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Abstract
Introduction: The application of machine learning (ML) is increasingly growing in bio-
medical sciences. This study aimed to evaluate factors associated with type 2 diabetes 
mellitus (T2DM) and compare the performance of ML methods in identifying individu-
als with the disease in an Iranian setting.
Methods: Using	the	baseline	data	from	Fasa	Adult	Cohort	Study	(FACS)	and	in	a	sex-	
stratified manner, we studied factors associated with T2DM by applying seven differ-
ent	ML	methods	including	Logistic	Regression	(LR),	Support	Vector	Machine	(SVM),	
Random	 Forest	 (RF),	 K-	Nearest	 Neighbours	 (KNN),	 Gradient	 Boosting	 Machine	
(GBM),	Extreme	Gradient	Boosting	 (XGB)	and	Bagging	classifier	 (BAG).	We	 further	
compared the performance of these methods; for each algorithm, accuracy, precision, 
sensitivity,	specificity,	F1	score,	and	Area	Under	Curve	(AUC)	were	calculated.
Results: 10,112 participants were recruited between 2014 and 2016, of whom 1246 
had T2DM at baseline. 4566 (45%) participants were males, aged between 35 and 
70 years.	For	males,	age,	sugar	consumption,	and	history	of	hospitalization	were	the	
most weighted variables regarding their importance in screening for T2DM using the 
GBM	model,	respectively;	these	variables	were	sugar	consumption,	urine	blood,	and	
age	for	females.	GBM	outperformed	other	models	for	both	males	and	females	with	
AUC	of	0.75	(0.69–	0.82)	and	0.76	(0.71–	0.80),	and	F1	score	of	0.33	(0.27–	0.39)	and	
0.42	(0.38–	0.46),	respectively.	GBM	also	showed	a	sensitivity	of	0.24	(0.19–	0.29)	and	
a	specificity	of	0.98	(0.96–	1.0)	in	males	and	a	sensitivity	of	0.38	(0.34–	0.42)	and	speci-
ficity	of	0.92	(0.89–	0.95)	in	females.	Notably,	close	performance	characteristics	were	
detected among other ML models.
Conclusions: GBM	model	might	achieve	better	performance	in	screening	for	T2DM	in	
a south Iranian population.
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1  |  INTRODUC TION

About	9%	of	the	global	population	(463	million)	suffer	from	type	2	di-
abetes	mellitus	 (T2DM).	 If	 current	 trends	persist,	 this	number	 is	ex-
pected to increase to 10% or roughly 700 million people by 2045.1,2 On 
a	global	scale,	T2DM	was	responsible	for	approximately	5	million	adult	
deaths in 2017.2 The disease comes with several complications, entan-
gling the patients, their families and public health systems by lowering 
the	quality	of	life	and	life	expectancy,	placing	several	financial	burdens	
and	 causing	 several	 potentially	 life-	threatening	 complications.3 The 
incidence of complications arising from T2DM is considerable, as re-
search indicates that more than half and a quarter of individuals diag-
nosed	with	T2DM	experience	micro	and	macrovascular	complications,	
respectively.4	 A	 2019	meta-	analysis	 showed	 that	 almost	 33%,	 38%,	
36% and 43% of Iranian patients with T2DM suffer from cardiovascu-
lar diseases, neuropathy, retinopathy and nephropathy, respectively.5

The timely diagnosis of T2DM is paramount, as it is a chronic dis-
ease	that	can	lead	to	various	complications.	Early	interventions	are	
vital	 in	minimizing	 the	 risk	of	 further	complications	and	mitigating	
the numerous challenges associated with this disease.6,7 However, 
about half of the global T2DM cases are believed to go undiag-
nosed.2	Employing	precise	 screening	programs	can	aid	health	 sys-
tems	 in	avoiding	overload,	organizing	 their	budget,	and	optimizing	
care.	Hence,	prioritizing	 the	development	of	 robust	 screening	and	
diagnostic strategies is crucial.

Typically,	T2DM	is	diagnosed	through	direct	patient-	physician	in-
teraction and requires paraclinical evaluations. Regarding achieving 
desirable outcomes, preventive programs must maintain their inten-
sity and uptake by ensuring that invitees are covered and willing to 
accept invitations.6	 Achieving	 this	 goal	 can	 be	 challenging,	 partic-
ularly	 in	settings	with	 limited	resources.	As	a	 result,	 implementing	
low-	cost	strategies	provided	by	modern	technologies	may	prove	to	
be a valuable approach, particularly for underserved populations.

To improve the backbone of the evidence on the application of 
machine learning (ML) in health data, we designed a study employing 
seven	state-	of-	the-	art	ML	algorithms	to	evaluate	the	factors	associated	
with	prevalent	T2DM	in	a	sex-	stratified	analysis	and	to	estimate	their	
performances	in	screening	these	patients	from	the	Fasa	Adults	Cohort	
Study	(FACS).	These	algorithms	included	logistic	regression	(LR),	sup-
port	vector	machine	(SVM),	random	forest	(RF),	K-	nearest	neighbours	
(KNN),	gradient	boosting	machine	(GBM),	extreme	gradient	boosting	
(XGB)	and	bagging	classifier	(BAG).	The	accuracy,	precision,	sensitivity,	
specificity,	F1	score	and	area	under	curve	(AUC)	were	estimated	for	
each model and their performances were compared.

