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Abstract
Introduction: The application of machine learning (ML) is increasingly growing in bio-
medical sciences. This study aimed to evaluate factors associated with type 2 diabetes 
mellitus (T2DM) and compare the performance of ML methods in identifying individu-
als with the disease in an Iranian setting.
Methods: Using the baseline data from Fasa Adult Cohort Study (FACS) and in a sex-
stratified manner, we studied factors associated with T2DM by applying seven differ-
ent ML methods including Logistic Regression (LR), Support Vector Machine (SVM), 
Random Forest (RF), K-Nearest Neighbours (KNN), Gradient Boosting Machine 
(GBM), Extreme Gradient Boosting (XGB) and Bagging classifier (BAG). We further 
compared the performance of these methods; for each algorithm, accuracy, precision, 
sensitivity, specificity, F1 score, and Area Under Curve (AUC) were calculated.
Results: 10,112 participants were recruited between 2014 and 2016, of whom 1246 
had T2DM at baseline. 4566 (45%) participants were males, aged between 35 and 
70 years. For males, age, sugar consumption, and history of hospitalization were the 
most weighted variables regarding their importance in screening for T2DM using the 
GBM model, respectively; these variables were sugar consumption, urine blood, and 
age for females. GBM outperformed other models for both males and females with 
AUC of 0.75 (0.69–0.82) and 0.76 (0.71–0.80), and F1 score of 0.33 (0.27–0.39) and 
0.42 (0.38–0.46), respectively. GBM also showed a sensitivity of 0.24 (0.19–0.29) and 
a specificity of 0.98 (0.96–1.0) in males and a sensitivity of 0.38 (0.34–0.42) and speci-
ficity of 0.92 (0.89–0.95) in females. Notably, close performance characteristics were 
detected among other ML models.
Conclusions: GBM model might achieve better performance in screening for T2DM in 
a south Iranian population.
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1  |  INTRODUC TION

About 9% of the global population (463 million) suffer from type 2 di-
abetes mellitus (T2DM). If current trends persist, this number is ex-
pected to increase to 10% or roughly 700 million people by 2045.1,2 On 
a global scale, T2DM was responsible for approximately 5 million adult 
deaths in 2017.2 The disease comes with several complications, entan-
gling the patients, their families and public health systems by lowering 
the quality of life and life expectancy, placing several financial burdens 
and causing several potentially life-threatening complications.3 The 
incidence of complications arising from T2DM is considerable, as re-
search indicates that more than half and a quarter of individuals diag-
nosed with T2DM experience micro and macrovascular complications, 
respectively.4 A 2019 meta-analysis showed that almost 33%, 38%, 
36% and 43% of Iranian patients with T2DM suffer from cardiovascu-
lar diseases, neuropathy, retinopathy and nephropathy, respectively.5

The timely diagnosis of T2DM is paramount, as it is a chronic dis-
ease that can lead to various complications. Early interventions are 
vital in minimizing the risk of further complications and mitigating 
the numerous challenges associated with this disease.6,7 However, 
about half of the global T2DM cases are believed to go undiag-
nosed.2 Employing precise screening programs can aid health sys-
tems in avoiding overload, organizing their budget, and optimizing 
care. Hence, prioritizing the development of robust screening and 
diagnostic strategies is crucial.

Typically, T2DM is diagnosed through direct patient-physician in-
teraction and requires paraclinical evaluations. Regarding achieving 
desirable outcomes, preventive programs must maintain their inten-
sity and uptake by ensuring that invitees are covered and willing to 
accept invitations.6 Achieving this goal can be challenging, partic-
ularly in settings with limited resources. As a result, implementing 
low-cost strategies provided by modern technologies may prove to 
be a valuable approach, particularly for underserved populations.

To improve the backbone of the evidence on the application of 
machine learning (ML) in health data, we designed a study employing 
seven state-of-the-art ML algorithms to evaluate the factors associated 
with prevalent T2DM in a sex-stratified analysis and to estimate their 
performances in screening these patients from the Fasa Adults Cohort 
Study (FACS). These algorithms included logistic regression (LR), sup-
port vector machine (SVM), random forest (RF), K-nearest neighbours 
(KNN), gradient boosting machine (GBM), extreme gradient boosting 
(XGB) and bagging classifier (BAG). The accuracy, precision, sensitivity, 
specificity, F1 score and area under curve (AUC) were estimated for 
each model and their performances were compared.

