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Abstract

Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the develop-
ment of chronic noncommunicable diseases.
Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher
risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarc-
tion, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation
of stress hormone signaling, inflammation, and oxidative stress.
Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors
air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health,
with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the
circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health
and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock
system is provided.
Future Directions: Finally, we discuss the potential of preventive strategies or ‘‘chrono’’ therapy for cardio-
protection. Antioxid. Redox Signal. 37, 679–703.
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Introduction

Environmental risk factors, disease burden,
and global mortality

In the recent past, the global burden of disease primar-
ily consisted of infectious, perinatal, and nutritional

diseases. With the advent of modern medicine and accom-
panying great extension to life expectancy, the burden of
disease has shifted toward noncommunicable diseases of
age, lifestyle, and environment, such as cardiovascular dis-
ease, cancer, etc. The industry advanced alongside medicine
and yielded potential new cardiovascular risk factors: air
pollution (130, 157) and traffic noise (from road, aircraft, and
railway) (105).

We are coming to understand the role that the physi-
cal environment plays in the genesis of noncommunicable
diseases (125). Association and interventional studies dem-
onstrate that these novel cardiovascular risk factors are asso-
ciated with cardiovascular, metabolic, and mental diseases,
including hypertension, heart failure, myocardial infarction
(MI), diabetes, arrhythmia, stroke, depression, and anxiety
disorders. Epidemiological evidence highlights the shift in
disease burden and illustrates a serious impact on public health
by environmental factors.

Pollution-caused diseases were responsible for an esti-
mated 9 million premature deaths in 2015—16% of all deaths
worldwide. These deaths account for three times more deaths
than from acquired immunodeficiency disorder syndrome
(AIDS), tuberculosis, and malaria combined and 15 times
more than from all wars and other forms of violence. Expo-
sure is highly variable, but in the worst-affected regions
pollution-related disease is responsible for more than one
death in four (125).

Though these risk factors are relatively newly identified,
there is some insight into the pathophysiological mecha-
nisms: Chronic stress reactions lead to increases in stress
hormones cortisol, adrenaline, and noradrenaline, which, in

turn, promote the generation of oxidative stress and activa-
tion of inflammatory pathways, leading to the initiation
of cardiovascular disease (155). Here, we shift the focus to
circadian clock dysregulation as a potential down-stream
pathomechanism of environmental risk factors via environ-
mentally triggered adverse redox regulation and oxidative
stress.

The exposome as the totality of all environmental
exposures

Christopher P. Wild coined the term ‘‘exposome’’ in 2005
to describe the sum of all environmental exposures on human
physiology. Addends of the exposome sum are not only
environmental stressors such as UV radiation, climate, and
pathogens, but also more sociologically based factors, such as
lifestyle, socioeconomic status, and the urban environment as
well as different environmental pollutants (‘‘pollutomes’’)
and mental stress factors such as anxiety or noise exposure
(Fig. 1) (206, 244). The sum of these exposures defines the
‘‘external exposome.’’

The exposome is deeply rooted in the individual situation,
can vary greatly from person to person, and is measurable
through correlational studies between the internal environ-
ment (transcriptome, epigenome, proteome, metabolome,
and microbiome) and the external environmental factors
that are independently correlated with health risks, disease
burden, or mortality. Insight into both the internal and the
external environment allows for bioinformatical mapping,
which could reveal an overlap between the environmental
components of the exposome and classical cardiovascular,
metabolic, and neurodegenerative risks, which eventually
initiate disease.

Though there is certainly an overlap between the expo-
some and classical risk factors for disease, it has been spec-
ulated that the exposome may carry more weight than even
genetic factors in the propagation of chronic diseases (190).

FIG. 1. The exposome
concept. The external expo-
some (e.g., mental stress and
environmental pollution)
confers changes of the inter-
nal exposome (e.g., altered
circadian clock by forward/
backward shift, stress hor-
mones, inflammation, and
oxidative stress), leading to
health risks and disease con-
ditions (e.g., atherosclerosis,
vascular stenosis, and myo-
cardial infarction). Adapted
from Li et al. (133) with
permission. BMAL1, brain
and muscle arnt-like protein-1;
CLOCK, circadian locomo-
tor output cycles protein
kaput; CRY, cryptochrome;
NADPH, nicotinamide ade-
nine dinucleotide phosphate;
PER, period; ROS, reactive
oxygen species.
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Influence on the circadian rhythm and stress responses rep-
resents a physiological impact on the ‘‘internal exposome’’
(changes of biochemical pathways, for example, prote-
ome, transcriptome, metabolome) by the external exposures,
which is further linked to cardiovascular complications. We
will discuss these links between the external and internal
exposome, physiological responses, and cardiovascular com-
plications through the lens of dysregulation of the circadian
clock, as there is crosstalk with the external environment that
can directly affect the behavior of the organism in terms of
diet, activity, sleep, and cognitive function.

Circadian Rhythms

The master clock of the body lies within the hypothalamus:
a group of 20,000 neurons in the suprachiasmatic nucleus
(SCN) that communicate with peripheral clocks that reside
in nearly every mammalian tissue to autonomously control
certain physiological processes (Fig. 2A) (24). The central
and peripheral clocks allow organisms to respond to routine
environmental fluctuations over the course of a 24-h period
(41). The circadian rhythm refers to the endogenous ‘‘circa
24 h’’ rhythm that also pertains in constant darkness. These
endogenously generated circadian rhythms are synchroni-
zed to the day–night (light–dark) cycles via light signals/
circadian photoreceptors.