2  |  METHODS

2.1  |  Data sources

This	is	a	cross-	sectional	(analytical-	descriptive)	research	based	on	the	
baseline	FACS	data.	FACS	was	developed	to	assess	the	risk	factors	
predisposing	residents	of	the	Fasa	rural	region	to	non-	communicable	

diseases. In an area where the majority of residents live in rural set-
tings,	 the	 enrollment	 for	 FACS	 commenced	 in	October	 2014	 and	
concluded	 in	September	2016.	Fasa,	with	a	population	of	approxi-
mately 250,000, is located in the Fars province in southwest Iran. 
The	cohort	 research	was	carried	out	 in	Sheshdeh	and	Qarabolagh	
districts of Fasa, a rural region with 41,000 residents. The target 
population for the cohort included individuals aged between 35 and 
70 years	who	were	of	Iranian	nationality,	had	been	in	the	area	for	at	
least	1 year	and	capable	of	effective	communication.	The	FACS	was	
executed	using	a	census	method.	Within	Sheshdeh	and	Qarabolagh,	
there	were	a	total	of	11,097	individuals	in	the	specified	age	range,	
and out of those, 10,622 met the additional eligibility criteria, all 
of	whom	were	invited	to	participate	in	the	study.	With	a	participa-
tion	rate	of	95.2%,	10,118	were	finally	involved	in	the	FACS	study.	
More	in-	depth	information	regarding	the	objective	of	the	FACS,	its	
methodology, and the sampling region can be found elsewhere.8,9 In 
this study, participants with incomplete data regarding the status of 
T2DM were not considered. Figure 1 shows the summary of selec-
tion process and workflow of the current study.

2.2  |  Data preparation and preprocessing

Variables	 with	 missing	 data	 were	 rather	 prevalent.	 Analyses	 that	
neglect missing data can potentially create biased conclusions. For 
missing data, we used multiple imputations. Variables with less than 
10% of missing values were included in the analysis. The continuous 
variables were scaled and the variables with more than two catego-
ries were transformed into dummy variables.

2.3  |  Primary outcome

The classifier variable for this study was T2DM, dividing individuals 
into two groups: those with and those without T2DM.10 Individuals 
were	 categorized	 as	 having	 T2DM	 if	 they	 reported	 a	 history	 of	
physician	 diagnosis	 or	 if	 they	 had	 been	 prescribed	 anti-	diabetic	
medications.

2.4  |  Splitting data

A	sex-	stratified	analysis	was	undertaken,	 involving	separate	analy-
ses for males and females. This approach was adopted due to poten-
tial	variations	in	risk	factors	for	T2DM	between	the	two	sexes.	Most	
variables	were	shared	between	males	and	females;	sex-	specific	vari-
ables were eliminated for each group. Table S1 displays the shared 
variables and Table S2 shows the specific variables for each gender.

Each	group	was	partitioned	 into	 two	 subsets:	 Training	 (80%)	
and	test	(20%).	Training	set	was	used	for	feature	selection,	hyper-	
parameter	 tuning,	 5-	fold	 cross-	validation	 and	 data	 training.	 The	
test set was used for final evaluation and internal validation of the 
ML models.
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2.5  |  Feature selection

Feature selection methods were employed to achieve effective data 
reduction. This is useful for finding accurate data models. There 

are three types of feature selection: wrapper, filter, and embedded 
methods.11	 This	 study	 used	 a	wrapper	method	 integrating	 a	 tree-	
based	ML	model	and	 recursive	 feature	elimination	 (RFE).	RFE	was	
used to train an RF machine to pick features by iteratively training 

F I G U R E  1 Selection	process	and	workflow.
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an	 ML	 model	 and	 then	 eliminating	 the	 lowest-	ranking	 features.	
Initially,	laboratory	and	non-	laboratory	variables	were	chosen	based	
on	 the	 gender	 of	 each	 group,	 existing	 literature,	 and	 FACS	 data.	
Consequently, 154 variables for men and 161 variables for women 
were selected.

Then,	 RFE	 and	 RF	 were	 implemented	 to	 determine	 the	 opti-
mal number of features between 10, 15, 20, 25, and 30. For men, a 
subset of 15 features demonstrated the highest accuracy, while for 
women,	the	optimal	subset	comprised	10	variables.	Further,	RFE	and	
RF were employed to identify the most significant features. The top 
15 selected features for males included age, past medical history of 
hospitalization,	 job	 status,	 systolic	blood	pressure	 (SBP),	waist	 cir-
cumference	(WC),	waist-	hip	ratio	(WHR),	smoking,	white	blood	cell	
count	(WBC),	serum	creatinine,	gamma-	glutamyl	transferase	(GGT),	
urine specific gravity, sodium intake, glomerular filtration rate, sugar 
products consumption and salt intake (Figure 2A). The top 10 se-
lected	features	for	females	consisted	of	age,	WHR,	serum	creatinine,	
triglyceride,	alanine	transaminase	(ALT),	GGT,	urine	specific	gravity,	
urine blood, glomerular filtration rate, and sugar products consump-
tion (Figure 2B).

Table 1 presents a descriptive analysis of the selected features. 
Statistical	 analyses,	 including	 independent	 t-	test,	 chi-	squared	 test,	
and	Mann–	Whitney-	U	test,	were	employed	where	appropriate.	A	p-	
value	less	than	.05	was	considered	statistically	significant.	SPSS	ver-
sion	18	(IBM	Corp.,	Armonk,	N.Y.,	USA)	was	used	to	analyse	the	data.

2.6  |  Machine learning algorithms

Seven	 supervised	 ML	 algorithms,	 including	 LR,	 SVM,	 RF,	 KNN,	
GBM,	XGB,	 and	BAG	were	utilized.	The	 implementation	of	 all	ML	
algorithms	was	performed	using	Anaconda	(Version	4.12.0)	on	the	
Jupyter	Notebook	Platform	(Version	3.3.2).	The	ML	algorithms	were	
run	using	the	Scikit-	Learn	Module	(Version	1.1.3).