2  |  METHODS

2.1  |  Data sources

This is a cross-sectional (analytical-descriptive) research based on the 
baseline FACS data. FACS was developed to assess the risk factors 
predisposing residents of the Fasa rural region to non-communicable 

diseases. In an area where the majority of residents live in rural set-
tings, the enrollment for FACS commenced in October 2014 and 
concluded in September 2016. Fasa, with a population of approxi-
mately 250,000, is located in the Fars province in southwest Iran. 
The cohort research was carried out in Sheshdeh and Qarabolagh 
districts of Fasa, a rural region with 41,000 residents. The target 
population for the cohort included individuals aged between 35 and 
70 years who were of Iranian nationality, had been in the area for at 
least 1 year and capable of effective communication. The FACS was 
executed using a census method. Within Sheshdeh and Qarabolagh, 
there were a total of 11,097 individuals in the specified age range, 
and out of those, 10,622 met the additional eligibility criteria, all 
of whom were invited to participate in the study. With a participa-
tion rate of 95.2%, 10,118 were finally involved in the FACS study. 
More in-depth information regarding the objective of the FACS, its 
methodology, and the sampling region can be found elsewhere.8,9 In 
this study, participants with incomplete data regarding the status of 
T2DM were not considered. Figure 1 shows the summary of selec-
tion process and workflow of the current study.

2.2  |  Data preparation and preprocessing

Variables with missing data were rather prevalent. Analyses that 
neglect missing data can potentially create biased conclusions. For 
missing data, we used multiple imputations. Variables with less than 
10% of missing values were included in the analysis. The continuous 
variables were scaled and the variables with more than two catego-
ries were transformed into dummy variables.

2.3  |  Primary outcome

The classifier variable for this study was T2DM, dividing individuals 
into two groups: those with and those without T2DM.10 Individuals 
were categorized as having T2DM if they reported a history of 
physician diagnosis or if they had been prescribed anti-diabetic 
medications.

2.4  |  Splitting data

A sex-stratified analysis was undertaken, involving separate analy-
ses for males and females. This approach was adopted due to poten-
tial variations in risk factors for T2DM between the two sexes. Most 
variables were shared between males and females; sex-specific vari-
ables were eliminated for each group. Table S1 displays the shared 
variables and Table S2 shows the specific variables for each gender.

Each group was partitioned into two subsets: Training (80%) 
and test (20%). Training set was used for feature selection, hyper-
parameter tuning, 5-fold cross-validation and data training. The 
test set was used for final evaluation and internal validation of the 
ML models.
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2.5  |  Feature selection

Feature selection methods were employed to achieve effective data 
reduction. This is useful for finding accurate data models. There 

are three types of feature selection: wrapper, filter, and embedded 
methods.11 This study used a wrapper method integrating a tree-
based ML model and recursive feature elimination (RFE). RFE was 
used to train an RF machine to pick features by iteratively training 

F I G U R E  1 Selection process and workflow.
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an ML model and then eliminating the lowest-ranking features. 
Initially, laboratory and non-laboratory variables were chosen based 
on the gender of each group, existing literature, and FACS data. 
Consequently, 154 variables for men and 161 variables for women 
were selected.

Then, RFE and RF were implemented to determine the opti-
mal number of features between 10, 15, 20, 25, and 30. For men, a 
subset of 15 features demonstrated the highest accuracy, while for 
women, the optimal subset comprised 10 variables. Further, RFE and 
RF were employed to identify the most significant features. The top 
15 selected features for males included age, past medical history of 
hospitalization, job status, systolic blood pressure (SBP), waist cir-
cumference (WC), waist-hip ratio (WHR), smoking, white blood cell 
count (WBC), serum creatinine, gamma-glutamyl transferase (GGT), 
urine specific gravity, sodium intake, glomerular filtration rate, sugar 
products consumption and salt intake (Figure 2A). The top 10 se-
lected features for females consisted of age, WHR, serum creatinine, 
triglyceride, alanine transaminase (ALT), GGT, urine specific gravity, 
urine blood, glomerular filtration rate, and sugar products consump-
tion (Figure 2B).

Table 1 presents a descriptive analysis of the selected features. 
Statistical analyses, including independent t-test, chi-squared test, 
and Mann–Whitney-U test, were employed where appropriate. A p-
value less than .05 was considered statistically significant. SPSS ver-
sion 18 (IBM Corp., Armonk, N.Y., USA) was used to analyse the data.

