.8276 21.3333 
5 6503 2.1885 40 
6 Geometric mean (mD) 2.2939 52.9318  
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et al., 2021). Consequently, we must be more cautious when 
applying digital 3D pore-scale modeling to heterogeneous carbon
ates in general. 

It is typically more challenging for neural networks to handle test 
data with out-of-range characteristics than training samples because the 
features of the out-of-range samples (resampled images in this scenario) 
may differ from the characteristics of the training samples. Nevertheless, 
the results indicate that the multiscale CNN achieves accurate perfor
mance when dealing with unseen test data with different structures in 
the non-registered regions of the actual lower-resolution images and 
successfully links the complex multiscale morphology of the carbonate 
porous media with this degree of heterogeneity to their permeability 
variations. The efficiency of the computations is such that the perme
ability of a new sample from the LR and MR images with larger FOVs can 
be estimated in a few seconds after the training is complete, thereby 
allowing the avoidance of the intensive computations for effective 
permeability, which are not applicable by the LBM on low-resolution 
domains. 

5.4. Normal probability plot of results 

Fig. 16 presents the permeability prediction histograms and box plots 
for the entire set of real test images at both LR and MR resolutions. 
Notably, the model retains its precision for MR and LR samples, which 
possess a range of complex geometries. The permeability distribution at 
both resolutions shows comparable trends, with histograms that 
approximate a normal bell curve, indicating the model’s capability to 
generalize across different sample complexities. 

In order to scrutinize the normality of the estimated permeabilities, 
we turn to Q-Q plots, which are statistical tools used to compare the 
quantiles of two distributions. A Q-Q plot can determine if a dataset 
follows a certain theoretical distribution, such as normal, exponential, 
or uniform, or assess if two datasets come from similar distributions. 
This is particularly useful in regression problems, where confirming 
distribution uniformity between separate training and test datasets is 
essential. Such plots can validate whether the distributions generated by 
the multiscale CNN model are normal, thereby facilitating data experi
mentation. Considering the prevalence of normal distributions in natu
ral phenomena, establishing normality in our model’s outputs is 
advantageous. 

Fig. 17(a) features the Q-Q plot for the LR residuals, which compares 

the differences between the LBM target responses and the predicted LR 
permeabilities within the registered area. The normal probability plot 
for the residuals is constructed to verify the normality assumption. A 
roughly linear plot suggests that the residuals are normally distributed. 
The diagonal reference line helps ascertain the linear correlation be
tween theoretical and sample quantiles. However, the plot reveals some 
non-linearity, especially at the lower quantiles, indicating that the error 
terms for this data subset do not follow a normal distribution. This de
viation is primarily attributed to the lower permeability estimates for 
tighter samples, which tend to have less precision, as previously 
mentioned. The more accurate predictions for each LR sample are those 
that closely align with the normal distribution for their residuals. 

Fig. 17(b) displays the Q-Q plot for the distributions of reference 
permeabilities and LR estimates within the registered zone. This plot 
confirms that the permeability estimates from the model closely 
resemble the reference data, as evidenced by the points aligning nearly 
linearly along the reference line. This alignment suggests that the 
network has effectively captured the core structures and features com
mon to all registered images despite variations in resolution. 

Additionally, for the test results, we offer a plot of estimated per
meabilities from MR and LR test images compared with their respective 
theoretical quantiles, as demonstrated in Fig. 18. This figure confirms 
that the permeability estimations for both MR and LR have statistical 
distributions that predominantly align with normal distributions, 
echoing the trends observed in Fig. 16. Detailed analysis in Fig. 18(a and 
b) provides Q-Q plots from the perspective of kurtosis—a measure of the 
"tailedness" of a distribution. These plots exhibit minimal or insignifi
cant deviations at the tails, indicating a leptokurtic (thin-tailed) distri
bution, corroborating the model’s high prediction accuracy and unity 
with a normal distribution. 

