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Abstract  An abnormal chromosome number, or 
aneuploidy, underlies developmental disorders and 
is a common feature of cancer, with different cancer 
types exhibiting distinct patterns of chromosomal 
gains and losses. To understand how specific ane-
uploidies emerge in certain tissues and how they con-
tribute to disease development, various methods have 
been developed to alter the karyotype of mammalian 
cells and mice. In this review, we provide an over-
view of both classic and novel strategies for inducing 
or selecting specific chromosomal gains and losses in 
human and murine cell systems. We highlight how 
these customized aneuploidy models helped expand-
ing our knowledge of the consequences of specific 
aneuploidies to (cancer) cell physiology.
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DSB	� DNA double-stranded break
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1
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loxP	� locus of crossing (x) over, P1
MAD2	� mitotic arrest deficient 2
MDM4	� murine double minute 4
MEF	� mouse embryonic fibroblast
MMCT	� microcell-mediated chromosome 

transfer
M.m. domesticus	� mus musculus domesticus
MPS1	� monopolar spindle 1
MT	� microtubule

neo	� neomycin resistance gene
NDC80	� nuclear division cycle 80
ORF	� open reading frame
pac	� puromycin resistance gene (puro-

mycin N-acetyltransferase)
PLK4	� polo-like kinase 4
PP1	� protein phosphatase 1
RB1	� retinoblastoma protein 1
Rob	� Robertsonian chromosome
rtTA	� reverse-tet transactivator
Seq	� sequencing
sgRNA	� single guide RNA
shRNA	� small hairpin RNA
siRNA	� small interference RNA
SMAD4	� mothers against decapentaplegic 

homolog 4
SPG20	� spastic paraplegia 20
T2T	� telomere to telomere
TALEN	� transcription activator-like effec-

tor nuclease
Telo	� telomere
TGF-β	� transforming growth factor-β
TP53	� tumor protein 53
TUSON	� tumor suppressor and oncogene
UCK2	� uridine-cytidine kinase 2
WGCNA	� weighted gene co-expression 

network analysis
WG	� whole genome
WGS	� whole-genome sequencing
WO	� Washout
WRN	� Werner syndrome helicase
XIST	� X-inactive-specific transcript

Introduction

Aneuploidy, defined as a number of chromosomes 
that deviates from a multiple of the haploid genome, 
is a prominent feature of spontaneous pregnancy 
loss, congenital disorders such as Down syndrome, 
and of  cancer (Hassold et  al. 1980; Hassold and 
Jacobs 1984; Sahoo et  al. 2017; Ben-David and 
Amon 2019; Gruhn and Hoffmann 2022). This 
karyotype aberration is one of the consequences of 
erroneous chromosome segregation during meiosis 
and mitosis (referred to as chromosomal instabil-
ity, or CIN) and includes gains and losses of whole 
chromosomes or chromosomal arms. Long before 
the first genomic alterations in proto-oncogenes 
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were discovered in human cancers (Der et al. 1982; 
Parada et al. 1982; Dalla-Favera et al. 1982), aneu-
ploidy was already described as a distinct feature of 
cancer by Boveri (Boveri 2008, translated from the 
original 1914 article). In fact, abnormal karyotypes 
are observed in ~80% of all solid tumors and in 
~60% of hematopoietic cancers (Weaver and Cleve-
land 2006; Duijf et  al. 2013; Taylor et  al. 2018). 
While the role of CIN in cancer initiation and metas-
tasis is becoming increasingly evident (Bakhoum 
et  al. 2018, reviewed in van Jaarsveld and Kops 
2016; Sansregret et al. 2018; Tijhuis et al. 2019), the 
exact contribution of whole chromosome or chro-
mosomal arm gains and losses to disease develop-
ment has remained less clear (Ben-David and Amon 
2019). This knowledge gap is in part due to the chal-
lenges associated with generating mammalian mod-
els with specific aneuploidies. In this review, we 
focus on various strategies developed over the years 
to manipulate the karyotypes of human and mouse 
cells and animals.

Of note, Saccharomyces cerevisiae (budding yeast) 
has been a valuable organism for modeling aneuploi-
dies, thanks to its short doubling time, the possibil-
ity of karyotype manipulations through mating, and 
genetic tools readily applicable for this model organ-
ism. These yeast-specific methods have been reviewed 
elsewhere (Mulla et  al. 2014; Gilchrist and Stelkens 
2019), but it is worth highlighting that they have pro-
duced valuable collections of stable isogenic aneu-
ploid strains. These strains have been used to uncover 
generic cellular responses to aneuploidy (Torres et al. 
2007; Pavelka et  al. 2010; Beach et  al. 2017; Ravi-
chandran et al. 2018). Subsequent analyses of human 
and mouse cell lines carrying specific trisomies or 
monosomies have revealed very similar effects on cell 
physiology as seen in yeast, including impaired cel-
lular fitness and proliferative potential due to the pro-
teotoxic, metabolic and replication stresses associated 
with chromosomal gains, or impaired ribosomal bio-
genesis linked to chromosomal losses (Williams et al. 
2008; Stingele et  al. 2012; Nicholson et  al. 2015; 
Meena et  al. 2015; Ohashi et  al. 2015; Santaguida 
et al. 2015; Passerini et al. 2016; Passerini et al. 2016; 
Chunduri et al. 2021).

While the adverse effects of aneuploidy may 
explain its detrimental consequences for the devel-
oping embryo, it also raises the “aneuploidy para-
dox” in cancer. Why does a disease characterized by 

proliferation frequently exhibit aneuploid karyotypes? 
Furthermore, different tumor types display distinct 
aneuploidy patterns. For instance, colorectal tumors 
commonly have recurrent gains of chr7, 13, 20 and 
loss of chr18, while clear cell renal tumors com-
monly lose chr3p and gain chr5q (Knouse et al. 2017; 
Mitchell et al. 2018). How these cancer-specific ane-
uploidy patterns are established, and to what extent 
they contribute to disease progression remains a major 
puzzle in the field. Chromosome loss may support 
the loss of heterozygosity (LOH) of tumor suppres-
sor genes, while chromosome gain could drive the 
amplification of one or more oncogenes (Nowak et al. 
2002; Rajagopalan et  al. 2003). Consistent with this 
idea, the presence of oncogenes or tumor suppressor 
genes on certain chromosomes correlates with their 
recurrent gain or loss in cancer (Davoli et  al. 2013). 
Still, accomplishing LOH or oncogene amplification 
by losing or gaining an entire chromosome appears 
challenging because of the collateral deregulation of 
hundreds of other genes on the affected chromosome. 
An alternative hypothesis is that the gain or loss of 
specific chromosomes is tolerated in a tissue-spe-
cific manner. Chromosomes harboring genes that are 
highly expressed in certain tissues may be more eas-
ily tolerated as trisomy in those tissues because such 
gains would cause a milder gene expression imbal-
ance (Sack et  al. 2018; Patkar et  al. 2021). While 
attractive, these hypotheses have never been formally 
tested, partly because it requires the modeling of spe-
cific aneuploidies across different tissue types. Finally, 
whether tumors are addicted to recurrent aneuploidies 
is another question currently addressed in the field 
(Girish et al. 2023). While certain cancers are depend-
ent on an activated oncogene to maintain their malig-
nant properties (Weinstein and Joe 2008), it is less 
clear how the elimination of specific recurrent ane-
uploidies from cancer cells affects cancer maintenance 
(Girish et al. 2023).

To understand the contribution of specific chro-
mosomal gains or losses to developmental disorders 
and cancer, there is a clear need to create models with 
customized aneuploidies. We will discuss the current 
successful strategies to generate chromosome-specific 
gains and losses in mouse and human model systems. 
Each method offers unique opportunities and distinct 
hurdles in their experimental application. We will 
highlight the general principles of these approaches, 
focus on the insights into cancer biology thus far 
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gathered through their application, and discuss future 
developments and prospects for the field.