2.6  |  Machine learning algorithms

Seven supervised ML algorithms, including LR, SVM, RF, KNN, 
GBM, XGB, and BAG were utilized. The implementation of all ML 
algorithms was performed using Anaconda (Version 4.12.0) on the 
Jupyter Notebook Platform (Version 3.3.2). The ML algorithms were 
run using the Scikit-Learn Module (Version 1.1.3).

2.7  |  Model development

Initially, the training data underwent 5-fold cross-validation and 
hyper-parameter tuning to identify the optimal hyper-parameters. 
In the 5-fold technique, the entire training data were partitioned 
into five equal parts, with each part serving as validation data in 
turn, being trained itself and its accuracy was recorded. The pro-
cess was repeated for each part, and the average of all five ac-
curacies was calculated. Subsequently, the accuracy of each ML 
model was adjusted by modifying its hyper-parameters. The 
hyper-parameter tuning technique involved testing various combi-
nations to discover the optimal set of hyper-parameters (Figure 3; 
Tables S3 and S4).12

In the second step, over-sampling was used to balance the val-
ues of the outcome, and data with T2DM outcomes were acquired. 
One of the best over-sampling approaches is the Synthetic Minority 
Over-sampling Technology (SMOTE). Rather than employing re-
placement, this strategy oversamples the minority class by produc-
ing synthetic instances. It selects samples from the minority class 
and generates synthetic samples along the same line segment, con-
necting some or all of the minority class's k nearest neighbours.13 
In this context, participants with T2DM constituted the minority 
class. SMOTE was applied to generate 3086 instances for men 
to balance those with and without T2DM and 3010 instances for 
women to equalize females with and without T2DM. Subsequently, 
ML algorithms were trained using the balanced training data and 
optimal hyper-parameters.

2.8  |  Model evaluation

The trained ML algorithms were applied to the test data for each 
sex-stratified group to assess and compare their results. The 
metrics used to evaluate and compare the ML algorithms were: 

F I G U R E  2 (A, B) The SHAP values of the top features in the GBM model for identification of T2DM. GBM, gradient boosting machine; 
T2DM, type 2 diabetes mellitus.
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accuracy, precision, sensitivity, specificity, F1 score, and AUC 
(Table 2; Figure 4). The metrics were calculated using the following 
equations:

Accuracy = (TP + TN)∕ (TP + FP + TN + FN)

Precision = TP∕(TP + FP)

Sensitivity = TP∕(TP + FN)

Specificity = TN∕(TN + FP)

Variables

Type 2 diabetes mellitus

p-valueNo (N = 8866) Yes (N = 1246)

Age, years 47.93 ± 9.46 53.61 ± 8.81 <.001a

Sex

Male 4212 (92.3) 354 (7.7) <.001b

Female 4654 (83.6) 892 (16.4)

Smoking, yes 1812 (93.3) 130 (6.7) <.001b

Systolic blood pressure, mmHg 110 [92, 128] 117 [98, 136] <.001c

Waist-hip ratio 0.92 ± 0.06 0.96 ± 0.06 <.001a

Wrist circumference, cm 16.71 ± 1.33 16.80 ± 1.38 .029

White blood cell count, ×109/L 6.43 ± 1.69 6.70 ± 1.83 <.001a

Triglyceride, mg/dL 129.02 ± 79.63 152.12 ± 97.26 <.001a

ALT, U/L 23.17 ± 14.28 25.35 ± 14.78 <.001a

GGT, U/L 22.18 ± 19.78 27.55 ± 29.50 <.001a

Serum creatinine, mg/dL 0.98 ± 0.18 0.99 ± 0.19 .054a

GFR, mL/min/1.73 m2 76.44 ± 11.38 70.08 ± 10.94 <.001a

Urine specific gravity 1.0205 ± 0.0157 1.0206 ± 0.008 .843a

Urine blood, yes 2647 (90.8) 282 (9.2) <.001b

Salt intake, g/day 4.10 ± 2.65 3.69 ± 2.34 <.001a

Sugar products consumption, g/
day

58.51 ± 59.04 35.44 ± 46.20 <.001a

Sodium intake, mg/day 4778 ± 1990 4639 ± 1951 .021a

Past medical history of 
hospitalization, yes

2663 (91.7) 242 (8.3) <.001b

Having job, yes 4686 (92.1) 403 (7.9) <.001b

Note: Data are presented as mean ± SD, median [IQR], and number (%).
Abbreviations: ALT, alanine transaminase; GFR, glomerular filtration rate; GGT, gamma-glutamyl 
transferase.
aIndependent samples test.
bChi-squared.
cMann–Whitney Test.