The multiscale CNN model is acclaimed for its precision and effi
ciency. It takes 531 h to calculate the permeability of 59 HR 3D samples 
using LBM, whereas training the CNN with all three sets of registered 
images on the specified hardware takes only 48 h. Moreover, once the 
model is built, it can predict permeability in mere seconds. This rapid 
prediction capability underscores the potential of deep learning algo
rithms to drastically curtail computation time while elevating perme
ability estimation accuracy. The trained network can also be applied 
immediately to new rock images previously not trained on. 

However, it should be noted that the high-resolution data from the 
registered area substantiates the permeability estimates across entire 
image volumes with larger voxel sizes from MR and LR images. If the 

Fig. 16. Histograms (left) and box plot (right) of estimated permeabilities for the whole LR and MR test images in the non-registered area. The comparison reveals 
that the distributions of predictions at both resolutions are broadly similar and close to a normal bell-shaped distribution. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.). 
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calibration registered region fails to capture a comprehensive range of 
rock textures and morphologies—especially without data augmentation 
across resolutions—prediction uncertainties could escalate. Thus, the 
quality of the image and the computed permeability are crucial to the 
calibration model’s success and the fidelity of predicted outcomes. The 
synergy of transfer learning with data augmentation—utilizing 
normalized EDT and binary maps for each resolution—has proven to 
enhance the model’s predictive reach. The proposed method shows 
promise for application to other complex multiscale porous media with 
varying transport properties. 

It is essential to acknowledge that the efficacy of the transfer learning 
operation employed in the described workflow could attract our interest 
if it were to be extended to additional rock samples. However, signifi
cant factors need to be addressed before conducting further in
vestigations. The most critical aspects to remember are the following: 
The applicability of transfer learning across diverse rock samples de
pends on the degree of similarity evidenced by their characteristics. For 
instance, transferring knowledge from carbonate to sandstone samples 
may be effective if the pore structures or other relevant properties 
exhibit underlying similarities. However, the more dissimilar the sam
ples, the less effective the transfer learning might be. In our workflow, 
the foundation of image registration in multiscale imaging strengthens 
the transfer learning strategy. As a result, during the training phase, the 
heterogeneous pore structures at various resolutions are initially aligned 
and comparable, albeit with varying degrees of detail at each resolution 
scale. 

Implementing transfer learning across different rock samples 

involves leveraging a model trained on one rock type (or dataset) to 
enhance or expedite learning on a different but related rock type. This 
approach is particularly beneficial in digital rock physics problems, 
where obtaining varied and extensive datasets for each rock type is 
challenging. By transferring knowledge from one sample to another, the 
model can efficiently adjust to new data, reducing the need for extensive 
training from scratch. In addition, this methodology can prove to be 
especially advantageous in situations involving restricted data about 
specific rock types. A model trained on a vast and varied dataset of rock 
images has the potential to acquire characteristics that can be applied to 
different kinds of rocks. 

Nonetheless, several potential limitations still exist that need to be 
carefully treated. A notable limitation emerges due to the intrinsic 
heterogeneity of the rock samples. Different rock types can vastly exhibit 
different pore geometries, differences in mineral composition, REV and 
physical properties. Such variations can affect the model’s ability to 
accurately transfer learning from one sample to another since the suc
cess of transfer learning depends on the degree of similarity between the 
training and target datasets. Another issue is related to the model 
overfitting. Overfitting may occur if the model fails to generalize 
effectively from the training dataset to the new dataset despite its suc
cessful performance on the training set. This necessitates careful tuning 
and validation when applying the model to different rock types, espe
cially in the case of small datasets. 

Furthermore, domain adaptation presents a significant challenge, 
requiring the model to adjust according to the new dataset’s particular 
characteristics. This often requires fine-tuning the model with a smaller 

Fig. 17. The Q-Q plots for the LR residuals (a) and for the target references against LR permeability predictions in the registered area (b).  