2.7  |  Model development

Initially,	 the	 training	 data	 underwent	 5-	fold	 cross-	validation	 and	
hyper-	parameter	tuning	to	identify	the	optimal	hyper-	parameters.	
In	the	5-	fold	technique,	the	entire	training	data	were	partitioned	
into five equal parts, with each part serving as validation data in 
turn, being trained itself and its accuracy was recorded. The pro-
cess was repeated for each part, and the average of all five ac-
curacies	was	 calculated.	 Subsequently,	 the	 accuracy	 of	 each	ML	
model	 was	 adjusted	 by	 modifying	 its	 hyper-	parameters.	 The	
hyper-	parameter	tuning	technique	involved	testing	various	combi-
nations	to	discover	the	optimal	set	of	hyper-	parameters	(Figure 3; 
Tables S3 and S4).12

In	the	second	step,	over-	sampling	was	used	to	balance	the	val-
ues of the outcome, and data with T2DM outcomes were acquired. 
One	of	the	best	over-	sampling	approaches	is	the	Synthetic	Minority	
Over-	sampling	 Technology	 (SMOTE).	 Rather	 than	 employing	 re-
placement, this strategy oversamples the minority class by produc-
ing synthetic instances. It selects samples from the minority class 
and generates synthetic samples along the same line segment, con-
necting some or all of the minority class's k nearest neighbours.13 
In	 this	 context,	 participants	with	T2DM	constituted	 the	minority	
class.	 SMOTE	 was	 applied	 to	 generate	 3086	 instances	 for	 men	
to balance those with and without T2DM and 3010 instances for 
women	to	equalize	females	with	and	without	T2DM.	Subsequently,	
ML algorithms were trained using the balanced training data and 
optimal	hyper-	parameters.

2.8  |  Model evaluation

The trained ML algorithms were applied to the test data for each 
sex-	stratified	 group	 to	 assess	 and	 compare	 their	 results.	 The	
metrics used to evaluate and compare the ML algorithms were: 

F I G U R E  2 (A,	B)	The	SHAP	values	of	the	top	features	in	the	GBM	model	for	identification	of	T2DM.	GBM,	gradient	boosting	machine;	
T2DM, type 2 diabetes mellitus.
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accuracy,	 precision,	 sensitivity,	 specificity,	 F1	 score,	 and	 AUC	
(Table 2; Figure 4). The metrics were calculated using the following 
equations:

Accuracy = (TP + TN)∕ (TP + FP + TN + FN)

Precision = TP∕(TP + FP)

Sensitivity = TP∕(TP + FN)

Specificity = TN∕(TN + FP)

Variables

Type 2 diabetes mellitus

p- valueNo (N = 8866) Yes (N = 1246)

Age,	years 47.93 ± 9.46 53.61 ± 8.81 <.001a

Sex

Male 4212	(92.3) 354 (7.7) <.001b

Female 4654	(83.6) 892	(16.4)

Smoking,	yes 1812	(93.3) 130 (6.7) <.001b

Systolic	blood	pressure,	mmHg 110	[92,	128] 117	[98,	136] <.001c

Waist-	hip	ratio 0.92 ± 0.06 0.96 ± 0.06 <.001a

Wrist	circumference,	cm 16.71 ± 1.33 16.80 ± 1.38 .029

White	blood	cell	count,	×109/L 6.43 ± 1.69 6.70 ± 1.83 <.001a

Triglyceride, mg/dL 129.02 ± 79.63 152.12 ± 97.26 <.001a

ALT,	U/L 23.17 ± 14.28 25.35 ± 14.78 <.001a

GGT,	U/L 22.18 ± 19.78 27.55 ± 29.50 <.001a

Serum	creatinine,	mg/dL 0.98 ± 0.18 0.99 ± 0.19 .054a

GFR,	mL/min/1.73 m2 76.44 ± 11.38 70.08 ± 10.94 <.001a

Urine specific gravity 1.0205 ± 0.0157 1.0206 ± 0.008 .843a

Urine blood, yes 2647	(90.8) 282	(9.2) <.001b

Salt	intake,	g/day 4.10 ± 2.65 3.69 ± 2.34 <.001a

Sugar	products	consumption,	g/
day

58.51 ± 59.04 35.44 ± 46.20 <.001a

Sodium	intake,	mg/day 4778 ± 1990 4639 ± 1951 .021a

Past medical history of 
hospitalization,	yes

2663	(91.7) 242	(8.3) <.001b

Having job, yes 4686	(92.1) 403	(7.9) <.001b

Note:	Data	are	presented	as	mean ± SD,	median	[IQR],	and	number	(%).
Abbreviations:	ALT,	alanine	transaminase;	GFR,	glomerular	filtration	rate;	GGT,	gamma-	glutamyl	
transferase.
aIndependent samples test.
bChi-	squared.
cMann–	Whitney	Test.

TA B L E  1 Overview	of	characteristics	
of the enrolled participants, including the 
top	15	important	features,	categorized	by	
T2DM (N = 10,112).

F I G U R E  3 The	process	of	model	
development with a combination of 
the	hold	out	method,	the	5-	fold	cross-	
validation	method,	and	the	hyper-	
parameter tuning.
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Here, TP represents the true positive rate, TN the true negative 
rate, FP the false positive rate, and FN the false negative rate.

2.9  |  Model interpretation

The	SHapley	Additive	exPlanations	 (SHAP)	analysis	was	employed	
to	 gain	 insights	 into	 the	 GBM	 model.	 Specifically,	 SHAP	 values	
were computed for the top features (Figure 2A,B).	Additionally,	two	

F1 − score = 2 × TP∕(2 × TP + FP + FN)

TA B L E  2 Performance	of	the	machine	learning	algorithms	for	men.