TA B L E  1 Overview of characteristics 
of the enrolled participants, including the 
top 15 important features, categorized by 
T2DM (N = 10,112).

F I G U R E  3 The process of model 
development with a combination of 
the hold out method, the 5-fold cross-
validation method, and the hyper-
parameter tuning.
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Here, TP represents the true positive rate, TN the true negative 
rate, FP the false positive rate, and FN the false negative rate.

2.9  |  Model interpretation

The SHapley Additive exPlanations (SHAP) analysis was employed 
to gain insights into the GBM model. Specifically, SHAP values 
were computed for the top features (Figure 2A,B). Additionally, two 

F1 − score = 2 × TP∕(2 × TP + FP + FN)

TA B L E  2 Performance of the machine learning algorithms for men.

Algorithm Accuracy Precision Sensitivity Specificity F1 score AUC

LR 0.74 (0.67–0.81) 0.15 (0.12–0.18) 0.51 (0.44–0.58) 0.76 (0.69–0.83) 0.23 (0.18–0.28) 0.68 (0.61–0.75)

SVM 0.70 (0.63–0.77) 0.10 (0.07–0.13) 0.30 (0.25–0.35) 0.73 (0.66–0.80) 0.13 (0.10–0.16) 0.58 (0.51–0.65)

RF 0.91 (0.86–0.96) 0.30 (0.25–0.35) 0.27 (0.22–0.32) 0.96 (0.93–0.99) 0.31 (0.25–0.37) 0.73 (0.67–0.80)

KNN 0.63 (0.56–0.70) 0.11 (0.080–0.14) 0.51 (0.44–0.58) 0.64 (0.57–0.71) 0.18 (0.14–0.22) 0.61 (0.54–0.68)

GBM 0.92 (0.88–0.96) 0.53 (0.46–0.60) 0.24 (0.19–0.29) 0.98 (0.96–1.0) 0.33 (0.27–0.39) 0.75 (0.69–0.82)

XGB 0.87 (0.82–0.92) 0.26 (0.21–0.31) 0.32 (0.26–0.38) 0.92 (0.88–0.96) 0.28 (0.23–0.33) 0.72 (0.65–0.79)

BAG 0.90 (0.85–0.95) 0.32 (0.26–0.38) 0.25 (0.20–0.30) 0.96 (0.93–0.99) 0.29 (0.24–0.34) 0.73 (0.66–0.80)

Abbreviations: AUC, Area Under the Curve; BAG, bagging classifier; XGB, extreme gradient boosting; GBM, gradient boosting machine; KNN, K-
Nearest Neighbours; LR, logistic regression; RF, random forest; SVM, support vector machine.

F I G U R E  4 (A, B) Receiver operating characteristic curves of the seven models for men and women. (C, D) Precision-recall curves of the 
seven models for men and women.
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randomly selected cases with different outcomes from each group 
were chosen to serve as examples, demonstrating the practical 
functioning of the GBM model (Figure 5).

3  |  RESULTS

3.1  |  Descriptive analyses

A total of 10,112 participants were included in this study. As shown 
in Table  1, 1,246 and 8866 participants were diagnosed with and 
without T2DM, respectively. 4566 (45%) of the participants were 
males and 5546 (55%) were females. After the feature selection, the 
top 15 features were selected to train the models for males and the 
top 10 features were selected for females. The results of the de-
scriptive analysis are shown in Table 1.