Strategies to introduce specific chromosomal gains

Many of the present mammalian cell lines and mouse 
strains that possess a single chromosome gain, or 
a corrected chromosomal loss have been gener-
ated using microcell-mediated chromosome trans-
fer (MMCT) or by crossing mice with Robertsonian 
translocations. The models generated by these tech-
niques provided significant insights into the effects of 
aneuploidy on non-transformed and cancer cell physi-
ology, as well as developmental disorders like Down 
syndrome.

Microcell‑mediated chromosome transfer

MMCT was originally developed by Fournier and 
Ruddle in the 1970s as a method for introducing 
murine chromosomes into mouse, Chinese ham-
ster, and human cells (Fournier and Ruddle 1977). 
The process involves two steps: first, the induction 
of micronucleation in donor cells via irradation or 
prolonged treatment with colcemid (i.e., a drug that 
depolymerizes microtubules), followed by a rate-lim-
iting second step, in which the micronuclei are fused 
to recipient cells of choice (Fig.  1a). To facilitate 
subsequent positive selection of recipient cell clones 
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Fig. 1   Strategies to introduce an additional chromosome into 
mammalian cells and mice. a Microcell-mediated chromo-
some transfer consists of 2 steps: (1) micronuclei formation in 
donor cells by colcemid treatment or irradiation; and (2) fusion 
of micronuclei to recipient cells of choice. Hybrid Chinese 
hamster ovary (CHO) or mouse A9 cells containing a single 
human chromosome are mostly used as donor cells (Tanabe 
et al. 2000). A positive selection marker, (often puromycin or 
neomycin resistance genes), is usually integrated into the chro-
mosome of interest to facilitate the recovery of recipient cells 
with specific chromosomal gains. b Crossings of mice carry-
ing Robertsonian chromosomes can generate mice and mouse 
ESCs with specific trisomies (Williams et al. 2008). As start-
ing point, two mouse strains are crossed each carrying a dif-
ferent Robertsonian translocation involving the chromosome of 
interest (e.g., Rob (13;16) and Rob (11;13)). c CRISPR/Cas9-
induced targeted chromosome fusions can generate either Rob-
ertsonian-like metacentric chromosomes (Zhang et al. 2022) or 
a large telocentric fused chromosome (Wang et al. 2022) (Sup-
plemental Table  2). This could be applied to create parental 
mouse strains carrying specific (viable) chromosome fusions 
for crossings that eventually generate specific trisomies

▸
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with the specific chromosomal gain, an antibiotic 
resistance gene is usually integrated in the chromo-
some of interest from the donor cell line. The most 
commonly used donor cells for MMCT are mouse A9 
fibroblasts and Chinese hamster ovary (CHO) cells, 
as these cells easily form micronuclei and can survive 
prolonged exposure to colcemid (Nakayama et  al. 
2015). The application of MMCT to human cell sys-
tems has been greatly improved by the generation and 
commercialization of libraries of CHO/human and 
A9/human hybrid donor cell lines, each containing a 
selectable single human autosome or chromosome X 
(Kugoh et al. 1999; Tanabe et al. 2000).

MMCT was originally used for biological appli-
cations ranging from gene mapping to gene imprint-
ing analysis (Saxon et al. 1986; Kugoh et al. 1999; 
reviewed in Yoshida et  al. 2000; Meaburn et  al. 
2005) and to model embryonic aneuploidies lead-
ing to congenital disorders (reviewed in Akutsu 
et al. 2020). These included the generation of mouse 
models for Down syndrome by transferring either a 
large part of human chr21 (Shinohara et  al. 2001; 
O’Doherty et  al. 2005), or a mouse artificial cho-
mosome containing the q-arm of the human chr21, 
into mouse embryonic stem cells (ESCs) (Kazuki 
et al. 2020). Moreover, early studies in the 90s uti-
lized MMCT to map tumor growth suppression and 
anti-metastatic activities on human chromosomes 
by reverting a chromosomal loss or inducing a spe-
cific chromosomal gain in various cancer cell lines 
(Oshimura et  al. 1989; Yamada et  al. 1990; Kugoh 
et  al. 1990; Ogata et  al. 1993; Tanaka et  al. 1998). 
As a result, a considerable number of human, 
mouse, and rat cell lines that harbor an extra sin-
gle human chromosome were generated (reviewed 
by Kugoh et  al. 2016). Functional studies on these 
cell lines led to the hypothesis that loss of a specific 
chromosome or chromosome arm could be a strategy 
to silence tumor-suppressing genes located on that 
chromosome. For example, MMCT of human chr3 
into 3p monosomic renal carcinoma cells induced 
senescence in vitro (Ohmura et  al. 1995; Tanabe 
et  al. 2000). Similarly, induction of trisomy for 
chr3p or the whole chr3 in oral squamous carcinoma 
cells inhibited cellular growth and suppressed tumor 
formation in athymic mice upon subcutaneous injec-
tion (Uzawa et al. 1995; Nishio et al. 2015). These 
anti-tumorigenic effects of chr3 gain were subse-
quently attributed to multiple tumor-suppressing 

genes on chr3p, including several telomerase repres-
sors (Uzawa et  al. 1998; Abe et  al. 2010; Nishio 
et al. 2015). Furthermore, transferring either whole 
chromosomes or parts of human chromosomes 1-8, 
10-13, 16-20, 22, X, or Y into different cancer or 
non-transformed immortalized cell lines mainly 
inhibited the proliferative, tumorigenic and/or meta-
static potential of the recipient cell line (reviewed in 
Yoshida et al. 2000; Meaburn et al. 2005; and Kugoh 
et al. 2016). However, only in a few cases could the 
tumor-suppressing effects of a specific chromosome 
transfer be narrowed down to a single gene or gene 
cluster (Dong et al. 1995; Yoshida et al. 1999; Seraj 
et al. 2000; Goldberg et al. 2003).

More recent studies focused on the generic and 
specific effects of chromosomal gains on cell physi-
ology. Analyses of transformed and non-transformed 
human cell lines with a single trisomic chromosome 
(Supplemental table  1) revealed that a chromo-
some gain often leads to increased CIN, replication 
stress, as well as global transcriptomic and proteomic 
changes (Phillips et  al. 2001; Phillips et  al. 2001; 
Nawata et  al. 2011; Stingele et  al. 2012; Dürrbaum 
et  al. 2014; Nicholson et  al. 2015; Passerini et  al. 
2016). Furthermore, in line with earlier observa-
tions (Yoshida et  al. 2000; Meaburn et  al. 2005; 
Kugoh et al. 2016), these recent studies also showed 
that nearly all single chromosomal gains negatively 
impact cellular transformation and metastasis forma-
tion. However, this generally appears not to be due to 
expression of tumor-suppressing genes on the gained 
chromosome, but rather due to the stresses associ-
ated with the gene expression imbalances (Vasude-
van et  al. 2020). A few studies reported chromo-
some-specific effects on human cell physiology. For 
instance, MMCT of chr2, but not of chromosomes 
3, 8, 7, 11, or 12, induced senescence in human cer-
vical cancer cells (Uejima et  al. 1995). In contrast, 
introduction of an extra copy of chr7, but not of chro-
mosomes 1, 2, 6, 9, or 11, was found to have tumor-
suppressive effects in human choriocarcinoma cells 
CC1 (Matsuda et  al. 1997). Moreover, trisomy of 
chromosome 8, 16, 17, or 19 suppressed metastatic 
behavior of human colorectal cancer HCT116 cancer 
cells, whereas trisomy of chr5 enhanced their meta-
static potential (Vasudevan et al. 2020). Meanwhile, 
trisomy of chr7 and chr13 conferred a growth advan-
tage to colorectal cancer DLD-1 cells when cultured 
under challenging conditions such as hypoxia or low 
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serum, although these aneuploid cells proliferated 
slower than their euploid counterparts in standard 
culture conditions (Rutledge et  al. 2016). Interest-
ingly, trisomy 13, but not trisomy 7, was found to 
cause cytokinesis failure and elevated CIN in human 
colorectal cancer DLD-1 cells due to SPG20 over-
expression (Nicholson et  al. 2015). Despite these 
significant findings, their clinical relevance and the 
molecular mechanisms by which these aneuploidies 
potentially drive cancer progression and metastasis 
require further investigation.