However, though they are often used interchangeably, the
terms circadian rhythm and diurnal rhythm have discrete
definitions. Circadian rhythms are self-sustaining biological
responses that occur without external cues from the envi-
ronment, whereas diurnal rhythms occur as responses to the
environment (195). The stimuli that provide feedback to the
circadian pathways are called Zeitgebers or time-keepers,
the primary of which is light but food, exercise, and social
cues are also considered Zeitgeber signals. Peripheral clocks
are tissue-specific circadian drivers that are controlled
independently within the system they reside (e.g., cardio-
vascular, reproductive, endocrine, etc.) via transcriptional–
translational feedback loops on a 24 h cycle (149, 195), which
is also the case for the cellular molecular clocks (152).

These clocks are influenced by the central clock, but
they largely regulate their respective tissues endogenously
via mammalian clock core genes, including circadian loco-
motor output cycles protein kaput (Clock), period 1, 2, and 3
(Per1, Per2, and Per3), cryptochrome 1 and 2 (Cry1 and
Cry2), and brain and muscle aryl hydrocarbon receptor
nuclear translocator (Arnt)-like protein-1 (Bmal1 and Bmal2).
Proteins CLOCK and BMAL1 (or its paralog neuronal PAS
domain-containing protein 2 [NPAS2]) positively regulate
the expression of clock proteins by heterodimerizing, trans-
locating to the nucleus, and binding to the E box promotors
of Per and Cry, causing the initiation of gene transcription
of their own inhibitors (Fig. 2B) (149, 195).

Translated PER and CRY proteins inhibit the transacti-
vation of BMAL1 and CLOCK and in doing so, also inhibit
their own expression. The feedback loops between Clock/
Bmal1 and Per/Cry are further connected to the rhythmic
expression of Rev-erba and Rora, the determinants of Bmal1
expression (149, 152).

Recent data from human and animal studies revealed
significant sex-specific differences in the mechanisms that
establish circadian rhythms with substantial consequences

for health and resilience to changes in sleep pattern (3). The
SCN acts as a master regulator of ubiquitously expressed
gonadal steroid receptors and these systems, in a sex-specific
manner, also control other central systems such as the
hypothalamic-pituitary-gonadal axis, the hypothalamic-
pituitary-adrenal (HPA) axis, and sleep-arousal systems (11).

When subjecting rats to a shift work model (light–dark shifts)
and ischemic stroke, the light–dark shifted male rats displayed a
more pronounced mortality, whereas circadian desynchroniza-
tion produced significant increases in stroke-induced infarct

FIG. 2. Circadian clock (dys)functions and molecular
components. (A) The circadian clock regulates a number of
essential biological functions such as sleep, body tempera-
ture, appetite, cognitive functions via time-dependent hor-
mone release such as cortisol or melatonin, and it largely
contributes to cardiovascular health (41, 238). Modified and
redrawn from ‘‘Press release. NobelPrize.org. Nobel Media
AB 2021. Tue. 16 Feb 2021. https://www.nobelprize.org/
prizes/medicine/2017/press-release/.’’ (B) The clock core
components consist of the positive regulators CLOCK and
BMAL that directly control circadian gene expression as
well as the negative regulators PER and CRY (238). Numer-
ous components are redox regulated [reviewed in Li et al.
(133)] and modified by aircraft noise exposure of mice
(117). AMPK, AMP-activated protein kinase; FBXL3,
F-box/leucine rich-repeat protein 3; FOXO, Forkhead
box O; HIF-1a, hypoxia-inducible factor 1a; HO-1, heme
oxygenase-1; MAPK, mitogen-activated protein kinase;
PARP-1, poly(ADP-ribose) polymerase-1; PGC1a, peroxi-
some proliferator-activated receptor gamma coactivator
1-alpha; RONS, reactive oxygen and nitrogen species;
SIRT1, sirtuin 1.
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volume and sensorimotor deficits in the surviving female rats
(56). These sex-specific differences in circadian pathways
may also help to explain the differential onset of cardiovas-
cular, metabolic, and tumor disease in men and women (247),
which represents an opportunity of significant advance of
gender-specific medical approaches (192).

The circadian clock in cardiovascular cells

In the heart, *13% of genes and 8% of proteins shows
circadian rhythmic expression throughout the day (236),
illustrating a strong influence on cardiovascular function.
Oscillating circadian genes influence the activity of endo-
thelial cells, fibroblasts, and vascular smooth muscle cells
(VSMCs) (234) and help to maintain normal cardiovascular
physiology.

In the vasculature, cells forming all layers of the blood
vessel display rhythmic expression and regulation of circa-
dian genes. A study done in mice has shown that Bmal1 and
Cry1 demonstrate periodic expression in aortas that have
been harvested at different time points during the day (180).
Rhythmic expression of Per1 in the vasculature was con-
firmed through measurement of Per1-luciferase activity in
transgenic rats (49). In vascular endothelial cells, as many
as 229 genes were found to be regulated by the Clock/Bmal2,
showing that many functions of the endothelium are rhyth-
mically regulated (234).

Also, polymorphisms in Bmal1 cause endothelial cells to
become more susceptible to injury, which then increases the
risk of developing hypertension (252). Animal studies have
shown that mice with mutations in Per2 display endothe-
lial dysfunction, decreased production of nitric oxide and
vasodilatory prostaglandins, and increased production of
vasoconstrictors (241). There is also a vital crosstalk between
the circadian clock and the endothelin system (51). Smooth
muscle cells are also influenced by the expression of the
circadian clock genes. A study on cultured VSMCs demon-
strated that mPer2 and Bmal1 were expressed with circa-
dian oscillation and that cultured VSMCs can be used as
models for circadian clock regulated gene expression re-
search (33, 168).