Algorithm Accuracy Precision Sensitivity Specificity F1 score AUC

LR 0.74	(0.67–	0.81) 0.15	(0.12–	0.18) 0.51	(0.44–	0.58) 0.76	(0.69–	0.83) 0.23	(0.18–	0.28) 0.68	(0.61–	0.75)

SVM 0.70	(0.63–	0.77) 0.10	(0.07–	0.13) 0.30	(0.25–	0.35) 0.73	(0.66–	0.80) 0.13	(0.10–	0.16) 0.58	(0.51–	0.65)

RF 0.91	(0.86–	0.96) 0.30	(0.25–	0.35) 0.27	(0.22–	0.32) 0.96	(0.93–	0.99) 0.31	(0.25–	0.37) 0.73	(0.67–	0.80)

KNN 0.63	(0.56–	0.70) 0.11	(0.080–	0.14) 0.51	(0.44–	0.58) 0.64	(0.57–	0.71) 0.18	(0.14–	0.22) 0.61	(0.54–	0.68)

GBM 0.92	(0.88–	0.96) 0.53	(0.46–	0.60) 0.24	(0.19–	0.29) 0.98	(0.96–	1.0) 0.33	(0.27–	0.39) 0.75	(0.69–	0.82)

XGB 0.87	(0.82–	0.92) 0.26	(0.21–	0.31) 0.32	(0.26–	0.38) 0.92	(0.88–	0.96) 0.28	(0.23–	0.33) 0.72	(0.65–	0.79)

BAG 0.90	(0.85–	0.95) 0.32	(0.26–	0.38) 0.25	(0.20–	0.30) 0.96	(0.93–	0.99) 0.29	(0.24–	0.34) 0.73	(0.66–	0.80)

Abbreviations:	AUC,	Area	Under	the	Curve;	BAG,	bagging	classifier;	XGB,	extreme	gradient	boosting;	GBM,	gradient	boosting	machine;	KNN,	K-	
Nearest	Neighbours;	LR,	logistic	regression;	RF,	random	forest;	SVM,	support	vector	machine.

F I G U R E  4 (A,	B)	Receiver	operating	characteristic	curves	of	the	seven	models	for	men	and	women.	(C,	D)	Precision-	recall	curves	of	the	
seven models for men and women.
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randomly selected cases with different outcomes from each group 
were	 chosen	 to	 serve	 as	 examples,	 demonstrating	 the	 practical	
functioning	of	the	GBM	model	(Figure 5).

3  |  RESULTS

3.1  |  Descriptive analyses

A	total	of	10,112	participants	were	included	in	this	study.	As	shown	
in Table 1,	 1,246	 and	8866	participants	were	diagnosed	with	 and	
without T2DM, respectively. 4566 (45%) of the participants were 
males	and	5546	(55%)	were	females.	After	the	feature	selection,	the	
top 15 features were selected to train the models for males and the 
top 10 features were selected for females. The results of the de-
scriptive analysis are shown in Table 1.

Individuals with T2DM had a greater average age than those 
without	T2DM	(53.61	vs.	47.93).	Women	with	T2DM	had	a	higher	

percentage than men with T2DM (16.4 vs. 7.7). Individuals with 
T2DM	were	more	 likely	 to	be	 smokers	 (6.7	vs.	93.3).	 Individuals	
with	T2DM	compared	 to	 those	without	had	greater	median	SBP	
(117	 vs.	 110 mmHg).	 In	 Individuals	with	 and	without	 T2DM,	 the	
average	of	WRR,	WC,	WBC,	triglyceride,	ALT,	GGT	and	serum	cre-
atinine	were	 higher,	 which	were	 0.96	 versus	 0.92,	 16,80	 versus	
16.71 (cm), 6.70 versus 6.43 (×109/L),	152.12	versus	129.02	(mg/
dL),	25.35	versus	23.17	 (U/L),	27.55	versus	22.18	 (U/L)	and	0.99	
versus	 0.98	 (mg/dL),	 respectively.	 Individuals	 with	 T2DM	 com-
pared to those without had lower glomerular filtration rate, salt 
intake, sugar products consumption, and sodium intake, which 
were	70.08	versus	76.44,	3.69	versus	4.10,	35.44	versus	58.51	(g/
day)	and	4639	versus	4778	(mg/day),	respectively.	In	the	samples,	
the	number	of	persons	with	positive	urine	blood	was	 lower	 (282	
vs. 2647). On average, individuals with T2DM had greater urine 
specific gravity (1.0206 vs. 1.0205). Individuals with T2DM had 
less	medical	 history	 of	 hospitalization	 and	 jobs,	which	were	 8.3	
versus	91.7	and	7.9	versus	92.1,	respectively.

F I G U R E  5 (A–	D)	The	SHAP	waterfall	plot	for	four	selected	patients	in	the	GBM	model.	GBM,	gradient	boosting	machine;	SHAP,	SHapley	
Additive	exPlanations.
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Of the 13 variables found to have statistically significant differ-
ences,	 two	variables,	serum	creatinine	 (p = .054)	and	urine	specific	
gravity	(p = .843),	did	not	demonstrate	statistical	significance	based	
on outcome classification.

3.2  |  Performance comparison of ML models

Tables 2 and 3 present the performance of the ML models based on 
various metrics for males and females, respectively. The final deci-
sion and determination of the best ML model were made by consid-
ering	the	AUC	and	F1-	score	metrics.

3.2.1  | Males

Table 2 displays the performance of the ML models for males. The 
GBM	had	 the	 highest	AUC	 (0.75).	 The	AUCs	 of	 the	 other	models	
were	as	follows:	0.73	for	RF,	0.73	for	BAG,	0.72	for	XGB,	0.68	for	
LR,	0.61	for	KNN,	and	0.58	for	SVM	(Figure 4A).	The	GBM	model	
also	achieved	the	highest	F1	score	at	0.33,	while	the	SVM	model	had	
the	lowest	F1-	score,	0.13.	The	F1	scores	for	the	other	models	were	
as	 follows:	 RF	 (0.31),	 BAG	 (0.29),	 XGB	 (0.28),	 LR	 (0.23),	 and	KNN	
(0.18).	Consequently,	based	on	AUC	and	F1-	score,	the	GBM	model	
was	selected	as	the	best-	performing	model.	Additional	metrics	for	
the models are provided in Table 2.