Robertsonian translocations

The second approach to generate specific trisomies 
takes advantage of Robertsonian fusions, which natu-
rally occur in various races of the house mouse (M.m. 
domesticus). A translocation or fusion is considered 

Robertsonian when two different chromosomes are 
attached to each other at their centromeres (Fig. 1b; 
Robertson 1916). In mice, which have telocentric 
chromosomes, Robertsonian translocations result in 
the fusion of two entire chromosomes into one large 
metacentric chromosome. Although over a hundred 
races of M.m. domesticus with at least one Robert-
sonian metacentric chromosome have been identified 
in the wild, not all of these are used as laboratory 
mouse strains (Capanna et  al. 1976; Garagna et  al. 
2014). By crossing mice according to a complex pro-
tocol, trisomic embryos for chr1, 13, 16, or 19 have 
been obtained within three generations (Supplemental 
table 1, Fig. 1b, Williams et al. 2008). However, none 
of these trisomic embryos survived to term, except for 
those with an extra copy of chr19, which lived for a 
short time after birth. All trisomic embryos exhibited 
developmental abnormalities such as growth restric-
tion and nuchal edema, demonstrating the overall 
detrimental effects of a single chromosomal gain on 
mouse embryonic development. Additionally, studies 
using mouse embryonic fibroblasts (MEFs) derived 
from these trisomic embryos showed that having an 
extra chromosome led to metabolic changes, inhib-
ited cell proliferation, and impeded oncogene-induced 
transformation (Williams et  al. 2008; Sheltzer et  al. 
2017). While powerful, this method is only applicable 
to mice and cannot be used to study the contribution 
of a particular trisomy to cancer development, due to 
the limited lifespan of the trisomic animals and the 
inherent incompatibility of the method with condi-
tional and tissue-specific control over the event that 
generates the trisomy. Moreover, it is difficult to apply 
to other chromosomes since the combinations of Rob-
ertsonian chromosome fusions in laboratory mice are 
limited. However, this limitation may be overcome 
by recent advances that allow for targeted whole-
chromosome fusions via CRISPR/Cas9-induced 
DNA double stranded breaks (DSBs) in telomere and 
centromere regions of different mouse chromosomes 
(Fig. 1c, Supplemental table 2). Thus far, this impres-
sive tour de force has delivered viable homozygous 
pups carrying engineered fusion of chr4-5, chr1-13, 
chr2-11, and chr5-17 (Supplemental table  2; Wang 
et al. 2022; Zhang et al. 2022). In theory, these mice 
could be used to create mouse strains with different 
specific chromosomal gains using similar crossing 
protocols as those used for mice with natural Robert-
sonian fusions (Williams et al. 2008, Fig. 1b).

Fig. 2   Methods to eliminate specific chromosomes. a Two 
inverted LoxP sites are integrated into a chromosome arm of 
interest. Upon expression of Cre recombinase after S phase, 
the two sister chromatids can recombine, generating dicentric 
and acentric chromosomes that are eventually lost after one 
or multiple mitoses. An antibiotic resistance gene such as pac 
(puromycin resistance) or neo (neomycin resistance) is usu-
ally inserted between the two loxP sites to facilitate selection 
of cells harboring loxP integration. To efficiently recover cells 
with the targeted chromosomal loss, a number of transgenes 
can be inserted, including ones encoding for fluorescent pro-
teins (FP), cell-surface proteins such as human (h)CD2, or a 
suicide gene such as herpes simplex virus thymidine kinase 
(HSV-tk), allowing for FACS sorting or Ganciclovir (GCV)-
induced negative selection, respectively. b (i) With one or 
multiple chromosome-specific sgRNAs, one or multiple DNA 
double stranded breaks (DSBs) are induced either in the arm 
or in the (peri-)centromere of the targeted chromosome by 
CRISPR/Cas9, leading to either whole or partial loss of the tar-
geted chromosome. Integration of a suicide gene (i.e., HSV-tk) 
in the arm of the targeted chromosome can facilitate selection 
of cells that have lost the targeted chromosome (arm). Alter-
natively, CRISPR/Cas9 or TALEN can be used to induce two 
DSBs flanking the chromosomal region to be deleted. This will 
lead to ligation of the endogenous telomere to the centromere-
proximal break site, leading to specific segmental arm loss. (ii) 
Telomere-mediated chromosome truncation: CRISPR/Cas9 
induces a single DSB near the centromere, and the break is 
repaired using a repair template containing a positive selection 
marker (pac or L-histidinol dihydrochloride, hisD), a human 
telomere sequence (telo), and frequently homology arms (HA) 
overlapping the break site. The incorporation of a synthetic 
S. cerevisiae cytosine deaminase-uracil phosphoribosyl trans-
ferase fusion gene (Fcy::Fur) outside the HA, can be used to 
eliminate cells with an off-target integration by 5-fluorocyto-
sine

◂
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Methods to eliminate specific chromosomes

A quarter of a century ago, Lewandoski and Martin 
pioneered the field of targeted chromosome elimina-
tion by generating male mice that lacked an entire 
copy of the Y chromosome (X0) (Lewandoski and 
Martin 1997) through the use of Cre recombinase and 
a male transgenic mouse line that had accidentally 
integrated inverted loxP sites into the Y chromosome. 
With the introduction of targetable nucleases such as 
CRISPR/Cas9 and TALEN, the toolbox for targeted 
chromosome elimination has greatly expanded, allow-
ing for more efficient manipulation of karyotypes.

Cre/loxP‑mediated chromosome loss

Cre recognizes and catalyzes the recombination of 
loxP sites (Sternberg and Hamilton 1981; Sauer and 
Henderson 1988) and particularly inverted loxP sites 
integrated into a single chromosome (i.e., in cis) give 
rise to acentric and dicentric chromosome fragments 
when the loxP sites of the duplicated sister chroma-
tids recombine (Lewandoski and Martin 1997). The 
acentric fragments are lost during successive rounds 
of cell division following their formation (Ly et  al. 
2017). The dicentric chromosome fragments, on the 
other hand, often undergo multiple breakage-fusion-
bridge (BFB) cycles before they are lost (Thomas 
et al. 2018, Fig. 2a). Although not intensively inves-
tigated, depending on the chromosome and site of 
loxP integration, these BFB cycles as well as the 
acentric fragments could in theory also generate 
oncogene amplifying recombination products, such 
as extrachromosomal (ec) DNA (Thomas et al. 2018; 
Warecki and Sullivan 2020; Shoshani et  al. 2021b). 
This potential side-effect needs to be considered 
when studying the oncogenic potential of Cre/loxP 
generated monosomies (Thomas et  al. 2018). Yet, 
since both the acentric and dicentric chromosome 
fragments tend to get lost over time, Cre/loxP has 
been widely used to induce targeted whole and partial 
chromosome loss in vitro and in vivo (Fig. 2a, Sup-
plemental table 3).

LoxP sites are frequently co-integrated with a gene 
encoding a fluorescent protein to facilitate FACS-
based enrichment of cells with the desired karyotype 
(Matsumura et al. 2007; Otsuji et al. 2008; Zhu et al. 
2010; Sato et  al. 2017; Thomas et  al. 2018; Wakita 
et  al. 2022). Alternatively, co-integration of loxP 

with, for instance, the herpes simplex virus thymidine 
kinase gene (HSV-tk) allows for the negative selec-
tion of cells with an integration in the chromosome of 
interest (Sato et al. 2017; Wakita et al. 2022). Mam-
malian cells expressing HSV-tk are killed by the anti-
viral drug Ganciclovir (GCV) (Borrelli et  al. 1988), 
and thus only cells that have eliminated the chromo-
some with the integrated HSV-tk gene can survive 
this treatment. In fact, it even supports the recovery of 
cells that have spontaneously lost the HSV-tk-bearing 
chromosome in the absence of Cre-induced recombi-
nation, a strategy successfully applied, albeit at very 
low efficiency, to restore a disomic state of chr21 
in Down syndrome induced pluripotent stem cells 
(iPSCs) (Li et al. 2012). Of note, GCV was recently 
shown to be mutagenic; thus, cells recovered after 
GCV selection have likely acquired additional GCV-
associated mutations (de Kanter et al. 2021).