Fig. 18. The Q-Q plot for permeability estimations from the a) LR and b) MR test images.  
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subset of the target dataset to ensure better performance. These methods 
can help adjust the model to the specific characteristics of the new rock 
type, improving its performance. Data preprocessing needs are another 
critical factor. Different rock samples require unique preprocessing steps 
to make the datasets compatible with effective transfer learning. This 
adds complexity to the implementation process. Therefore, our study 
demonstrates the potential of this approach, and future research will 
delve deeper into optimizing transfer learning for broader applications 
in diverse rock types. 

The triumph of the present study lies in synthesizing a scalable LBM 
for fluid flow property predictions, such as effective permeability in low- 
resolution micro-CT images of a complex carbonate with a larger FOV, 
something out of reach for direct simulation. Here, "synthetic" LBM re
fers to creating a sophisticated multiscale CNN model using standard 
GPU and hardware specifications that estimate transport properties 
much faster than traditional LBM and with comparable accuracy. Pre
diction times for each test image were on the order of a few seconds, 
while LBM simulations for each tight carbonate subvolume required 
about 9 h for convergence on our hardware. In the digital rock physics 
framework outlined in this paper, the CNN model’s hierarchical benefits 
are most significant in estimating effective permeability, integrating 
information from a vast spectrum of pore sizes and throat varieties at 
different resolutions. 

The current workflow also has the potential to provide a solid 
foundation for extending to multiphase flow properties. The first step 
involves integrating a comprehensive dataset specific to multiphase flow 
properties, such as capillary pressure and relative permeability, into the 
training and validation process. This dataset can be obtained from lab
oratory measurements or high-fidelity numerical simulations that cap
ture multiphase flow behavior in complex rocks. One approach offers 
that this dataset can consist of multiscale images of rock samples under 
various wetting conditions and at different saturation levels, along with 
corresponding capillary pressure and relative permeability measure
ments. The next factor reflects the CNN architecture that may need 
adaptations to effectively process and learn from multiphase flow data. 
This could involve modifying the network layers to handle additional 
inputs or outputs (e.g., outputting multiple properties or training sepa
rate models for each property). Also, physics-based constraints related to 
multiphase flow (e.g., capillary pressure and relative permeability 
principles) can be incorporated to enhance the model’s predictive 
capability. This could be achieved through hybrid modeling, where 
machine learning is combined with traditional physics-based models. 
For instance, the method proposed by (Tang et al., 2022) but imple
mented for single scale and single phase flow or considering a hybrid 
approach that combines CNNs with traditional simulation methods (e.g., 
pore-network modeling) for multiphase flow, leveraging the strengths of 
both data-driven and physics-based models such as the works done by 
(Xie et al., 2023) and (Rabbani et al., 2020). 

Nevertheless, extending the model to predict multiphase flow 
properties introduces additional challenges. These include capturing the 
intricate interplay between fluid properties, rock properties, and flow 
dynamics through multiscale imaging and dealing with the increased 
variability in multiphase flow properties in different resolutions. 
Another critical challenge is related to the REV size of the simulated 
ground truth data since multiphase flow properties like relative 
permeability simulation need even larger REV sizes (Saxena et al., 
2018), which increase the computational costs. Therefore, extending our 
current workflow to predict multiphase flow properties is feasible and 
would increase the model’s applicability in realistic scenarios and 
contribute significantly to the field of multiscale digital rock physics 
while acknowledging the challenges and the need for further research in 
this area. 

6. Summary and conclusions 

In this study, we introduce a novel and computationally efficient 

workflow designed to address the resolution field-of-view (FOV) trade- 
off in micro-CT imaging within the realm of digital rock physics 
(DRP). By integrating multiscale/multiresolution imaging with a 3D 
convolutional neural network (CNN)-based deep learning methodology, 
our workflow estimates transport properties, specifically effective 
permeability, from low-resolution micro-CT images of complex car
bonate samples with large FOV. Our multiscale approach spans three 
different resolutions, capturing the heterogeneity of the sample and 
successfully extrapolating high-resolution image properties to larger 
FOVs with lower resolution. The key findings and contributions of our 
research are summarized as follows:  

• The model demonstrates high accuracy in permeability estimation 
(R-squared ≈ 0.96) across various pore geometries and scales, 
aligning with lattice Boltzmann method (LBM)-derived reference 
values on representative elementary volume (REV) subvolumes, 
despite the complexities of the carbonate samples and the limited 
size of the training dataset per scale.  