Circadian clock genes in cultured fibroblasts display
oscillations without any input from a master clock (162, 249).
Also, the oscillation of blood coagulation markers such as
thrombomodulin seems to be under the control of a peripheral
clock, as oscillations were altered both in clock mutant mice
and also by temporal feeding restriction (234).

Cardiomyocytes were shown to conserve the circadian
gene expression even in culture (55). Isolated cardiomyo-
cytes also react to stimuli such as b-adrenoceptor agonists,
which is known to increase heart rate and contractility and to
amplify Per2 circadian rhythm (16). This implies that even
heart rate, which is regulated by neurohumoral input, is under
the influence of the circadian clock. This was demonstrated
by using radiotelemetry to show that cardiomyocytes in clock
mutant mice are bradycardic, also placing heart rate under a
peripheral clock control (20).

Further, cardiac power was higher in wild-type mice in
comparison to cardiomyocyte clock mutant mice without
being associated with mitochondrial dysfunction (20). Func-
tioning circadian rhythms also play a part in protecting the
heart from stress-induced damage. Noradrenaline functions

as a Zeitgeber for cardiomyocytes; it induces the expression
of dehydrogenase kinase isozyme or uncoupling protein-3 in
a circadian manner, providing cardiomyocytes with protec-
tion against reactive oxygen species (ROS) and stress-
induced myocardial damage (246). The molecular circadian
clock was also present in cardiac progenitor-like cells, indi-
cating that all of the cells belonging to the cardiovascular
system are under the influence of the peripheral clock (53).

Disturbed circadian rhythms in cardiovascular
pathophysiology

Synchronous circadian rhythms are essential for the nor-
mally functioning cardiovascular system (41). There is ample
experimental and clinical evidence connecting the disruption
of circadian rhythms and cardiovascular disease, one of the
leading causes of morbidity and mortality in the world (187);
however, we are still discerning what causes these dis-
ruptions. There is growing epidemiological evidence that
suggests that environmental factors are contributing factors
in the development of cardiovascular disease. Depression,
anxiety, social isolation, shift work, and noise and air pol-
lution can activate oxidative stress, increase autonomic
response, and cause vascular dysfunction, culminating in the
onset of cardiovascular disease.

Blood pressure displays a diurnal rhythm, peaking mid-
morning and decreasing slowly throughout the day, a pattern
that is essential for maintaining a normal cardiac physiology
(67). Importantly, a blunted or absent nighttime blood pres-
sure dip (a fall in pressure around 10–20% is considered
normal) is associated with altered cell communication in the
heart, thereby leading to an increased risk of cardiovascular
events [for review see Yano and Kario (257)].

Sleep pattern disturbance often presents in shift workers
and people suffering from sleep apnea, who are more likely to
develop cardiovascular diseases via circadian misalignment
due to alternation of the heterodimerization pattern of Bmal1-
CLOCK (194). Resynchronized blood pressure rhythms in
shift workers may occur 24 h after a shift rotation (35). The
presence of sleep apnea is commonly found in airline crew
and shift workers and changes in the circadian autonomic
system activity in these populations were shown to increase
the risk of stroke, heart attack, ischemic heart disease, and
sudden death (19, 70).

Importantly, some cardiovascular diseases have known
diurnal variations. MI, ventricular arrhythmia, and sudden
cardiac death have outcomes that are somewhat related to
the time of onset (194). More precisely, acute myocardial
infarction (AMI) is more likely to occur in the early waking
hours (233) due to the state of the central and peripheral
clocks at this time and due to the control they have over the
physiology of the organism (e.g., heart rate, blood pressure,
peak cortisol in blood). A similar chronobiological pattern
exists for the rupture and dissection of aortic aneurysms (139,
147, 242), as well as for ischemic and hemorrhagic stroke
(140), which is unexpected as these events represent com-
pletely different clinical entities but obviously all of them
share the same circadian mechanisms (143, 219).

Likewise, a meta-analysis of 31 studies indicated a circa-
dian pattern in stroke onset, with a pronounced risk in the
morning hours (57). Heart rate and blood pressure are ele-
vated in the morning, accompanied by a higher level of
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vasoconstriction of blood vessels, leading to an increased
energy demand and decreased blood flow to the heart (119).
Also, right ventricular function and heart rate variability is
under circadian control (230). However, it is important to
mention that not all conducted studies find an association
between cardiac events.

The seasonal shift from winter to summer time also dis-
rupts the circadian rhythm, illustrating that environmental
factors can also influence AMI incidence. The quality and
amount of sleep is affected and AMI incidence is increased 3
weeks after the time reset, with a more pronounced difference
in women than in men (98), findings that were also supported
by a subsequent meta-analysis (141). However, the quality
and amount of sleep may not be the only determinants for
the observed higher cardiovascular risk as also the general
environmental condition, gender, and individual preference
in circadian rhythms (chronotype) may play a role (142).