Cre/LoxP has been extensively used to eliminate 
stem cell-derived chromosomes from tetraploid 
hybrids generated by cell fusion of mouse ESCs 
and differentiated mouse cells. Mouse ESC-somatic 
cell fusions result in the reprogramming of somatic 
nuclei to a pluripotent state. By eliminating indi-
vidual ESC-derived chromosomes from the hybrid, 
their role in maintaining the pluripotent state was 
studied (Matsumura et al. 2007; Otsuji et al. 2008). 
To facilitate this type of stem cell research, a panel 
of mouse ESC lines with inverted loxP sites across 
13 different autosomes (mouse chromosomes 1-6, 
10-13, 17, 19) and the Y chromosome was generated 
(Tada et al. 2009). Importantly, Cre/loxP was further 
exploited to generate mice with tissue-specific mon-
osomies via crosses between mice carrying inverted 
loxP sites in a chromosome of interest and mice 
expressing Cre in a defined cell lineage or tissue. 
Using this strategy, a copy of chromosome 4, 9, 10, 
11, or 14 was eliminated from mouse lymphocytes 
(Zhu et al. 2010), and a copy of chr2 from the limb 
buds of mouse embryos (Grégoire and Kmita 2008). 
Both studies reported cell death in the Cre-express-
ing tissue, albeit to different extents, likely reflecting 
chromosome- and tissue-specific responses. Of note, 
since Cre recombination efficiency varies across 
tissues partly due to differences in Cre expression 
levels (Duchon et  al. 2008), the induced aneuploi-
dies in mouse tissues are mostly mosaic, meaning 
that only a fraction of the cells display the intended 
chromosomal loss (Hérault et  al. 2010). Aneuploid 



Chromosome Res (2023) 31:25	

1 3

Page 9 of 27  25

Vol.: (0123456789)

mosaicism is observed in both non-transformed and 
transformed human tissues (Riccardi and Crandall 
1978; Hasle et al. 1995; Taylor et al. 2014; Forsberg 
et al. 2014; Knouse et al. 2014; Fragouli et al. 2017), 
indicating these mouse models mimic a physiologi-
cally relevant condition.

More recently, Cre/loxP was used to eliminate one 
of the three copies of chr21 in HeLa cells, a human 
hypertriploid cervical cancer line. Interestingly, HeLa 
cells disomic for chr21 displayed impaired growth 
compared to the parental trisomic cells (Sato et  al. 
2017). In marked contrast, Cre/LoxP-induced elimi-
nation, or transcriptional silencing of the extra copy 
of chr21 in Down syndrome iPSCs alleviated the pro-
liferative defects linked to trisomy 21 (Li et al. 2012; 
Jiang et al. 2013). Furthermore, to address the conse-
quences of chromosome loss in the context of cancer, 
Thomas et al. derived four different tetraploid immor-
talized MEF cell lines lacking one copy of chromo-
somes 9, 10, 12, or 14 (Thomas et al. 2018). Except 
for the line with a loss of chr12, tetraploid MEFs with 
a chromosome loss displayed enhanced tumorigenic 
potential compared to isogenic controls. Transforma-
tion was associated with ongoing genomic instability 
in the MEFs with targeted chromosome loss. Impor-
tantly, chromosome elimination in diploid cells did 
not induce transformation, suggesting that a tetraploid 
background supports tumorigenesis after chromo-
some loss.

Chromosome elimination by targetable nucleases

The most simplistic yet versatile way to eliminate a 
specific chromosome is by inducing multiple DSBs 
along the arms of a chromosome of interest by 
CRISPR/Cas9 (Fig. 2b, i). This type of chromosome 
fragmentation likely produces unrepaired acentric 
fragments that form micronuclei during cell divi-
sion and eventually lead to the loss of the targeted 
chromosome or (segments of) the chromosomal arm 
(Supplemental table 3) (Leibowitz et al. 2021; Papa-
thanasiou et al. 2021). Multiple chromosome-specific 
DSBs can be accomplished by one sgRNA targeting 
chromosome-specific repeats, or by a cocktail of sgR-
NAs, each targeting a unique sequence. For instance, 
sex chromosome elimination in mouse ESCs was 
achieved with relatively high efficiency by directing 
a single sgRNA towards chromosome-specific repeats 
in an arm of chrX or chrY (Adikusuma et  al. 2017; 

Zuo et  al. 2017). Likewise, chromosome fragmenta-
tion effectively achieved loss of chr21 from human 
Down syndrome iPSCs and of chr7 from the colorec-
tal cancer cell line HT-29 (Zuo et al. 2017).

Alternatively, fragmenting the (peri)centromere 
seems even more effective (Fig.  2b, i, Supplemen-
tal table 3), as inducing multiple breaks in the (peri)
centromeric region of chrY induced whole chrY and 
Y arm loss more efficiently than fragmentation of 
the long arm of chrY (Adikusuma et  al. 2017). In 
fact, this strategy effectively eliminated mouse chrY 
from bone marrow cells derived from Cas9 knock-in 
mice (Sano et al. 2022). When injected into irradiated 
wild-type recipient mice, the chimeric mice displayed 
a mosaic loss of chrY in their hematopoietic cells, a 
condition frequently observed in older males (Fors-
berg et  al. 2014; Dumanski et  al. 2016). Strikingly, 
these mice displayed shorter life spans and developed 
age-associated cardiomyopathies (incl. myocardial 
fibrosis) earlier in life than control mice, attributed to 
chrY-deficient macrophages in the heart that some-
how overactivated a pro-fibrotic signaling network 
(Sano et al. 2022).

While the identification of centromere-specific 
sgRNAs was a challenge in the past, the recent pub-
lication of the T2T genome assembly now ena-
bles researchers to excavate targetable centromeric 
repeats, thereby expanding the range of chromosomes 
that can be eliminated with this strategy (Altemose 
et al. 2022; Nurk et al. 2022; Bosco et al. 2023). Fur-
thermore, inducing two DSBs flanking the targeted 
chromosome arm (one DSB proximal and one distal 
to the centromere) by CRISPR/Cas9 or TALEN was 
shown to efficiently delete large parts of chromo-
somal arms, most likely because the distal chromo-
some fragment harboring the telomere recombined 
and capped the truncated chromosome (Fig 2b, i). 
This approach was used to eliminate segments of 
chr8p from non-malignant MCF10A mammary epi-
thelial cells (Cai et al. 2016), and of chr11q and chr6q 
from human neuroblastoma SKNSH and NMB cells 
(Eleveld et al. 2021, Supplemental table 2).

Finally, several recent reports detected spe-
cific chromosome loss as an on-target, undesirable 
side-effect of a single DSB induced by CRISPR/
Cas9-mediated gene editing (Zuccaro et  al. 2020; 
Leibowitz et  al. 2021; Papathanasiou et  al. 2021; 
Turocy et  al. 2022; Nahmad et  al. 2022, Supple-
mental table 3). In fact, CRISPR/Cas9 targeting of 
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single genes caused both whole-chromosome and 
segmental loss of chromosomes 2, 5, 6, and X in 
hTERT-RPE1 cells (Leibowitz et  al. 2021); chr2 
and chr17 in mouse embryos (Papathanasiou et  al. 
2021); segmental loss of chr7 and either gain or 
loss of whole chr14 in human primary T cells (Nah-
mad et  al. 2022). Specific losses were detected at 
low frequencies shortly after the first cell division 
cycles following CRISPR/Cas9 and sgRNA expres-
sion. Interestingly, a relatively high incidence (over 
35%) of whole or partial losses of chromosomes 6, 
16, 17, or X could be achieved in human embryos 
after inducing a single DSB near the centromere of 
these chromosomes in either pre-fertilized oocytes 
or 2-cell stage zygotes (Zuccaro et al. 2020; Turocy 
et al. 2022). Thus, targeted single DSBs, especially 
the ones near or in the centromere, can be lever-
aged to either generate specific monosomies, or 
correct specific trisomies in mammalian cancerous 
and developmental models. It is important to real-
ize, however, that additional rearrangements involv-
ing the targeted chromosome take place or precede 
the chromosomal loss (Leibowitz et al. 2021; Papa-
thanasiou et  al. 2021; Turocy et  al. 2022). Moreo-
ver, how well recently generated monosomies can 
be stably maintained depends on the cell type and 
genetic background in which these losses are gen-
erated. Both human and mouse embryos seem to 
exhibit greater tolerance for monosomies compared 
to cultured ESCs, as evidenced by the detection 
of both arm-level and whole-chromosome losses 
in trophectoderm biopsies of blastomeres, and the 
unsuccessful attempts to derive monosomic ESCs 
from these early embryos (Biancotti et  al. 2012; 
Zuccaro et al. 2020). Furthermore, the loss or inac-
tivation of TP53 is an important factor to recover 
somatic human cell lines with stable monosomies 
(Chunduri et al. 2021).