Individuals with T2DM had a greater average age than those 
without T2DM (53.61 vs. 47.93). Women with T2DM had a higher 

percentage than men with T2DM (16.4 vs. 7.7). Individuals with 
T2DM were more likely to be smokers (6.7 vs. 93.3). Individuals 
with T2DM compared to those without had greater median SBP 
(117 vs. 110 mmHg). In Individuals with and without T2DM, the 
average of WRR, WC, WBC, triglyceride, ALT, GGT and serum cre-
atinine were higher, which were 0.96 versus 0.92, 16,80 versus 
16.71 (cm), 6.70 versus 6.43 (×109/L), 152.12 versus 129.02 (mg/
dL), 25.35 versus 23.17 (U/L), 27.55 versus 22.18 (U/L) and 0.99 
versus 0.98 (mg/dL), respectively. Individuals with T2DM com-
pared to those without had lower glomerular filtration rate, salt 
intake, sugar products consumption, and sodium intake, which 
were 70.08 versus 76.44, 3.69 versus 4.10, 35.44 versus 58.51 (g/
day) and 4639 versus 4778 (mg/day), respectively. In the samples, 
the number of persons with positive urine blood was lower (282 
vs. 2647). On average, individuals with T2DM had greater urine 
specific gravity (1.0206 vs. 1.0205). Individuals with T2DM had 
less medical history of hospitalization and jobs, which were 8.3 
versus 91.7 and 7.9 versus 92.1, respectively.

F I G U R E  5 (A–D) The SHAP waterfall plot for four selected patients in the GBM model. GBM, gradient boosting machine; SHAP, SHapley 
Additive exPlanations.

 23989238, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/edm

2.472 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [18/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 11  |     KARMAND et al.

Of the 13 variables found to have statistically significant differ-
ences, two variables, serum creatinine (p = .054) and urine specific 
gravity (p = .843), did not demonstrate statistical significance based 
on outcome classification.

3.2  |  Performance comparison of ML models

Tables 2 and 3 present the performance of the ML models based on 
various metrics for males and females, respectively. The final deci-
sion and determination of the best ML model were made by consid-
ering the AUC and F1-score metrics.

3.2.1  | Males

Table 2 displays the performance of the ML models for males. The 
GBM had the highest AUC (0.75). The AUCs of the other models 
were as follows: 0.73 for RF, 0.73 for BAG, 0.72 for XGB, 0.68 for 
LR, 0.61 for KNN, and 0.58 for SVM (Figure 4A). The GBM model 
also achieved the highest F1 score at 0.33, while the SVM model had 
the lowest F1-score, 0.13. The F1 scores for the other models were 
as follows: RF (0.31), BAG (0.29), XGB (0.28), LR (0.23), and KNN 
(0.18). Consequently, based on AUC and F1-score, the GBM model 
was selected as the best-performing model. Additional metrics for 
the models are provided in Table 2.

3.2.2  |  Females

Table 3 provides an overview of the performance of the ML mod-
els for females. All models demonstrated acceptable AUC values, 
with GBM and XGB achieving the highest at 0.76. The AUCs for 
the remaining models were: SVM (0.75), RF (0.75), BAG (0.73), 
KNN (0.73), and LR (0.71) (Figure 4B). For F1 score, both RF and 
GBM models attained the highest value of 0.42, while LR, KNN, 
and XGB had the lowest F1 score at 0.39. The F1 scores for the 
other models were 0.41 for SVM and 0.40 for BAG. Consequently, 
the GBM model was also chosen as the best-performing model 
for females.

3.3  |  Interpretation of the best model

3.3.1  | Males

Figure  6A presents the confusion matrix for the GBM model, 
showcasing its performance in identifying individuals with T2DM. 
Notably, the highest number of observations falls under true nega-
tives (828), while true positives and false positives had the lowest 
number of observations (15). Moreover, Figure  6C illustrates the 
AUC of the GBM model for both training and test data (1.0 vs. 0.75, 
respectively).

The GBM model was utilized to identify the top 15 features. 
Figure 2A displays the SHAP values for these features. Age emerged 
as the most influential feature in accurately identifying individuals 
with T2DM. Following age, the subsequent significant features were 
sugar product consumption, past medical history of hospitalization, 
and serum creatinine. SBP and salt intake were ranked fifth and 
sixth, respectively.

Figure  5A presents the SHAP waterfall plot for two randomly 
selected men with different outcomes from the GBM model. The y-
axis indicates the input features in descending order of significance. 
The model output for an individual is represented as f(x). If f(x) sur-
passes e[f(x)], the participant has a higher probability of having T2DM 
compared to the background population. Each arrow signifies how a 
specific feature either increases (red) or decreases (blue) the partic-
ipant's T2DM risk. For example, sugar product consumption of 137 
g/day decreases the probability of having T2DM for case A (without 
T2DM), but sugar consumption of 14 g/day increases the probability 
of having T2DM for case C (without T2DM). The grey text before the 
feature names shows the value of each feature for each case.