Chronic desynchronization of light–dark cycles in ham-
sters with cardiomyopathies lowers the chance of survival
(179). Disturbed diurnal rhythm by reduction of the light–
dark cycle from 24 to 20 h in mice resulted in adverse out-
comes in response to a pressure overload cardiac hypertrophy
model displaying abnormal end-systolic and diastolic dimen-
sions, reduced contractility, and impaired left ventricular
remodeling post-MI, with rescue by diurnal resynchroniza-
tion (145). In mice, clock mutants exhibit altered immune
cell infiltration after AMI alongside decreased blood vessel
formation one week post-MI in the proliferative phase and
worsened outcomes (2). A cardiomyocyte-specific Bmal
knockout model proved an integral role of the cardiomyocyte
circadian clock in maintaining rhythmicity of the transcrip-
tome (260).

Mitochondria are both susceptible to changes under envi-
ronmental stress conditions and also a central player in
cardiovascular disease development, especially in ischemia–
reperfusion injury (84). The adverse effects of particulate
matter (PM) on mitochondrial function were reviewed in
detail (47). In isolated rat hearts, contractile performance,
carbohydrate oxidation, and oxygen consumption were
greatest in the middle of the night, with little variation in fatty
acid oxidation (261). Similarly, the most abundant and effi-
cient hydrogen peroxide-eliminating enzyme in mitochon-
dria, peroxiredoxin III, and sulfiredoxin undergo antiphasic
circadian oscillation in mitochondria (198).

Therefore, disturbing the diurnal cycle caused increased
lipid peroxidation, reduced activity of antioxidant system
enzymes, and reduced activity of the enzymes involved in
adenosine triphosphate synthesis in mitochondria (118).
Cardiac deletion of Bmal1 in mice resulted in mitochondria
with impaired respiratory complexes and a decrease in the
expression of genes within the fatty acid oxidative pathway,
the tricarboxylic cycle, and the mitochondrial respiratory
chain. These mice develop severe progressive heart failure
with age. The changes in gene expression can also be emu-
lated through repeated light–dark cycle reversal in wild-type
mice (115).

Oxidative Stress, Redox Regulation,
and Circadian Clock

Oxidative stress arises as a consequence of an imbalance
between the production and clearance of free radical species,

which can be due to an overproduction of ROS, deficient
antioxidant activity, or both. There are many physiological
sources of ROS, including nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases, the mitochondrial respira-
tory chain, and uncoupled endothelial nitric oxide synthase
(eNOS). These sources of ROS and oxidative stress, in gen-
eral, have been linked to environmental stressors, including
mental stress (253), traffic noise (156), air pollution (157),
heavy metal- (39) or pesticide exposure (52, 150), and all
forms of smoking (73, 158).

Oxidative imbalance is found in all environmental expo-
sures (155) and is an important feature of the exposome to
be studied. As such, in this review, we focus primarily on
studies of the mammalian/murine circadian clock and the
effects of oxidative stress; however, we do discuss selected
studies in Drosophilia.

Redox-regulatory mechanisms in the circadian clock

The crystal structures of mammalian/mouse cryptochrome 1
(mCRY1) and Drosophila cryptochrome (dCRY) have re-
vealed two separate manners by which circadian clocks are
regulated (42). dCRY is a blue-light photoreceptor with a
key redox component for light synchronization. dCRY pos-
sesses three cysteine residues (Cys337, Cys416, Cys523) that
enable both the flavin-adenin-dinucleotide (FAD)-dependent
photoreaction and the phototransduction of FAD to the reg-
ulatory protein tail. The electron transfer relies on tryptophan
and cysteine residues and potentially on nearby methionine
residues, which can all be modified under conditions of oxi-
dative stress.

The mammalian homologues, mCRY1 and mCRY2,
however, have a different mechanism of action, participating
in a negative feedback loop with the mCLOCK/mBMAL1
heterodimer, which then results in the fundamental basis
of circadian activity. As such, the stability of mCRY1 and
mCRY2 is tightly regulated via interaction with mamma-
lian period 1 (mPER1), mammalian period 2 (mPER2), or the
E3-ligase component F-box/leukine rich-repeat protein 3
(FBXL3) [reviewed in Merbitz-Zahradnik and Wolf (149)].

The crystal structure of mCRY1 illustrates redox-
dependent characteristics, wherein AMP-activated protein
kinase (AMPK) phosphorylates CRY1 at Ser71 and Ser280 in
response to the metabolic and redox state of the cell (Fig. 3)
(42). Phosphorylation of mCRY1 by AMPK enhances com-
plex formation with FBXL3, leading to its proteasomal
degradation (122). AMPK also activates casein kinase I,
which leads to the degradation of PER proteins via TrCP E3
ligases (102, 129). As CRY and the CRY-PER complex are
essential for BMAL1/CLOCK repression, their proteasomal
degradation enhances BMAL1/CLOCK activation and thereby
affects circadian cycling.

Notably, AMPK itself is known to be both an important
stress and antioxidant response protein and redox regulated
(97, 216), offering a route for redox regulation of the mam-
malian cryptochromes. There is also a mitogen-activated
protein kinase (MAPK) phosphorylation site at Ser247 in
mCRY1. MAPK-dependent phosphorylation of mammalian
CRY proteins (Ser247 of mouse mCRY1, Ser265 of mCRY2)
negatively regulates transcriptional repression of circadian
clock mediated gene expression (208). Thus, the MAPK
pathway represents another possibility for stress response

REDOX CONTROL OF CIRCADIAN CLOCKS BY NOISE AND AIR POLLUTION 683



regulation of the circadian clock as MAPK are activated under
cellular stress conditions and by redox modifications, and they
are involved in survival pathways and apoptosis (204).

The impact of MAPK phosphorylation sites in mCRY1
was demonstrated not only by the attenuation of mCRY1
transcriptional repression activity toward BMAL1/CLOCK
on mutation of Ser247 to Asp in mCRY1 (208), but also by
the suppression of FBXL3 binding to mCRY1 (S247D) in
U2OS cells (42).