• Residual analysis for each scale within the registered region shows 
homoscedasticity, with residuals distributed randomly around zero, 
indicating a high-quality and unbiased model capable of managing 
the complexity of carbonate media. 

• During the testing phase, the model effectively predicted perme
ability using various binary domains from the entire, lower- 
resolution image volumes, showcasing the model’s ability to gener
alize across different pore structures and link these variations to 
permeability.  

• Our research reveals that down sampling low-resolution images to 
estimate permeability is less reliable, as essential pore structure 
features crucial for prediction accuracy are often lost, even when 
porosity is preserved within the REV range.  

• A significant discovery is the successful application of transfer 
learning and data augmentation strategies, which significantly 
improve the model’s performance and generalization capabilities on 
the small datasets of each scale, particularly when pre-training on 3D 
normalized Euclidean distance transform (EDT) maps.  

• Histogram and quantile-quantile (Q-Q) plot analyses suggest that 
most deviations from normality in residuals are linked to lower 
precision in estimating the permeability of tighter samples. 

7. Future directions 

The study underscores the importance of image quality and sample 
representativeness in digital rock physics (DRP) modeling, as these 
factors significantly affect the diversity observed in pore size distribu
tions and morphologies. To build upon the findings of this research and 
further enhance the capabilities of DRP models, future research di
rections should include:  

• Expanding the generalization capability of our workflow to apply it 
to a wide array of porous materials. This expansion would increase 
the utility of our model across different geological and environ
mental scenarios. Future studies could involve acquiring sub-plugs or 
region-of-interest scans from additional rock samples to test the 
model’s predictive accuracy across entire lower-resolution images 
from multiple calibration volumes. 

• Broadening the research scope to include a wider variety of hetero
geneities, such as actual fractures, vugs, and two-phase transport 
properties. By incorporating these complex features into the 
modeling process, the predictive power and applicability of the 
model to real-world scenarios will be significantly improved.  

• Exploring lower-resolution systems at scales ranging from 20 µm to 
high-resolution sub-micron levels. This investigation would aim to 
enhance the transfer of information in situations where full core 
images are unable to capture primary flow pathways, yet there is still 
a need for accurately mapping variations in transport properties. 
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Gärttner, S., Alpak, F.O., Meier, A., Ray, N., Frank, F., 2021. Estimating permeability of 
3D micro-CT images by physics-informed CNNs based on DNS. arXiv preprint arXiv: 
2109.01818. 

Graczyk, K.M., Matyka, M., 2020. Predicting porosity, permeability, and tortuosity of 
porous media from images by deep learning. Scientific reports 10, 1–11. 

Gupta, S., Gupta, S.K., 2021. Development and evaluation of an innovative Enhanced 
River Pollution Index model for holistic monitoring and management of river water 
quality. Environmental Science and Pollution Research 28, 27033–27046. 

Hong, J., Liu, J., 2020. Rapid estimation of permeability from digital rock using 3D 
convolutional neural network. Computational Geosciences 24, 1523–1539. 

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Computing in science & 
engineering 9, 90–95. 

Jackson, S.J., Niu, Y., Manoorkar, S., Mostaghimi, P., Armstrong, R.T., 2021. Deep 
learning of multi-resolution X-Ray micro-CT images for multi-scale modelling. arXiv 
preprint arXiv:2111.01270. 