3.2.2  |  Females

Table 3 provides an overview of the performance of the ML mod-
els	for	females.	All	models	demonstrated	acceptable	AUC	values,	
with	GBM	and	XGB	achieving	the	highest	at	0.76.	The	AUCs	for	
the	 remaining	 models	 were:	 SVM	 (0.75),	 RF	 (0.75),	 BAG	 (0.73),	
KNN (0.73), and LR (0.71) (Figure 4B). For F1 score, both RF and 
GBM	models	attained	 the	highest	value	of	0.42,	while	LR,	KNN,	
and	XGB	had	the	 lowest	F1	score	at	0.39.	The	F1	scores	 for	 the	
other	models	were	0.41	for	SVM	and	0.40	for	BAG.	Consequently,	
the	 GBM	model	 was	 also	 chosen	 as	 the	 best-	performing	model	
for females.

3.3  |  Interpretation of the best model

3.3.1  | Males

Figure 6A	 presents	 the	 confusion	 matrix	 for	 the	 GBM	 model,	
showcasing its performance in identifying individuals with T2DM. 
Notably, the highest number of observations falls under true nega-
tives	 (828),	while	 true	positives	and	false	positives	had	the	 lowest	
number of observations (15). Moreover, Figure 6C illustrates the 
AUC	of	the	GBM	model	for	both	training	and	test	data	(1.0	vs.	0.75,	
respectively).

The	 GBM	model	 was	 utilized	 to	 identify	 the	 top	 15	 features.	
Figure 2A	displays	the	SHAP	values	for	these	features.	Age	emerged	
as the most influential feature in accurately identifying individuals 
with T2DM. Following age, the subsequent significant features were 
sugar	product	consumption,	past	medical	history	of	hospitalization,	
and	 serum	 creatinine.	 SBP	 and	 salt	 intake	 were	 ranked	 fifth	 and	
sixth,	respectively.

Figure 5A	 presents	 the	 SHAP	waterfall	 plot	 for	 two	 randomly	
selected	men	with	different	outcomes	from	the	GBM	model.	The	y-	
axis	indicates	the	input	features	in	descending	order	of	significance.	
The	model	output	for	an	individual	is	represented	as	f(x).	If	f(x)	sur-
passes	e[f(x)],	the	participant	has	a	higher	probability	of	having	T2DM	
compared	to	the	background	population.	Each	arrow	signifies	how	a	
specific feature either increases (red) or decreases (blue) the partic-
ipant's	T2DM	risk.	For	example,	sugar	product	consumption	of	137	
g/day	decreases	the	probability	of	having	T2DM	for	case	A	(without	
T2DM), but sugar consumption of 14 g/day increases the probability 
of	having	T2DM	for	case	C	(without	T2DM).	The	grey	text	before	the	
feature names shows the value of each feature for each case.

3.3.2  |  Females

Figure 5B	presents	the	confusion	matrix	of	the	GBM	model	for	the	
performance of each model in identifying individuals with T2DM. 
True	negatives	had	the	highest	number	of	observations	(859),	while	
true positives had the lowest (65). In addition, Figure 6D shows 
the	 AUC	 of	 the	GBM	model	 for	 train	 and	 test	 data	 (1.0	 vs.	 0.76,	
respectively).

TA B L E  3 Performance	of	the	machine	learning	algorithms	for	women.

Algorithm Accuracy Precision Sensitivity Specificity F1 score AUC

LR 0.68	(0.63–	0.73) 0.28	(0.24–	0.32) 0.64	(0.59–	0.69) 0.69	(0.64–	0.74) 0.39	(0.35–	0.43) 0.71	(0.67–	0.76)

SVM 0.68	(0.63–	0.73) 0.29	(0.25–	0.33) 0.69	(0.64–	0.74) 0.68	(0.63–	0.73) 0.41	(0.37–	0.45) 0.75	(0.71–	0.79)

RF 0.82	(0.78–	0.86) 0.44	(0.40–	0.48) 0.41	(0.37–	0.45) 0.90	(0.87–	0.93) 0.42	(0.38–	0.46) 0.75	(0.71–	0.80)

KNN 0.66	(0.61–	0.71) 0.27	(0.23–	0.31) 0.68	(0.63–	0.73) 0.66	(0.61–	0.71) 0.39	(0.35–	0.43) 0.73	(0.68–	0.77)

GBM 0.83	(0.79–	0.87) 0.49	(0.44–	0.54) 0.38	(0.34–	0.42) 0.92	(0.89–	0.95) 0.42	(0.38–	0.46) 0.76	(0.71–	0.80)

XGB 0.83	(0.79–	0.87) 0.55	(0.50–	0.60) 0.34	(0.30–	0.38) 0.92	(0.89–	0.95) 0.39	(0.35–	0.43) 0.76	(0.72–	0.80)

BAG 0.82	(0.78–	0.86) 0.40	(0.36–	0.44) 0.37	(0.33–	0.41) 0.90	(0.87–	0.93) 0.40	(0.36–	0.44) 0.73	(0.69–	0.77)

Abbreviations:	AUC,	Area	Under	the	Curve;	BAG,	bagging	classifier;	XGB,	extreme	gradient	boosting;	GBM,	gradient	boosting	machine;	KNN,	K-	
Nearest	Neighbours;	LR,	logistic	regression;	RF,	random	forest;	SVM,	support	vector	machine.
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The	 GBM	model	 was	 utilized	 to	 identify	 the	 top	 10	 features.	
Figure 2B	displays	the	SHAP	values	for	these	features.	Sugar	con-
sumption was the most accurate feature in identifying individuals 
with T2DM. The other important features were urine blood, age, 
WHR,	ALT,	and	serum	creatinine,	respectively.

Figure 5	displays	the	SHAP	waterfall	plot	for	two	randomly	se-
lected	women	with	different	outcomes	from	the	GBM	model.	Sugar	
product	consumption	of	110 g/day	reduces	the	probability	of	having	
T2DM	for	case	B	(without	T2DM),	but	sugar	product	consumption	
of	5.94 g/day	 increases	the	probability	of	having	T2DM	for	case	D	
(without T2DM).