The structure of the mCRY1/mPER2 complex has also
been resolved, yielding essential but unexpected data

regarding possible redox regulation of the complex by cys-
teine oxidation and thereby the regulation of mCLOCK/
BMAL1 (211). Cys1210/Cys1213 residues in mPER2 and
Cys414/His473 residues in mCRY1 form a zinc interface; a
tetrahedral zinc complex, which stabilizes the mCRY1/
mPER2 complex (Fig. 3) and prevents the formation of a
nearby located disulfide bond between Cys412 and Cys363
of mCRY1 (211).

Also, zinc incorporation in the mCRY1/PER2 complex, by
changing the intracellular pool of ‘‘free’’ zinc ions, may
contribute to circadian redox regulation (173). Interestingly,

FIG. 3. Proposed mechanisms of redox regulation of the circadian clock. The circadian clock is affected by a number
of redox-sensitive processes that ultimately lead to repression (top, yellow) or activation (bottom, gray) of the central
transcription factor complex BMAL1/CLOCK. Redox-sensitive cysteine thiol groups (C363 and C412, bottom left) and a
zinc-sulfur center (C1210 and C1213 of PER2, C414 and H473 of CRY1, top left) were identified in mammalian CRY1 and
PER2 that act as redox switches (via disulfide bond formation) controlling CRY-PER interactions and thereby the activity of
the CLOCK/BMAL1 complex (149, 173, 211). The scheme also contains other redox-sensitive pathways in the regulation
of circadian rhythm, such as redox-sensitive kinases AMPK or MAPK. AMPK phosphorylates S71 and S280 to affect the
affinity of CRY1 for the E3 ligase FBXL3 and thereby CRY stability (42, 122). AMPK via CKI phosphorylates PER to
cause proteasomal degradation via b-TRCP (102, 129) (bottom middle). The MAPK phosphorylates S247 to affect CRY-
dependent transcriptional repression of BMAL1/CLOCK (42, 208) (top left). Further, stress-response proteins such as
PARP-1 (8, 102) (top right), HO-1 (top middle), HIF-1a (193), PGC-1a (129), FOXO3 (36, 266) (bottom right), and the
histone deacetylase SIRT-1 (7, 129, 164) (bottom right and top middle) affect the circadian clock by modifying the
transcriptional activity of BMAL1/CLOCK. Vice versa, the expression of several antioxidant and ROS-producing enzymes
is controlled by the circadian clock and thereby contributes to cellular redox homeostasis (110, 196). Summarized from the
respective references in this legend using BioRender.com. CO, carbon monoxide; OS, reactive oxygen species.
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mice overexpressing a zinc binding deficient mCRY1(C414A)
mutant protein showed a long 28 h circadian period, abnor-
mal entrainment behavior, as well as symptoms of diabetes,
including reduced cell proliferation and insulin secretion
(hypoinsulinemia) (171). Notably, the Cys412-Cys363 dis-
ulfide bond is observed in mCRY1 (42), but it is absent in
the CRY1-PER2 complex (211).

Hence, the intramolecular disulfide bridge between
Cys363 and Cys412 of mCRY1 represents another direct
redox regulation pathway of the circadian clock, leading to a
conformational change in a PER2-binding loop of mCRY1
and thereby also affecting formation of the repressive CRY1-
PER2 complex, in addition to the zinc interface (42, 211).
Likewise, an intermolecular disulfide bridge between Cys430
of CRY2 and Cys340 of FBXL3 was reported, further
supporting the significant redox regulation of mammalian
clock proteins (254) (Fig. 3). Together, the structural analy-
ses of mouse cryptochromes and mutational in vivo studies
in mouse models suggest an important role of cysteine redox
modifications and of a zinc–sulfur complex for the general
regulation of circadian clock-dependent gene expression by
temporal redox oscillations observed in most tissues.

Other redox-regulatory mechanisms in the circadian clock
are based on NAD+- and AMPK-dependent sirtuin 1 (SIRT1)
activation, where AMPK enhances SIRT1 activity by increas-
ing intracellular NAD+ levels (129). SIRT1 and high NAD+

levels affect BMAL1/CLOCK-dependent circadian gene
activity via deacetylation of BMAL1–K537, histone H3 K9/
K14 (164), and PER2 (7). Also, deacetylation of peroxisome
proliferator-activated receptor gamma coactivator 1-alpha
(PGC1a) by SIRT1 causes activation of the CLOCK/BMAL1
complex via the PGC1a-RORs-RORE-axis (129).

Further, DNA-binding activity of CLOCK-BMAL1 is
inhibited by poly ADP-ribosylation of CLOCK by poly(ADP-
ribose) polymerase-1 (PARP-1) in an NAD+-dependent reac-
tion, where PARP-1 activity is controlled by oxidative stress
(8, 102). In addition, the DNA-binding activity of the
CLOCK(NPAS2):BMAL1 heterodimers is also inhibited by
an excess of oxidized NAD(P)+ over reduced NAD(P)H (205).

As shown by foxo mutants, the sensitivity of the central
clock to oxidative stress is also modulated by the antioxidant
forkhead box O (FOXO) transcription factors, which are in-
sulin- and redox-regulated (processes highly affected by
aging), thereby controlling antioxidant gene expression
(266). Deletion of foxo3 caused irregular circadian clock
oscillation and higher period variability (36). This may be
explained by reports on a BMAL1 binding site for FOXO3
and is further supported by dysregulation of circadian clock
gene expression by FOXO3 downregulation in a murine
model of aircraft noise exposure (117).