3.3.2  |  Females

Figure 5B presents the confusion matrix of the GBM model for the 
performance of each model in identifying individuals with T2DM. 
True negatives had the highest number of observations (859), while 
true positives had the lowest (65). In addition, Figure  6D shows 
the AUC of the GBM model for train and test data (1.0 vs. 0.76, 
respectively).

TA B L E  3 Performance of the machine learning algorithms for women.

Algorithm Accuracy Precision Sensitivity Specificity F1 score AUC

LR 0.68 (0.63–0.73) 0.28 (0.24–0.32) 0.64 (0.59–0.69) 0.69 (0.64–0.74) 0.39 (0.35–0.43) 0.71 (0.67–0.76)

SVM 0.68 (0.63–0.73) 0.29 (0.25–0.33) 0.69 (0.64–0.74) 0.68 (0.63–0.73) 0.41 (0.37–0.45) 0.75 (0.71–0.79)

RF 0.82 (0.78–0.86) 0.44 (0.40–0.48) 0.41 (0.37–0.45) 0.90 (0.87–0.93) 0.42 (0.38–0.46) 0.75 (0.71–0.80)

KNN 0.66 (0.61–0.71) 0.27 (0.23–0.31) 0.68 (0.63–0.73) 0.66 (0.61–0.71) 0.39 (0.35–0.43) 0.73 (0.68–0.77)

GBM 0.83 (0.79–0.87) 0.49 (0.44–0.54) 0.38 (0.34–0.42) 0.92 (0.89–0.95) 0.42 (0.38–0.46) 0.76 (0.71–0.80)

XGB 0.83 (0.79–0.87) 0.55 (0.50–0.60) 0.34 (0.30–0.38) 0.92 (0.89–0.95) 0.39 (0.35–0.43) 0.76 (0.72–0.80)

BAG 0.82 (0.78–0.86) 0.40 (0.36–0.44) 0.37 (0.33–0.41) 0.90 (0.87–0.93) 0.40 (0.36–0.44) 0.73 (0.69–0.77)

Abbreviations: AUC, Area Under the Curve; BAG, bagging classifier; XGB, extreme gradient boosting; GBM, gradient boosting machine; KNN, K-
Nearest Neighbours; LR, logistic regression; RF, random forest; SVM, support vector machine.
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    |  9 of 11KARMAND et al.

The GBM model was utilized to identify the top 10 features. 
Figure 2B displays the SHAP values for these features. Sugar con-
sumption was the most accurate feature in identifying individuals 
with T2DM. The other important features were urine blood, age, 
WHR, ALT, and serum creatinine, respectively.

Figure 5 displays the SHAP waterfall plot for two randomly se-
lected women with different outcomes from the GBM model. Sugar 
product consumption of 110 g/day reduces the probability of having 
T2DM for case B (without T2DM), but sugar product consumption 
of 5.94 g/day increases the probability of having T2DM for case D 
(without T2DM).

4  |  DISCUSSION

Our study aligns with several previously published studies investi-
gating the application of ML algorithms for T2DM screening, risk 
stratification, prediction, and prognostic evaluation.14–19 To the best 

of our knowledge, this study is the first to explore factors associated 
with T2DM while assessing the performance of ML models using 
cross-sectional data from an Iranian population. Our findings high-
light the superiority of the GBM model in T2DM screening within a 
south Iranian population. According to the GBM model, key associ-
ated factors for T2DM included sugar consumption, urine blood, and 
age in females, as well as age, sugar consumption, and a history of 
hospitalization in males.

ML represents a pivotal technique for translating health-related 
data into practical knowledge. Implementation of such knowledge 
and expertise will advance clinical practice.14 In this regard, several 
systematic reviews and meta-analyses are available.15–21 In recent 
years, ML models have gained significant attention for their poten-
tial in T2DM prediction, diagnosis, and management. Notably, in the 
studies by Abhari et al. and Tan et al., KNN, NVM, and NB were the 
most utilized ML models for T2DM data.15,19

We analysed the performance of each ML model separately 
for males and females in our study. Our findings indicated that the 

F I G U R E  6 (A, B) Confusion matrix of the GBM model for identification of having T2DM. (C, D) Receiver operating characteristic curves of 
the GBM model for identification of having T2DM. GBM, gradient boosting machine; ROC, receiver operating characteristic.
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overall AUC of ML models was between 67 and 80 for females and 
51 and 82 for males. These results are similar to the previous high-
grade evidence.15 Sugar consumption and age were the shared vari-
ables among the three highest variables based on their SHAP value 
between both genders indicating the strong impact of these features 
on the model's performance. In addition, we found that urine blood 
and prior history of hospitalization were among the three highest 
variables regarding their SHAP value in females and males, respec-
tively. These findings suggest the implementation of such variables 
in future models and designing potential data registries to consider 
these variables.