4  |  DISCUSSION

Our study aligns with several previously published studies investi-
gating the application of ML algorithms for T2DM screening, risk 
stratification, prediction, and prognostic evaluation.14–	19 To the best 

of	our	knowledge,	this	study	is	the	first	to	explore	factors	associated	
with T2DM while assessing the performance of ML models using 
cross-	sectional	data	from	an	Iranian	population.	Our	findings	high-
light	the	superiority	of	the	GBM	model	in	T2DM	screening	within	a	
south	Iranian	population.	According	to	the	GBM	model,	key	associ-
ated factors for T2DM included sugar consumption, urine blood, and 
age in females, as well as age, sugar consumption, and a history of 
hospitalization	in	males.

ML	represents	a	pivotal	technique	for	translating	health-	related	
data into practical knowledge. Implementation of such knowledge 
and	expertise	will	advance	clinical	practice.14 In this regard, several 
systematic	 reviews	 and	meta-	analyses	 are	 available.15–	21 In recent 
years, ML models have gained significant attention for their poten-
tial in T2DM prediction, diagnosis, and management. Notably, in the 
studies	by	Abhari	et	al.	and	Tan	et	al.,	KNN,	NVM,	and	NB	were	the	
most	utilized	ML	models	for	T2DM	data.15,19

We	 analysed	 the	 performance	 of	 each	 ML	 model	 separately	
for males and females in our study. Our findings indicated that the 

F I G U R E  6 (A,	B)	Confusion	matrix	of	the	GBM	model	for	identification	of	having	T2DM.	(C,	D)	Receiver	operating	characteristic	curves	of	
the	GBM	model	for	identification	of	having	T2DM.	GBM,	gradient	boosting	machine;	ROC,	receiver	operating	characteristic.
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overall	AUC	of	ML	models	was	between	67	and	80	for	females	and	
51	and	82	for	males.	These	results	are	similar	to	the	previous	high-	
grade evidence.15	Sugar	consumption	and	age	were	the	shared	vari-
ables	among	the	three	highest	variables	based	on	their	SHAP	value	
between both genders indicating the strong impact of these features 
on the model's performance. In addition, we found that urine blood 
and	prior	history	of	hospitalization	were	 among	 the	 three	highest	
variables	regarding	their	SHAP	value	in	females	and	males,	respec-
tively. These findings suggest the implementation of such variables 
in future models and designing potential data registries to consider 
these variables.

Previous	studies	have	identified	RF,	SVM,	KNN,	and	GBM	as	the	
optimal ML models for T2DM prediction.15,16	While	 GBM	 demon-
strated the best performance on our dataset, the present study 
yielded similar results, given the minor differences observed between 
the	performances	of	other	models.	In	this	study,	SVM,	KNN,	and	RF	
showed	an	average	AUC	of	0.75,	0.73,	and	0.75	for	females,	respec-
tively. On the other hand, in males, these ML models showed an aver-
age	AUC	of	0.58,	0.61,	and	0.73	for	SVM,	KNN	and	RF,	respectively.	
Therefore, we can conclude that this study confirms the previous 
findings.	Another	crucial	aspect,	in	addition	to	evaluating	the	perfor-
mance of the ML models as conducted in this study, that should be 
taken into account when determining the optimal ML model is the as-
sessment of potential financial benefits associated with each model. 
This	consideration	is	recommended	for	exploration	in	future	studies.

Our findings indicated that ML models were significantly more 
specific	than	sensitive	in	the	FACS	population.	Therefore,	regarding	
the clinical applications models could be useful as initial screening 
tools due to their high specificity, but additional testing (such as con-
ventional T2DM detection, supervised by a medical team) may be 
required to confirm the diagnosis due to the potential for false neg-
ative results. However, the findings are inconsistent with previous 
research, as evidenced by Zanelli et al.,21 which includes biosignals 
such as photoplethysmography and electrocardiography as features 
yielded similar sensitivity and specificity. Consequently, future stud-
ies should assess other possible effective features (such as biosig-
nals), additional confirmatory tests, or the need to consider other 
diagnostic criteria in conjunction with the ML results to improve the 
sensitivity while maintaining the specificity.

Due	 to	 the	 growing	 popularity	 of	 individualized	 medicine	 and	
the	expanding	size	of	health	data,	as	well	as	the	burden	on	health-
care centers, the integration of modern devices into the healthcare 
system has become imperative.22 ML models can continuously learn 
from data, resulting in improved performance as additional data is 
incorporated.	Furthermore,	they	facilitate	the	development	of	user-	
friendly	applications	that	can	identify	high-	risk	patients,	reduce	sys-
tem	overload,	optimize	budgets	and	finances	and	enhance	the	overall	
quality of healthcare. The mentioned reasons are particularly rele-
vant when considering T2DM, a chronic condition that can impact 
various bodily systems, have significant financial implications for 
patients and public health, and is efficiently manageable with appro-
priate interventions. Timely identification of individuals at high risk is 
crucial for effective disease control and prevention of complications.

4.1  |  Strengths and limitations

This	study	is	the	first	to	utilize	ML	models	for	screening	T2DM	within	
an Iranian population, incorporating a diverse set of baseline vari-
ables. These variables included sociodemographic, anthropometric, 
clinical and paraclinical factors, as correlates for having T2DM, all 
within	 a	 significantly	 large	 sample	 size.	 Notably,	 the	 study	 distin-
guishes	itself	by	utilizing	seven	diverse	ML	models	for	comparison,	
constituting	one	of	the	most	extensive	sets	of	ML	models	employed	
in a single study, as suggested by previous systematic reviews.