Jiang, F., Guo, Y., Tsuji, T., Kato, Y., Shimokawara, M., Esteban, L., Seyyedi, M., 
Pervukhina, M., Lebedev, M., Kitamura, R., 2022. Upscaling the permeability 
properties using multiscale X-ray-CT images with digital rock modeling and deep 
learning techniques. Authorea Preprints. 

Kahshan, M., Lu, D., Abu-Hamdeh, N.H., Golmohammadzadeh, A., Farooq, A.A., Rahimi- 
Gorji, M., 2020. Darcy-Brinkman flow of a viscous fluid through a porous duct: 
Application in blood filtration process. Journal of the Taiwan Institute of Chemical 
Engineers 117, 223–230. 

Kalule, R., Abderrahmane, H.A., Alameri, W., Sassi, M., 2023. Stacked ensemble machine 
learning for porosity and absolute permeability prediction of carbonate rock plugs. 
Scientific Reports 13, 9855. 

Kamrava, S., Im, J., de Barros, F.P., Sahimi, M., 2021. Estimating Dispersion Coefficient 
in Flow Through Heterogeneous Porous Media by a Deep Convolutional Neural 
Network. Geophysical Research Letters 48 e2021GL094443.  

Kamrava, S., Tahmasebi, P., Sahimi, M., 2020. Linking morphology of porous media to 
their macroscopic permeability by deep learning. Transport in Porous Media 131, 
427–448. 

Khodja, M.R., Li, J., Hussaini, S.R., Ali, A.Z., Al-Mukainah, H.S., Jangda, Z.Z., 2020. 
Consistent prediction of absolute permeability in carbonates without upscaling. Oil 
& Gas Science and Technology–Revue d’IFP Energies nouvelles 75, 44. 

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint 
arXiv:1412.6980. 

Liu, M., Ahmad, R., Cai, W., Mukerji, T., 2023. Hierarchical Homogenization With Deep- 
Learning-Based Surrogate Model for Rapid Estimation of Effective Permeability From 
Digital Rocks. Journal of Geophysical Research: Solid Earth 128 e2022JB025378.  

Ma, Z., Sun, S., Yan, B., Kwak, H., Gao, J., 2023. Enhancing the Resolution of Micro-CT 
Images of Rock Samples via Unsupervised Machine Learning based on a Diffusion 
Model. In: SPE Annual Technical Conference and Exhibition? SPE p. D021S028R005.  

Mandzhieva, R., 2017. Introduction to digital core analysis: 3D reconstruction, numerical 
flow simulations and pore network modeling. NTNU. 

Marcato, A., Boccardo, G., Marchisio, D., 2022. From Computational Fluid Dynamics to 
Structure Interpretation via Neural Networks: An Application to Flow and Transport 
in Porous Media. Industrial & Engineering Chemistry Research. 

I. Nabipour et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0001
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0001
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0001
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0002
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0002
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0002
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0003
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0003
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0004
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0004
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0004
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0005
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0005
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0005
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0006
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0006
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0006
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0007
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0007
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0008
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0008
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0008
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0009
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0009
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0010
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0010
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0010
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0011
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0011
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0011
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0011
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0012
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0012
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0012
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0013
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0013
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0014
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0014
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0014
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0015
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0015
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0015
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0015
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0016
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0016
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0016
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0017
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0017
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0018
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0018
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0019
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0019
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0019
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0020
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0020
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0020
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0021
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0021
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0023
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0023
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0023
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0024
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0024
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0025
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0025
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0025
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0026
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0026
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0026
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0027
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0027
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0027
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0029
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0029
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0030
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0030
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0030
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0031
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0031
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0032
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0032
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0035
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0035
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0035
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0035
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0036
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0036
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0036
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0037
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0037
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0037
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0038
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0038
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0038
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0039
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0039
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0039
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0041
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0041
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0041
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0042
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0042
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0042
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0043
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0043
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0044
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0044
http://refhub.elsevier.com/S0309-1708(24)00082-4/sbref0044


Advances in Water Resources 188 (2024) 104695

22
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