Previous studies have identified RF, SVM, KNN, and GBM as the 
optimal ML models for T2DM prediction.15,16 While GBM demon-
strated the best performance on our dataset, the present study 
yielded similar results, given the minor differences observed between 
the performances of other models. In this study, SVM, KNN, and RF 
showed an average AUC of 0.75, 0.73, and 0.75 for females, respec-
tively. On the other hand, in males, these ML models showed an aver-
age AUC of 0.58, 0.61, and 0.73 for SVM, KNN and RF, respectively. 
Therefore, we can conclude that this study confirms the previous 
findings. Another crucial aspect, in addition to evaluating the perfor-
mance of the ML models as conducted in this study, that should be 
taken into account when determining the optimal ML model is the as-
sessment of potential financial benefits associated with each model. 
This consideration is recommended for exploration in future studies.

Our findings indicated that ML models were significantly more 
specific than sensitive in the FACS population. Therefore, regarding 
the clinical applications models could be useful as initial screening 
tools due to their high specificity, but additional testing (such as con-
ventional T2DM detection, supervised by a medical team) may be 
required to confirm the diagnosis due to the potential for false neg-
ative results. However, the findings are inconsistent with previous 
research, as evidenced by Zanelli et al.,21 which includes biosignals 
such as photoplethysmography and electrocardiography as features 
yielded similar sensitivity and specificity. Consequently, future stud-
ies should assess other possible effective features (such as biosig-
nals), additional confirmatory tests, or the need to consider other 
diagnostic criteria in conjunction with the ML results to improve the 
sensitivity while maintaining the specificity.

Due to the growing popularity of individualized medicine and 
the expanding size of health data, as well as the burden on health-
care centers, the integration of modern devices into the healthcare 
system has become imperative.22 ML models can continuously learn 
from data, resulting in improved performance as additional data is 
incorporated. Furthermore, they facilitate the development of user-
friendly applications that can identify high-risk patients, reduce sys-
tem overload, optimize budgets and finances and enhance the overall 
quality of healthcare. The mentioned reasons are particularly rele-
vant when considering T2DM, a chronic condition that can impact 
various bodily systems, have significant financial implications for 
patients and public health, and is efficiently manageable with appro-
priate interventions. Timely identification of individuals at high risk is 
crucial for effective disease control and prevention of complications.

4.1  |  Strengths and limitations

This study is the first to utilize ML models for screening T2DM within 
an Iranian population, incorporating a diverse set of baseline vari-
ables. These variables included sociodemographic, anthropometric, 
clinical and paraclinical factors, as correlates for having T2DM, all 
within a significantly large sample size. Notably, the study distin-
guishes itself by utilizing seven diverse ML models for comparison, 
constituting one of the most extensive sets of ML models employed 
in a single study, as suggested by previous systematic reviews.

The present study had some limitations, primarily due to its 
cross-sectional design, which hinders longitudinal follow-up. The 
absence of a time component may introduce some biases to the 
study. Additionally, while internal validation is a common practice 
in studies utilizing the performance of the ML models, ML studies 
in T2DM often lack external validation,17 a limitation shared by our 
study. The absence of external validation brings uncertainty to the 
results and restricts the generalizability of the findings. Moreover, it's 
important to note that the findings of our study were based on data 
from a rural region in Iran, which may not be entirely representative 
of other populations in the country. Furthermore, it's crucial to ac-
knowledge that the data under investigation were collected approxi-
mately 6–8 years earlier. This temporal gap raises the possibility that 
the population's characteristics and risk factors may have evolved 
over time. Additionally, caution is advised when interpreting findings 
from ML models applied to biological data, as they inherently exhibit 
limitations in drawing causal inferences.23 Therefore, any conclusions 
drawn from the findings of the current study must be approached 
with caution, taking into account the mentioned limitations.
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