The present study had some limitations, primarily due to its 
cross-	sectional	 design,	 which	 hinders	 longitudinal	 follow-	up.	 The	
absence of a time component may introduce some biases to the 
study.	 Additionally,	 while	 internal	 validation	 is	 a	 common	 practice	
in	 studies	utilizing	 the	performance	of	 the	ML	models,	ML	 studies	
in	T2DM	often	lack	external	validation,17 a limitation shared by our 
study.	The	absence	of	external	validation	brings	uncertainty	to	the	
results	and	restricts	the	generalizability	of	the	findings.	Moreover,	it's	
important to note that the findings of our study were based on data 
from a rural region in Iran, which may not be entirely representative 
of other populations in the country. Furthermore, it's crucial to ac-
knowledge	that	the	data	under	investigation	were	collected	approxi-
mately	6–	8 years	earlier.	This	temporal	gap	raises	the	possibility	that	
the population's characteristics and risk factors may have evolved 
over	time.	Additionally,	caution	is	advised	when	interpreting	findings	
from	ML	models	applied	to	biological	data,	as	they	inherently	exhibit	
limitations in drawing causal inferences.23 Therefore, any conclusions 
drawn from the findings of the current study must be approached 
with caution, taking into account the mentioned limitations.

AUTHOR CONTRIBUTIONS
Hanieh Karmand:	 Conceptualization	 (supporting);	 investiga-
tion	 (equal);	 writing	 –		 original	 draft	 (equal).	 Aref Andishgar: 
Conceptualization	 (supporting);	 formal	 analysis	 (equal);	 investiga-
tion	 (equal);	 software	 (equal);	 visualization	 (equal).	 Reza Tabrizi: 
Conceptualization	 (equal);	 formal	 analysis	 (equal);	 project	 adminis-
tration	(equal);	writing	–		review	and	editing	(equal).	Alireza Sadeghi: 
Conceptualization	 (equal);	 data	 curation	 (equal);	 formal	 analysis	
(equal);	 investigation	 (equal);	 writing	 –		 original	 draft	 (equal);	 writ-
ing	 –		 review	 and	 editing	 (equal).	 Babak Pezeshki: Investigation 
(equal);	methodology	(equal);	writing	–		original	draft	(equal).	Mahdi 
Ravankhah:	 Investigation	 (equal);	 methodology	 (equal);	 writing	 –		
original draft (equal). Erfan Taherifard:	 Conceptualization	 (equal);	
formal	analysis	(equal);	methodology	(equal);	writing	–		original	draft	
(equal);	 writing	 –		 review	 and	 editing	 (equal).	 Fariba Ahmadizar: 
Conceptualization	 (equal);	 data	 curation	 (equal);	 formal	 analysis	
(equal);	methodology	 (equal);	 supervision	 (equal);	writing	–		 review	
and editing (equal).

ACKNO WLE DG E MENTS
This study was supported by the Deputy of Research and Technology 
of	Fasa	University	of	Medical	Sciences,	Fasa,	Iran	(No.	401298).	The	
authors would like to thank the clinical research development unit 

 23989238, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/edm

2.472 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [18/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  11 of 11KARMAND et al.

of	Valiasr	Hospital,	Fasa	University	of	Medical	Sciences,	Fasa,	 Iran	
for their support, cooperation, and assistance throughout the study.

FUNDING INFORMATION
This research received no specific grant.

CONFLIC T OF INTERE S T S TATEMENT
None.

DATA AVAIL ABILIT Y S TATEMENT
Data are available on request.

E THIC S S TATEMENT
The study protocol was approved by the regional and national re-
search ethics committees (equivalent to institutional review boards) 
of	 Fasa	 University	 of	 Medical	 Sciences	 (IR.FUMS.REC.1402.039).	
All	participants	were	asked	to	sign	a	written	informed	consent	ap-
proved	by	the	research	ethics	committee.	All	the	participants'	infor-
mation was collected from the system, with all names erased.

CONSENT TO PUBLISH
All	participants	were	asked	to	sign	a	written	informed	consent	ap-
proved by the research ethics committee.

ORCID
Reza Tabrizi  https://orcid.org/0000-0001-7634-3948 
Erfan Taherifard  https://orcid.org/0000-0002-9101-0321 

R E FE R E N C E S
	 1.	 Zheng	 Y,	 Ley	 SH,	 Hu	 FB.	 Global	 aetiology	 and	 epidemiology	 of	

type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 
2018;14(2):88-98.

	 2.	 Cho	NH,	Shaw	JE,	Karuranga	S,	et	al.	IDF	diabetes	atlas:	global	es-
timates of diabetes prevalence for 2017 and projections for 2045. 
Diabetes Res Clin Pract.	2018;138:271-281.

	 3.	 Seng	 JJB,	 Kwan	YH,	 Lee	VSY,	 et	 al.	 Differential	 health	 care	 use,	
diabetes-	related	 complications,	 and	mortality	 among	 five	 unique	
classes	of	patients	with	type	2	diabetes	in	Singapore:	a	latent	class	
analysis of 71,125 patients. Diabetes Care.	2020;43(5):1048-1056.

	 4.	 Litwak	 L,	 Goh	 SY,	 Hussein	 Z,	 Malek	 R,	 Prusty	 V,	 Khamseh	 ME.	
Prevalence of diabetes complications in people with type 2 diabe-
tes mellitus and its association with baseline characteristics in the 
multinational	A1chieve	study.	Diabetol Metab Syndr. 2013;5(1):57.

	 5.	 Moradi	 Y,	 Baradaran	 HR,	 Djalalinia	 S,	 et	 al.	 Complications	 of	
type 2 diabetes in Iranian population: an updated systematic 
review	 and	 meta-	analysis.	 Diabetes Metab Syndr Clin Res Rev. 
2019;13(3):2300-2312.

	 6.	 Aziz	Z,	Absetz	P,	Oldroyd	J,	Pronk	NP,	Oldenburg	B.	A	systematic	
review	of	real-	world	diabetes	prevention	programs:	learnings	from	
the	last	15 years.	Implement Sci. 2015;10:172.

	 7.	 Marshall	SM,	Flyvbjerg	A.	Prevention	and	early	detection	of	vascu-
lar complications of diabetes. BMJ.	2006;333(7566):475-480.