An advantage of the CRISPR/Cas9 based 
approaches is that they do not require prior engi-
neering of the chromosome of interest. This makes 
them in principle versatile and translatable to many 
different cell types, provided that these cells can be 
efficiently transfected or transduced with CRISPR/
Cas9 and expanded from single cell cultures. 
However, this is often a problem and hence com-
plementary strategies allowing for enrichment of 
cells with the engineered loss have been developed, 
such as telomere-mediated arm truncation (Fig. 2b, 

ii). Here, a centromere-proximal DSB is induced, 
and cells are provided with a repair template har-
boring an artificial telomere (Uno et  al. 2017; 
Taylor et  al. 2018). This repair template contains 
100–1000 bp of human telomeric seed sequence, a 
homologous sequence to the targeted region, and a 
positive selection marker (often a puromycin resist-
ance gene) to facilitate the recovery of cells with 
neo-telomere incorporation. Additionally, a nega-
tive selection marker incorporated into the repair 
template outside the homology arm can be used 
to eliminate cells with random integration of the 
artificial telomere (Uno et  al. 2017). Using such 
an approach, Taylor et al. deleted chr3p from squa-
mous lung cancer cells to model its recurrent loss 
in this cancer type and found that the mere loss 
of chr3p  was not sufficient to induce transforma-
tion (Taylor et  al. 2018). In addition, this strategy 
was used to delete chr8p from immortalized lung 
epithelial cells to validate the BISCUT algorithm 
prediction that non-homozygous loss of the DNA 
helicase WRN contributes to the positive selection 
of chr8p loss in cancer (Shih et  al. 2023). Alter-
natively, a negative selection marker such as HSV-
tk can be integrated into the chromosome (arm) of 
interest prior to induction of a peri-centromeric 
DSB (Fig. 2b, i). Although this requires additional 
chromosome engineering, it allows for selection 
of cells that have lost the chromosome (arm) of 
interest, for example by GCV treatment (discussed 
above). This strategy allowed Girish et  al. to cor-
rect trisomy 1q in several cancer cell lines includ-
ing A2058 (melanoma), AGS (gastric cancer), and 
A2780 (ovarian cancer). Restoring the chr1q dis-
omic state in these cell lines reduced their anchor-
age-independent growth ability in vitro and in vivo 
(Girish et  al. 2023). This was partly attributed to 
over-expression of the TP53 inhibitor MDM4 and 
the Wnt/β-catenin effector BCL9 in trisomic 1q 
cells, making these cells addicted to this specific 
aneuploidy in an oncogene-like manner. Moreo-
ver, the isogenic trisomic-disomic 1q cell lines 
provided a platform to investigate potential thera-
peutic vulnerabilities of cells with a chr1q gain. 
Over-expression of the pyrimidine salvage kinase 
UCK2 caused by the 1q trisomy, rendered these 
cells especially sensitive to the nucleotide analogs 
RX-3117 and 3-deazauridine compared to their dis-
omic counterparts (Girish et al. 2023).
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Inducing, detecting, and isolating cells 
with specific chromosomal gains and losses

Most of the strategies described above require (prior) 
genetic engineering of the chromosome of interest, 
and/or extensive clonal expansion of cells with the 
intended karyotype change. Alternative approaches 
involve the isolation and analysis of cells after experi-
mentally inducing chromosome segregation errors 
(CIN, Fig.  3). In cultured mammalian cells, CIN is 
most frequently induced or enhanced by disturbing 
the chromosome segregation machinery. This disrup-
tion can be achieved by exposing cells to compounds 
that interfere with microtubule dynamics (e.g., pacli-
taxel, nocodazole, and Aurora B kinase inhibitors), 
prevent the formation of a bipolar mitotic spindle 
(e.g., Eg5 inhibitors  like monastrol) or impede the 
mitotic checkpoint, such as MPS1 kinase inhibitors 
(Mayer et al. 1999; Cimini et al. 2001; Ditchfield et al. 
2003; Hauf et al. 2003; Lampson et al. 2004; Santagu-
ida et al. 2010; Weaver 2014; Maia et al. 2018). The 
mitotic checkpoint ensures that anaphase only begins 
after kinetochores (i.e., multi protein structures that 
assemble on centromeres and function as microtu-
bule binding sites of the chromosomes) have prop-
erly attached to the mitotic spindle (Musacchio and 
Salmon 2007). Checkpoint inactivation is sometimes 
combined with inhibition of the kinetochore-localized 
kinesin CENP-E, to diminish chromosome congres-
sion and favor whole chromosome mis-segregations 
(Weaver et  al. 2003; Soto et  al. 2017). Additionally, 
several CIN-induced aneuploidy mouse models have 
been generated through overexpression, heterozygous 
deletion, or mutation of mitotic checkpoint proteins, 
or by overexpression of Polo-like-kinase 4 (PLK4) to 
induce centrosome amplification (Michel et al. 2001; 
Sotillo et al. 2007; Weaver et al. 2007; Iwanaga et al. 
2007; Li et  al. 2009; Baker et  al. 2009; Foijer et  al. 
2014; Levine et  al. 2017; Hoevenaar et  al. 2020). 
Collectively, these and other in vivo models demon-
strated that depending on the level of CIN, tissue con-
text and genetic background, CIN can either suppress 
or promote carcinogenesis (Schvartzman et al. 2010; 
Simon et  al. 2015). More recently, some of these 
mouse models were refined to more tightly control 
the level and duration of CIN in adult mouse tissues 
(Foijer et al. 2017; Trakala et al. 2021; Shoshani et al. 
2021a). Only these latest mouse models are discussed 
below.

Evidently, these in vitro and in vivo CIN-inducing 
strategies do not permit precise control over the iden-
tity of the chromosome that mis-segregates. However, 
they generate a population of cells with heterogenous 
aneuploid karyotypes. Via single-cell whole genome 
(WG) DNA or RNA sequencing (Bakker et al. 2016; 
Zhao et  al. 2019; Kashima et  al. 2020), or by chro-
mosome fluorescence in  situ hybridization (FISH) 
in combination with image-based flow cytometry 
(Image-Stream, Worrall et  al. 2018), the aneuploidy 
landscapes and cellular responses have been analyzed 
shortly after the mis-segregation events or after a 
period of adaptation in either standard or challenging 
in  vitro culture conditions, or in  vivo environments 
(Fig. 3).

Conditions resulting in chromosome mis‑segregation 
biases

Single-cell whole genome DNA sequencing (scWGS) 
and high-throughput chromosome FISH applied to 
cultured human cells shortly after CIN induction 
showed that certain chromosomes have a higher ten-
dency to mis-segregate than others. In fact, it sup-
ported earlier conclusions based on FISH with a 
limited set of chromosome-specific probes that dis-
tinct chromosome mis-segregation biases are seen 
depending on cell type and the mode of CIN induc-
tion (Drpic et  al. 2018; reviewed in Klaasen and 
Kops 2022). For example, temporary depolymeri-
zation of microtubules (MT) by nocodazole treat-
ment and washout elevated the mis-segregation rates 
of chr1 and 2 more than that of other chromosomes 
in non-transformed hTERT-RPE1 and BJ-hTERT 
cells (Worrall et al. 2018). These large chromosomes 
appeared to be prone to cohesion fatigue, the gradual 
failure to maintain sister-centromere cohesion dur-
ing a mitotic delay (Daum et al. 2011), in this set-up 
caused by the nocodazole-induced spindle disruption 
and consequent activation of the mitotic checkpoint 
(Worrall et al. 2018).