Finally, several other redox-regulated enzymes such as
hypoxia-inducible factor 1a (HIF-1a) or heme oxygenase-1
[HO-1 via carbon monoxide (CO)-dependent attenuation of
DNA binding of the CLOCK(NPAS2):BMAL1 complex
(112)] contribute to the control of the circadian clock (193)
(Fig. 3).

Association of the circadian clock with the cellular
redox state in health and disease

The circadian clock regulates the expression of many
genes, including some involved in ROS production or anti-

oxidant defense, resulting in cyclic redox transcriptional
oscillations after the circadian rhythm. In astrocytes, activa-
tion of nuclear factor erythroid 2-related factor (NRF2) is
an essential neuroprotective process required for antioxidant
protection of dopaminergic neurons from ferroptosis. The
activation of NRF2 is carried out by brain-derived neuro-
trophic factor (BDNF) in a circadian fashion via astrocyte
tropomyosin-related receptor kinase type B (TrkB.T1), a
truncated isoform of BDNF, and neurotrophin receptor p75
(p75NTR), where the latter is a CLOCK/BMAL1-dependent
gene required for consistent clock oscillation (94).

BDNF, in turn, serves as the major neurotrophin of the
rodent brain with active roles in neuronal survival, differen-
tiation, and synaptic plasticity (94). Further, an important
neuroprotective antioxidant process is the regulation of
intracellular glutathione levels, which is also a circadian-
controlled process (110). Glutathione synthesis and clear-
ance, alongside antioxidant response (in the form of
superoxide dismutases, catalase, glutathione peroxidase/
peroxiredoxin/thioredoxin transcription), have a regulatory
network of microRNAs in common with the circadian clock,
which manifests as a clear oscillation of antioxidant and/or
ROS-producer gene expression (110). ‘‘Redox oscillations’’
can also be seen in the rhythmic changes in the redox state
of peroxiredoxin (e.g., reduced thiols, disulfide, sulfenic,
sulfinic, and sulfonic acid content) (196).

The relationship between the cellular redox state and the
circadian clock is not unidirectional: it has been proposed
that there is a ‘‘redox control of cellular timekeeping,’’ which
does not contradict previously discussed insights on the
redox-regulatory mechanisms within the circadian clock
(184). In much the same way that the expression and inhi-
bition of core clock genes create feedback loops, it is likely
that although regulation of metabolism is the output, the
nutrient, energy, and redox cellular state provide feedback
to reinforce rhythmicity. As each peripheral clock is respon-
sive within its native tissue, this effect both allows the tissue
to adapt to temporal challenges and can also cause targeted
dysfunction (193).

Redox signaling is important in the conductance of vas-
cular smooth muscle contraction, which can be interrupted by
ROS. The translation of both ROS-producing and ROS-
degrading enzymes is influenced by the circadian rhythm, as
demonstrated by the presence of increased oxidative stress
and subsequent endothelial/vascular dysfunction in animals
(mostly mice) with deletions of critical clock components
(5, 40, 241).

Beyond endothelial dysfunction, mice with high fat diet-
induced nonalcoholic steatohepatitis (NASH) were found to
have disrupted regulation of circadian clock genes (Clock,
Bmal1, Cry2, Per2), which impaired the clock-dependent
regulation of lipid metabolism proteins (via nuclear receptor
subfamily 1, group D, member 1 [Rev-Erba or NR1D1],
RAR-related orphan receptor alpha [RORa]) and sterol reg-
ulatory element-binding transcription factor 1 [SREBP1c])
and it thereby exacerbated the development of fatty liver
(23). It is likely that the NASH exacerbation was facilitated
by the circadian dysregulation, which caused altered redox
balance and reduction of SIRT1 and SIRT3 activity.

Redox regulation of circadian clock genes has been
strongly tied to chronic airway diseases (229) as well as
cardiac hypertrophy (262), diabetes (263), and hypertension
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(163). A hallmark feature of all these diseases is the presence
of endothelial dysfunction and increased vascular oxidative
stress (48). The vascular redox state is also interconnected
with the circadian variation in blood pressure and vascular
contraction (200). Disturbance of this diurnal rhythm causes
changes in gene expression and increased left-ventricular
end-systolic/diastolic dimensions, which are early signs of
cardiac hypertrophy (145).

Connection of Noise Exposure (Mental Stress),
Circadian Clock Dysregulation, and Cardiovascular
Disease

Stress response concept

Hans Selye, the founder of the ‘‘stress theory,’’ or the
hypothesis that stress could result in nonspecific symptoms of
illness, described the stress reaction in three parts: ‘‘The three
stages of the stress syndrome are (i) the alarm reaction, in
which adaptation has not yet been acquired; (ii) the stage of
resistance, in which adaptation is optimum; and (iii) the stage
of exhaustion, in which the acquired adaptation is lost again’’
(214). In his pioneering work, he detailed the first biochem-
ical underpinnings of stress reactions and a guideline how to
measure stress conditions.

Since the founding of the stress theory, research has linked
chronic mental stress, for example, in the form of traffic
noise exposure, to cardiovascular risk factors, including
increased blood pressure, blood viscosity and blood glucose,
as well as dyslipidemia and activation of blood clotting fac-
tors in humans (10). More insight on oxidative stress and
inflammation within the scope of mental stress is provided in
(217), and the link between social isolation and cardiovas-
cular disease is discussed in (253). External stressors cause
increases in adrenocorticotrophic hormone (ACTH) and
glucocorticoids (GCs) release during the inactive phase (87),
and translational models have given evidence that all these
have effects on peripheral clocks (87, 114, 232).