	 8.	 Farjam	M,	 Bahrami	 H,	 Bahramali	 E,	 et	 al.	 A	 cohort	 study	 proto-
col	 to	 analyze	 the	 predisposing	 factors	 to	 common	 chronic	 non-	
communicable diseases in rural areas: Fasa cohort study. BMC 
Public Health.	2016;16(1):1090.

	 9.	 Homayounfar	 R,	 Farjam	 M,	 Bahramali	 E,	 et	 al.	 Cohort	 pro-
file:	 the	 Fasa	 adults	 cohort	 study	 (FACS):	 a	 prospective	 study	 of	

non-	communicable	diseases	risks.	Int J Epidemiol. 2023;52(3):e172
-e178.

	10.	 Khanam	JJ,	Foo	SY.	A	comparison	of	machine	 learning	algorithms	
for diabetes prediction. ICT Express.	2021;7(4):432-439.

	11.	 Jović	 A,	 Brkić	 K,	 Bogunović	 N.	 A	 review	 of	 feature	 selection	
methods with applications. 2015 38th International Convention 
on Information and Communication Technology, Electronics and 
Microelectronics (MIPRO).	Vol	2015:IEEE;2015:1200-1205.

	12.	 Schratz	 P,	 Muenchow	 J,	 Iturritxa	 E,	 Richter	 J,	 Brenning	 A.	
Hyperparameter tuning and performance assessment of statisti-
cal	and	machine-	learning	algorithms	using	spatial	data.	Ecol Model. 
2019;406:109-120.

	13.	 Nakamura	M,	Kajiwara	Y,	Otsuka	A,	Kimura	H.	LVQ-	SMOTE	-		learn-
ing	 vector	 quantization	 based	 synthetic	 minority	 over-	sampling	
technique for biomedical data. BioData Min. 2013;6(1):16.

	14.	 Kagawa	R,	Kawazoe	Y,	Ida	Y,	et	al.	Development	of	type	2	diabetes	
mellitus	phenotyping	framework	using	expert	knowledge	and	ma-
chine learning approach. J Diabetes Sci Technol.	2017;11(4):791-799.

	15.	 Tan	KR,	Seng	JJB,	Kwan	YH,	et	al.	Evaluation	of	machine	learning	
methods developed for prediction of diabetes complications: a sys-
tematic review. J Diabetes Sci Technol.	2023;17(2):474-489.

	16.	 Fregoso-	Aparicio	 L,	 Noguez	 J,	 Montesinos	 L,	 García-	García	 JA.	
Machine learning and deep learning predictive models for type 2 di-
abetes: a systematic review. Diabetol Metab Syndr.	2021;13(1):148.

	17.	 Silva	K,	Lee	WK,	Forbes	A,	Demmer	RT,	Barton	C,	Enticott	J.	Use	
and performance of machine learning models for type 2 diabetes 
prediction	 in	community	 settings:	a	 systematic	 review	and	meta-	
analysis. Int J Med Inform.	2020;143:104268.

	18.	 Afsaneh	E,	Sharifdini	A,	Ghazzaghi	H,	Ghobadi	MZ.	Recent	appli-
cations of machine learning and deep learning models in the pre-
diction, diagnosis, and management of diabetes: a comprehensive 
review. Diabetol Metab Syndr.	2022;14(1):196.

	19.	 Abhari	 S,	 Niakan	 Kalhori	 SR,	 Ebrahimi	 M,	 Hasannejadasl	 H,	
Garavand	A.	Artificial	 intelligence	applications	 in	 type	2	diabetes	
mellitus care: focus on machine learning methods. Healthc Inform 
Res.	2019;25(4):248-261.

	20.	 Lotfi	 H,	 Pirmoradi	 S,	 Mahmoudi	 R,	 et	 al.	 Machine	 learning	 as	
new promising technique for selection of significant features 
in obese women with type 2 diabetes. Horm Mol Biol Clin Invest. 
2020;41(1).

	21.	 Zanelli	S,	Ammi	M,	Hallab	M,	El	Yacoubi	MA.	Diabetes	detection	
and management through Photoplethysmographic and electro-
cardiographic signals analysis: a systematic review. Sensors (Basel). 
2022;22(13).

	22.	 Javaid	M,	Haleem	A,	Pratap	Singh	R,	Suman	R,	Rab	S.	Significance	
of machine learning in healthcare: features, pillars and applications. 
Intern J Intellig Netw.	2022;3:58-73.

 23. Lecca P. Machine learning for causal inference in biologi-
cal networks: perspectives of this challenge. Front Bioinform. 
2021;1:746712.

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Karmand	H,	Andishgar	A,	Tabrizi	R,	et	al.	
Machine-	learning	algorithms	in	screening	for	type	2	diabetes	
mellitus:	Data	from	Fasa	Adults	Cohort	Study.	Endocrinol Diab 
Metab. 2024;7:e00472. doi:10.1002/edm2.472

 23989238, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/edm

2.472 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [18/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-7634-3948
https://orcid.org/0000-0001-7634-3948
https://orcid.org/0000-0002-9101-0321
https://orcid.org/0000-0002-9101-0321
https://doi.org/10.1002/edm2.472

	Machine-learning algorithms in screening for type 2 diabetes mellitus: Data from Fasa Adults Cohort Study
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Data sources
	2.2|Data preparation and preprocessing
	2.3|Primary outcome
	2.4|Splitting data
	2.5|Feature selection
	2.6|Machine learning algorithms
	2.7|Model development
	2.8|Model evaluation
	2.9|Model interpretation

	3|RESULTS
	3.1|Descriptive analyses
	3.2|Performance comparison of ML models
	3.2.1|Males
	3.2.2|Females

	3.3|Interpretation of the best model
	3.3.1|Males
	3.3.2|Females


	4|DISCUSSION
	4.1|Strengths and limitations

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ETHICS STATEMENT
	CONSENT TO PUBLISH
	REFERENCES