Second, inducible degradation of the cen-
tromere-specific histone CENP-A was shown to 
specifically perturb kinetochore function and faith-
ful segregation of the human Y chromosome in 
the male DLD1 colorectal cancer cell line. This 
is because the human chromosome Y centromere 
harbors alpha satellite DNA repeats that cannot 
bind CENP-B, and CENP-B temporarily maintains 
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kinetochores in the absence of CENP-A (Fachinetti 
et  al. 2015). This unique property of the Y chro-
mosome centromere may account for its slightly 
higher mis-segregation rate compared to chro-
mosome X or 4, even in the presence of CENP-A 
(Fachinetti et  al. 2015). Furthermore, it may con-
tribute to the observed mosaic loss of chrY in 
peripheral blood lymphocytes of ~20% of the male 
population (Thompson et al. 2019; Lau 2020), and 
to the frequent loss of chrY in a variety of tumor 
types in males (Qi et  al. 2023). Interestingly, cen-
tromeres of the other chromosomes vary in their 
number of CENP-B binding sites (Earnshaw et  al. 
1989; Dumont et  al. 2020). In the absence of 
CENP-A, this is reflected in differences in “kine-
tochore strengths” per chromosome. Accordingly, 
large chromosomes with the least CENP-B binding 
sites and hence weakest kinetochores (i.e., chr3, 6, 
and X) were found to mis-segregate more often in 
female hTERT-RPE1 cells lacking CENP-A. Con-
versely, small chromosomes with large centromeres 
(i.e., chr 17–20) mis-segregated the least under 
these conditions (Dumont et  al. 2020). Whether 
these mis-segregation biases caused an equal 
increase in both losses and gains of these specific 
chromosomes in the population is currently not 
clear.

Finally, by combining scWGS with individual 
chromosome tracking and manipulation, Klaasen 
et  al. showed that human chromosomes occupy-
ing the periphery of the interphase nucleus have 
a higher probability to mis-segregate in hTERT-
RPE1 cells when MPS1 is inhibited (Klaasen et al. 
2022). These include the larger chromosomes 
(1–5), but also the smaller chr18. Peripheral chro-
mosomes are thought to more frequently end up 
near or behind the spindle poles at the beginning 
of mitosis, and therefore take longer to congress 
and bi-orient on the mitotic spindle (Klaasen et al. 
2022). In line with this, larger chromosomes were 
also more often stalled near the spindle poles after 
inhibition of CENP-E, the MT plus-end directed 
kinesin that facilitates chromosome transport from 
the spindle pole to the equator (Kapoor et al. 2006; 
Tovini and McClelland 2019).

It is currently not clear whether these chromo-
some mis-segregation biases contribute to the 
establishment of cancer-associated aneuploidy pat-
terns. Since mis-segregating chromosomes can also 

form micronuclei that can trigger chromothripsis 
(Stephens et  al. 2011; Crasta et  al. 2012; Zhang 
et  al. 2015; Ly et  al. 2017; Umbreit et  al. 2020), 
chromosomes that mis-segregate more frequently 
than others may instead be over-represented in 
chromothriptic recombinations observed in certain 
cancers (Cortés-Ciriano et al. 2020; Klaasen et al. 
2022).

Specific aneuploidies evolving after CIN induction

As mentioned, the (transient) induction of CIN gener-
ates a population of cells with a variety of aneuploid 
karyotypes that can serve as substrates for (adaptive) 
evolution. WGS of a significant number of single cells 
sampled from the population at various time points 
during adaptation will subsequently reveal the num-
ber and type of aneuploidies that evolve and dominate 
the culture during adaptation and selection (Fig.  3). 
Because cells with and without aneuploid genomes 
co-exist in the initial population, the dominant ane-
uploidies are most likely selected because they confer 
a fitness advantage. Such an approach demonstrated 
that segmental aneuploidies, a consequence of chro-
mosome breakage, are almost exclusively tolerated 
and propagated in cells that lack functional TP53 
(Santaguida et al. 2017; Soto et al. 2017). Moreover, 
it uncovered that acquired resistance to a variety of 
chemotherapeutic drugs is associated with the selec-
tion of cells harboring specific chromosome gains 
and/or losses (Ippolito et al. 2021; Lukow et al. 2021). 
For example, resistance to paclitaxel of hTERT-RPE1 
cells correlated with a stable gain of chr11 or loss 
of chr10 (Ippolito et  al. 2021; Lukow et  al. 2021). 
In contrast, resistance to the BRAF inhibitor vemu-
rafenib recurrently selected for a gain of chr7 in the 
BRAF mutant colorectal cancer cell line Colo205, but 
for recurrent gains of chr11 and 18 in A375, a BRAF 
mutant melanoma cell line (Lukow et al. 2021).

Of note, the mutation or knock-down of TP53 
in the hTERT-RPE1 cell line supports clonal out-
growth of cells with specific karyotypes, either 
with or without experimentally increasing chromo-
some mis-segregation rates (Chunduri et  al. 2021; 
Hintzen et al. 2022; Adell et al. 2023) (Fig. 3). Mon-
oclonal cell lines with a single monosomy for chr10, 
13, 19p, X, or double monosomies for chr10;18 or 
chr7;10 could be derived after single-cell culture of 
hTERT-RPE1 cells in which TP53 was inactivated, 
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albeit at low frequency. Re-expression of TP53 in 
these cell lines suppressed their viability and pro-
liferative capacity, suggesting that TP53 acts as an 
important barrier against the proliferation of cells 
with chromosome loss (Chunduri et al. 2021). Simi-
larly, sequential mutation of APC, TP53, KRAS and 
SMAD4 (APKS) by CRISPR/Cas9 in colorectal 
organoids derived from healthy human tissues also 
supported the evolution of specific aneuploidies. 
Particularly, aneuploidies frequently observed in 
colorectal cancers, such as monosomies of chr18, 
8p, and 4, emerged and dominated after long-term 
culture of the APKS organoids (Kester et al. 2022).

Furthermore, in adult mouse tissues, hetero-
geneous and mosaic aneuploidies were observed 
three months after CIN induction by bypassing 
the mitotic checkpoint via inducible expression 
of a mutant form of the APC/C activator CDC20 
that cannot bind MAD2 (CDC20AAA) (Trakala 
et  al. 2021). However, the T cell lymphomas that 
developed in these animals later in life displayed 
characteristic and recurrent gains of chr14 and 15, 
together with less frequent gains and losses of other 
chromosomes (Trakala et al. 2021). Importantly, the 
frequent gain of chr15 was attributed to the pres-
ence of c-MYC on this chromosome, and express-
ing this oncogene from chr6 was sufficient to select 
for trisomy of chr6 instead of chr15 (Trakala et al. 
2021). Similarly, T cell lymphomas that developed 
in TP53+/− or TP53−/− mice also exhibited recur-
rent gains of chr15, yet often accompanied by gains 
of chr4, 5, and 14. These aneuploidies arose after 
either transient induction of CIN via temporary 
PLK4 overexpression (Shoshani et  al. 2021a), or 
after chronic CIN induced in the T cell compart-
ment (Foijer et  al. 2017; Shoshani et  al. 2021a). 
Collectively, these examples show that under cer-
tain in  vitro and in  vivo selection pressures, CIN-
induced heterogeneous and mosaic aneuploidies can 
evolve towards more homogeneous, cell-type spe-
cific aneuploidies.