The GCs are known to regulate the expression of several
circadian genes via binding to glucocorticoid response elements
in promotor regions of these genes (231). Supporting data show
that injections of dexamethasone for 3 days at Zeitgeber time
(ZT)4 induced phase entrainment of PER2 rhythms in the liver,
kidney, and submandibular gland (232), which demonstrates
that GCs are not simply ‘‘stress hormones,’’ but also have
important roles in maintaining peripheral clocks (231).

The GR dimers are formed after nonclassical signaling and
can lead to activation of kinases such as phosphatidylinositol
3-kinase (PI3K), protein kinase B (AKT), or MAPK inde-
pendent of genomic events (114). Although there is much still
unknown regarding the mechanisms in stress-induced circa-
dian effects, it is suspected that the sympathetic nervous
system and the HPA axis are involved (231). The GCs are the
output of the adrenal glands and ACTH of the pituitary, so
interference in these pathways intuitively points toward a
downstream interference in circadian pathways as well. Also,
monoamines such as norepinephrine or epinephrine can also
induce circadian gene expression (235). In mice, phase
advance of bioluminescent rhythms in peripheral tissues was
observed after treatment with norepinephrine or epinephrine
(232).

Noise exposure studies on cardiovascular health
effects in animals and men

Molecular links between noise-induced stress and the
induction of vascular and cerebral inflammation as well as
oxidative stress are reviewed in (45, 46). Regarding the
sequence of events, acute noise exposure for 30 min (85 dB)
has been demonstrated to increase the adrenocorticotropic
hormone corticosterone in a dose-dependent manner (25, 27).
In addition, corticotropin-releasing hormone and its receptor
type 1 was upregulated at the mRNA level in amygdala in
response to chronic noise exposure of rats (59).

In monkeys, noise with a mean sound pressure level of
85 dB(A) caused a blood pressure increase by 30 mmHg
(181). Subsequent translational studies of traffic noise expo-
sure in mice have established endothelial dysfunction and
blood pressure elevation in association with higher levels
of cortisol and catecholamines (117, 156); effects that were
abrogated in NADPH oxidase isoform 2 (Nox2)-knockout
mice, indicating that they were oxidative-stress driven in
nature. Noise exposure during sleep also appears to contrib-
ute more to the phenotype of vascular pathology than expo-
sure while awake, as effects in mice exposed to noise only
during sleep were more pronounced than counterpart mice,
also resulting in substantial neuronal activation, cerebral
oxidative stress, and neuro-inflammatory phenotype (117).

The uncoupling of eNOS and neuronal nitric oxide syn-
thase was observed (117, 156), partly explaining the noise-
induced endothelial dysfunction and the impairment of
cognitive/memory function in humans (212, 213, 225). We
also identified substantial changes in gene expression by
RNA sequencing, for example, dysregulated antioxidant and
stress response (antioxidant and DNA repair genes), aggra-
vated cell death pathways, and impaired vascular signaling
(156), all of which were associated with dysregulated circa-
dian clock pathways and FOXO signaling (117). We also
established additive impairment of cerebral and vascular
oxidative stress, inflammation, and endothelial dysfunction
by noise and angiotensin II treatment in mice (226).

Noise also induced oxidative burst of blood leukocytes and
other markers of oxidative stress such as oxidative DNA
damage (8-oxoguanine) and enhanced NOX-2 expression as
well as inflammation in C57BL/6 mice, with further increases
in 8-oxoguanine glycosylase knockout (Ogg1---) mice (DNA-
repair deficient 8-oxoguanine glycosylase knockout) (120).

Aircraft noise also causes endothelial dysfunction in
healthy subjects (213) and increased blood pressure in
patients with established coronary artery disease (212) and
elevations in overnight urinary cortisol in children living
in noisier areas, indicating a translational relevance (60).
Similarly, exposing healthy subjects to 30 or 60 train events
during nighttime decreased quality of sleep and impaired
flow-mediated dilation of the brachial artery significantly and
the latter was improved by acute vitamin C infusion, indi-
cating a role for oxidative stress (88).

Targeted proteomic analysis detected in plasma pro-
teins within redox, pro-thrombotic, and pro-inflammatory
pathways was significantly impacted versus controls (88).
A molecular link between neuronal activation, coronary
inflammation/atherosclerosis, and higher incidence of major
adverse cardiovascular events (e.g., MI) was recently pro-
vided in subjects with higher noise exposure undergoing
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positron emission tomography-scan (172). This human mech-
anistic evidence was also supported by epidemiological
outcome studies, indicating a higher risk of ischemic heart
disease in people with higher traffic noise exposure (105).

Also, higher risk of obesity, diabetes, and hypertension in
association with traffic noise exposure was suggested by
epidemiological data (99, 185, 222). Induction of arterial
stiffness and dysregulation of DNA methylation patterns
are other hallmarks of traffic noise exposure in Switzerland
(62, 68).

Traffic noise effects on circadian clock

A prospective study of 3350 participants of the of the
Swiss Cohort Study on Air Pollution and Lung and Heart
Diseases in Adults by Eze et al. demonstrated a significant
modification of the relationship between residential night-
time road traffic and subsequent 8-year change in glycated
hemoglobin values (HbA1c) among diabetic participants by a
genetic risk score of six common circadian-related melatonin
receptor 1B (MTNR1B) variants (MGRS) after adjustment
for diabetes risk factors and air pollution levels (61).