Taken together, scWGS and bulk WGS of indi-
vidual cell clones are powerful technologies to assess 
the karyotype of cell populations or monoclonal cell 
lines, respectively. By revealing the level of ane-
uploidy per individual chromosome and the level of 
aneuploid mosaicism in a cell population following 
various CIN-inducing treatments in different cell lines 
(Bakker et al. 2016), these analyses provide a starting 

point for understanding how cancer type-specific 
aneuploidy patterns arise and evolve, and how spe-
cific aneuploidies may contribute to drug resistance 
and tumor formation. Importantly, ongoing develop-
ments in computational methods to analyze single-
cell sequencing data have made it possible to reliably 
deduce chromosome copy number states from single-
cell RNA sequencing data (Patel et  al. 2014; Bosco 
et al. 2023). This development enables the linking of 
cellular states and responses to specific chromosomal 
gains and losses in cell lines, organoids, and cancer 
tissues (De Falco et al. 2023; Gao et al. 2023).

dCas9-based approaches to mis-segregate specific 
human chromosomes

Instead of inducing multiple, mostly random 
chromosome mis-segregations per division and 
retrospectively assessing the identity of the ane-
uploid chromosomes in the progeny, very recent 
approaches have attempted to prospectively mis-
segregate a single specific chromosome for induc-
ing its respective gain and loss in the daugh-
ter cells (Bosco et  al. 2023; Tovini et  al. 2023; 
Truong et  al. 2023). The common principle of 
these approaches is the use of a nuclease-dead 
Cas9 (dCas9) and a sgRNA to tether a certain 
protein to a chromosome of interest. This protein 
then interferes with the faithful segregation of 
that chromosome during cell division (Fig. 4a–d). 
dCas9 is directed by the sgRNA to a chromosome-
specific repetitive DNA sequence, repeats that are 
present in both homologs and predominantly found 
near the telomere, the pericentromere, or underly-
ing the centromere (Bosco et al. 2023; Tovini et al. 
2023). As the complementary sgRNA sequence is 
sometimes present in the repeat over 1000 times, 
many dCas9 molecules can accumulate on the 
repeat using one unique sgRNA. Thus far, the fol-
lowing strategies have been tested.

Counteracting chromosome congression

Through tethering of a MT minus-end directed 
motor protein onto a chromosome of interest, 
Truong and Cané-Gasull et  al. aimed to counter-
act the forces that drive chromosome congression 
and to cause a selected chromosome to misalign 
and mis-segregate during metaphase and anaphase, 
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respectively (Truong et al. 2023, Fig. 4b). The motor 
and stalk domain of Kinesin 14VIb (Kin14VIb) 
from the land moss Physcomitrella patens (Jonsson 
et  al. 2015; Nijenhuis et  al. 2020) were indirectly 
bound to dCas9 via rapalog-induced FRB-FKBP12 
heterodimerization. dCas9 and kinesin were directed 
by specific sgRNAs to either a subtelomeric repeat 
of chr1p or a large pericentromeric repeat of chr9q 
in hTERT-RPE1 cells with functional TP53. Despite 
poleward transport of the Kin14VIb-bound locus 
during (pro)metaphase, the kinetochores of the 
kinesin-bound sister chromatids acquired bi-oriented 
MT attachments that silenced the mitotic check-
point. The counteracting pulling forces caused by 
Kin14VIb motors walking towards one spindle pole 
and kinetochore MTs attached to the opposite spin-
dle pole caused typical morphological changes of 
the targeted chromosomes. In the case of chr1, the 
1p arm was heavily stretched in anaphase, while 
in the case of chr9, the Kin14VIb-bound pericen-
tromere and 9q arm became separated from the kine-
tochore and 9p arm during metaphase and anaphase 
(Fig. 4b). This eventually led to arm-level aneuploi-
dies of either 1p or 9q after a single cell division 
(Truong et  al. 2023). While the 9q aneuploidies 
included tetrasomies, nullisomies, and monosomies, 
the number of cells with trisomies was relatively 
low, for reasons not yet well understood.

Ectopic kinetochore assembly

Inspired by prior LacO-LacI tethering studies demon-
strating that the N-terminus of Centromere Protein-T 
(CENP-T1-243) is sufficient to assemble a functional 
kinetochore on an integrated LacO repeat (Gascoigne 
et al. 2011; Gascoigne and Cheeseman 2013), Tovini 
et  al. fused CENP-T1-243 to dCas9 to create an extra 
kinetochore on a chromosome of interest (Fig.  4c, 
Tovini et  al. 2023). Indeed, transfection of dCas9-
CENP-T in HEK293T and HCT116 cells together 
with the same sgRNAs for chr1 and chr9 as described 
above recruited high levels of the kinetochore proteins 
NDC80/HEC1 and KNL1 near the telomere of chr1p 
and to the pericentromere of chr9q, respectively. These 
ectopic kinetochores attached to spindle MTs and acti-
vated the mitotic checkpoint, and MPS1 was therefore 
inhibited to promote anaphase onset and the mis-
segregation of the targeted chromosome. Single-cell 
sequencing of HEK293T cells shortly after expressing 

dCas9-CENP-T revealed an increase in a range of 
large copy number alterations for chr1p and chr9q, 
compared to cells expressing dCas9 that was not fused 
to CENP-T (Tovini et  al. 2023). Thus, assembly of 
an extra kinetochore either close to the  telomere or 
nearby the native kinetochore generates segmental 
aneuploidies of the targeted chromosome.

Centromere targeting

Bosco et al. developed an elaborate computational 
pipeline to analyze the T2T human genome assem-
bly and identify sgRNAs targeting chromosome-
specific alpha-satellite centromeric repeats (Alte-
mose et  al. 2022; Nurk et  al. 2022; Bosco et  al. 
2023). This analysis delivered sgRNAs targeting 
the centromeres of 15 different chromosomes (2, 
4, 5-13, 16, 18, 19, X). sgRNAs selected based 
on their ability to recruit dCas9 at centromeres 
by imaging was used to dock either the N-termi-
nal MT binding domain (aa 1-207) of NDC80/
HEC1 (DeLuca et al. 2006), or the N-terminus (aa 
1-86) of KNL1 onto centromeres via direct fusion 
to dCas9 (Bosco et  al. 2023) (Fig.  4d). While all 
dCas9 fusion proteins appeared effective, dCas9-
KNL11-86/RVSF/AAAA​ was studied most extensively. 
Its expression in hTERT-RPE1-CDKN1A/RB1 
knock-down or hCEC-TP53KO cells together with 
sgRNAs for chr7 or chr18 induced the mis-segrega-
tion of these chromosomes during mitosis and their 
aneuploidies in a significant fraction of the cells. 
Impressively, with their strategy, Bosco et al. suc-
cessfully generated not only segmental, but also 
whole-chromosome gains and losses of various 
other specific chromosomes (chr6, 8, 9, 12, 16, and 
X)(Bosco et  al. 2023). Although successful, how 
centromere-docking of dCas9-KNL1-86/RVSF/AAAA​ 
induces chromosome mis-segregation remains 
unclear. KNL11-86 can bind to MTs and to pro-
tein phosphatase 1 (PP1) via its SSILK and RVSF 
motifs (Liu et  al. 2010; Bajaj et  al. 2018). PP1 
recruitment by KNL1 supports mitotic checkpoint 
silencing and presumably the stabilization of kine-
tochore MT attachments by dephosphorylating 
MPS1 and Aurora B substrates within the kine-
tochore (Liu et al. 2010; Zhang et al. 2014; Nijen-
huis et  al. 2014). Phosphorylation of the SSILK 
and RVSF motifs of KNL1 by Aurora B, on the 
other hand, counteracts PP1 recruitment, thereby 
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reinforcing mitotic checkpoint signaling and poten-
tially kinetochore MT destabilization in early mito-
sis (Liu et  al. 2010; Nijenhuis et  al. 2014; Nasa 
et al. 2018). Bosco et al. propose that recruiting a 
small N-terminal KNL1 fragment with a mutated 
RVSF motif to centromeres disrupts the Aurora 
B:PP1 balance, such that Aurora B decreases the 
stability of kinetochore MT attachments on the 
chromosome of interest (Bosco et  al. 2023). It 
remains, however, difficult to envision how a small 
part of KNL1, unable to bind PP1, and tethered 
to the centromere, can interfere with endogenous 
KNL1-PP1 at the kinetochore. Since KNL11-86 
also binds MTs, especially in the absence of PP1 
(Espeut et al. 2012; Bajaj et al. 2018), a more likely 
scenario may be that dCas9-KNL1-86/RVSF/AAAA​, in 
combination with centromere-specific sgRNAs, 
creates an ectopic MT binding site on the cen-
tromere similar to dCas9-NDC801-207. This extra 
MT binding site on the centromere may increase 
the risk of acquiring a (pseudo) merotelic attach-
ment (i.e., a single chromatid bound by MTs ema-
nating from opposing spindle poles), that causes 
the targeted chromosome to lag and mis-segregate 
during anaphase. Alternatively, dCas9 binding is 
known to act as a roadblock during replication, 
especially on repetitive DNA sequences (Whinn 
et  al. 2019; Doi et  al. 2021), and it might as well 
be that the mere binding of dCas9-KNL11-86/RVSF/

AAAA​ causes replication or transcriptional problems 
that result in incomplete replication or inactiva-
tion of the centromere. Irrespective of the mecha-
nism, dCas9-based targeting of centromeric repeats 
appears to work very efficiently to induce both 
whole and partial specific chromosomal gains and 
losses (Bosco et al. 2023).

The advantages of the dCas9-based approaches 
are that they do not require prior engineering of 
the chromosome of interest, are applicable to many 
different cell types, and in principle can gener-
ate segmental as well as whole chromosome gains 
and losses, depending on the chromosomal region 
targeted. The main challenges lie in expressing 
sufficient levels of the dCas9-fusion proteins and 
in identifying sgRNAs that are not only chromo-
some-specific, but also able to bind to a chromo-
somal region at least 1000 times. Either way, this 
dCas9-based toolbox opens up new avenues to 
manipulate individual mitotic chromosomes and to 

systematically test the immediate and late cellular 
responses of various tissue types to the gain and 
loss of a single specific chromosome.

Conclusion and future perspectives

In this review, we aimed to provide a complete and 
updated overview of the current methods and tech-
nologies for inducing specific aneuploidies in mouse 
and human cell systems. The past decade has wit-
nessed an explosion of novel and improved strategies 
for manipulating human and mouse chromosomes 
and karyotypes. With the development of various 
CRISPR/Cas9 and dCas9-based approaches, as well 
as state-of-the-art WG DNA and RNA-sequencing 
methods (i.e. single-cell and spatial transcriptomics, 
Erickson et  al. 2022), a large toolbox is now avail-
able to generate, isolate, detect, and study specific 
aneuploidies in healthy and diseased mammalian tis-
sues. Moreover, for many of the described approaches 
(MMCT, CENP-A loss, CRISPR/Cas9, and dCas9-
based methods), chromosome gain or loss is accom-
panied by micronucleus formation of the targeted 
chromosome. Hence, these methods may also pro-
vide unique opportunities to investigate the faith of 
micronuclei with known chromosome content (Ly 
et al. 2017; Ly et al. 2019; Kneissig et al. 2019; Lei-
bowitz et al. 2021; Papathanasiou et al. 2021; Bosco 
et al. 2023; Truong et al. 2023). In fact, recent find-
ings suggests that the content of a micronucleus can 
determine if and when it will rupture in the following 
cell cycle (Mammel et al. 2022). Additionally, chro-
mothripsis of specific micronucleated chromosomes 
can drive oncogenic amplification and drug resistance 
in cancer through ecDNA generation (Shoshani et al. 
2021b).

These methods also offer the possibility to address 
whether certain tissues tolerate particular chromo-
somal gains or losses better than others by engineer-
ing a specific aneuploidy in a mouse tissue of interest 
via inducible and tissue-specific expression of either 
Cre recombinase, active Cas9, or nuclease-dead Cas9. 
Additionally, transplantation of mouse cancer cells 
with an engineered karyotype into isogenic immuno-
competent mice allows assessment of how specific 
aneuploidies affect metastasis formation or remodel 
the tumor microenvironment. In fact, injection of 
a mouse bladder cancer cell line with a CRISPR/
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Cas9-engineered loss of chrY, into immunocompe-
tent male C57BL/6 mice, revealed that tumors lack-
ing chrY are more efficient in evading anti-tumor 
adaptive immunity because these tumors promote the 
dysfunction of CD8+ T cells in their tumor microen-
vironment (Abdel-Hafiz et  al. 2023). Finally, intro-
ducing these chromosome manipulation methods 
into gastruloids or other embryonic models (Shah-
bazi et al. 2019; van den Brink and van Oudenaarden 
2021; Oldak et  al. 2023; Weatherbee et  al. 2023) 
will enable studies on how (stem) cell fate decisions 
are affected by certain karyotype alterations during 
mouse and human development.

While the generation of models for specific ane-
uploidies forms an essential step to evaluate their 
impact on developmental and cancer biology, addi-
tional analyses and manipulations are required to 
pinpoint the underlying mechanisms by which spe-
cific chromosomal gains or losses contribute to can-
cer in particular tissue or genetic contexts. By ana-
lyzing differentially expressed genes in response to 
specific aneuploidies, researchers uncovered a link 
between chr1q gain and MDM4-mediated TP53 sup-
pression in cancer cells (Girish et al. 2023) and vali-
dated that chr18q loss can drive TGF-β resistance in 
colon cancer (Bosco et  al. 2023). Elaborate compu-
tational algorithms can be applied to identify candi-
date genes underlying the phenotypes driven by spe-
cific aneuploidies. For instance, the TUSON Explorer 
algorithm, which predicts cancer drivers based on 
their mutational patterns, can be combined with copy 
number analysis to identify potential driver genes on 
recurrently gained or lost chromosomes in cancer 
(Davoli et al. 2013). In addition, weighted correlation 
network analysis (aka WGCNA) can be used to iden-
tify overexpressing genes that correlate with a specific 
chromosomal gain (Su et  al. 2021). Candidate genes 
can subsequently be validated by RNAi or CRISPRa/
CRISPRi screens using libraries of shRNA, siRNAs, 
or sgRNAs targeting coding genes on the chromosome 
of interest (Xue et al. 2012; Gilbert et al. 2013; Gilbert 
et al. 2014; Bock et al. 2022), or by transduction of a 
library of bar-coded open reading frames (ORF) (Sack 
et al. 2018; Su et al. 2021). Through a combination of 
these approaches, Su et  al. demonstrated that dose-
sensitive overexpression of RAD21 caused by trisomy 
8 helped mitigate the replication stress induced by the 
oncogenic EWS-FLI1 fusion in Ewing sarcoma (Su 
et al. 2021). Next to this, integration of XIST, the long 

non-coding RNA (lncRNA) that inactivates one of the 
X chromosomes in females (Boumil and Lee 2001; 
Engreitz et  al. 2013; Simon et  al. 2013), was found 
to fully inactivate a copy of chr21 (Jiang et al. 2013; 
Chiang et al. 2018; Czermiński and Lawrence 2020), 
and to silence parts of mouse chr1 and human chro-
mosomes 1p, 3q, 4q, 7p, 7q, 8p, 12q, and 15q (Kel-
sey et al. 2015; Loda et al. 2017; Naciri et al. 2021). 
Although less specific than RNAi or CRISPRi, the 
epigenetic silencing potential of this lncRNA could be 
leveraged to pinpoint which part of the chromosome 
of interest is responsible for certain aneuploidy-related 
phenotypes.

With the current possibilities to generate cus-
tomized karyotypes in various cell types in a dish 
or whole organism, exciting times lie ahead for the 
field. Together with functional genetic screens and 
elaborate computational pipelines to analyze large 
WG DNA and RNA-sequencing data sets of patient-
derived cancer tissues it will fuel advancements in 
understanding how cancer cells tolerate and ben-
efit from aneuploidy, and how specific aneuploidies 
impact development.
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