The strongest interaction was found for rs10830963, an
established diabetes risk variant also implicated in melatonin
profile dysregulation. Sørensen et al. suggest lower melato-
nin due to decreased sleep in people exposed to nighttime
traffic noise to be a potential mechanism to explain the
increased risk of breast cancer (223), but this effect, if it exists
at all, may be also explained by concomitant light exposure,
which usually coexists in the setting of nighttime traffic noise
exposure (82).

However, there is ample evidence from human studies
demonstrating a link between traffic noise exposure and
impaired sleep (14), thus providing at least indirect evidence
for a relationship between traffic noise exposure and circa-
dian dysregulation.

As noise exposure during the night mediates its detri-
mental effects mainly via sleep deprivation and fragmenta-
tion (159), sleep disorders may effectively reflect the
pathophysiology of noise-triggered health effects. Circadian
misalignment is a phenomenon often seen in shift workers,
who have a higher prevalence of obesity, type II diabetes,
hypertension, coronary heart disease, and ischemic stroke
(114). Connections between circadian disruption and car-
diovascular disease pathogenesis have also been made (154,
238). In studies of short-duration circadian misalignment in
humans (28 h day for 8 days), increases in blood glucose,
insulin levels, and blood pressure were observed (209).

Data for noise exposure in humans are heavily reliant on
association studies and epidemiological data due to their
highly variable nature in both level of exposure and degree of
cognition by the subject. For this reason, animal models of
noise exposure are a critical component in understanding the
molecular mechanisms by which noise affects the organism.
In mice, a self-sustaining peripheral clock was found to be
present in the cochlea, implying that even sensitivity to noise
was rhythmically controlled (148).

The neurons located within the inferior colliculus, an im-
portant structure in the brain for sound processing, also have
their own CLOCK-dependent rhythmic expression. Further,
this study found that exposure to noise caused notable tran-
scriptional changes, resulting in oscillation abnormalities in

isolated neurons from the murine inferior colliculus (175).
Taken together, it appears that not only sensitivity and cog-
nition of noise is regulated rhythmically, but also transcrip-
tional rhythm itself can be disrupted by noise.

Studies applying noise differentially between light and
dark cycles found anxiety-like behavior, memory and learn-
ing impairments, as well as physiological effects such as
reduced brain volume, hippocampal volume, and neural
density alongside HPA axis activation (95). We have found
significant dysregulation of multiple circadian genes in the
aorta and kidney of mice (minor changes in the heart) that are
compatible with sleep deprivation by around-the-clock air-
craft noise exposure (Fig. 4) (117).

Most prominent were reductions in the expression of Per1
and Foxo3 and upregulation of Cry1 and Arntl in the aortas of
mice exposed to noise either around the clock or during their
sleeping phase, but not during their waking phase (117),
forging a link between circadian disruption and consequences
borne of noise exposure.

Noise exposure exerts its effects both centrally and peri-
pherally, though it is possible that these occur by different
mechanisms. There appears to be crosstalk between the
pineal and adrenal glands, wherein peak corticosterone
occurs at light–dark transition (in nocturnal animals), causing
arousal entrained by the SCN (43). Corticosterone, in turn,
enhances melatonin production. However, in times of stress
or immune challenge, night melatonin content in plasma is
reduced, an effect rescuable by adrenalectomy (66).

These connections between HPA axis activation and cir-
cadian expression could offer explanation for the effects
previously mentioned in the circadian pathways after noise
exposure and the well-characterized inflammatory phenotype
that arises. A previous study reported increased blood pres-
sure and inflammatory markers after 3 days of 12 h inversion
of environmental and behavioral cycles (154). Also, a study
in mice exposed to noise at 95 decibels showed increases in
plasma interleukin-6 (IL-6), tumor necrosis factor (TNF)-a,
and oxidative stress markers (136), and our own work
shows increases in inflammatory parameters in blood, vas-
cular tissue, and brain, which exacerbate preexisting pheno-
types and are accompanied by aggravated stress hormone
levels (45, 226).

It is becoming clearer that the circadian clock has a reg-
ulatory role in the vascular redox state and thereby endo-
thelial function in mice (178), which is also diurnally
regulated in part via eNOS, whose phosphorylation seems to
be cyclic in nature (177). eNOS was found to be upregulated
after 60 h of noise in both cytosol and mitochondria of vari-
ous cell types in guinea pigs (86). Related, the critical eNOS
cofactor tetrahydrobiopterin displays circadian-dependent
expression (5). Other studies in rats demonstrated morpho-
logical alterations of the heart followed by exposure to noise
at 100 dB(A), including the development of myocardial and
perivascular fibrosis and a reduction of cardiac connexin 43
content (6).

Enlarged mitochondria and the presence of lipofuscin
granules were also observed, indicating some degradation of
the mitochondria (6). In another study, the enlarged mito-
chondria found that postnoise showed calcium accumulation
and were less calcium tolerant, as opening of the mitochon-
drial permeability transition occurred more rapidly (207). In
rat cardiomyocytes, 12 h of exposure to loud noise caused
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significant DNA damage alongside swelling of mitochondrial
membranes, dilution of the matrix, cristolysis, and increased
noradrenaline levels and utilization (131).

Although a definitive all-encompassing mechanism has yet
to be uncovered, studies in animal models have highlighted
clear effects on the circadian rhythm by traffic noise expo-
sure and have led to interesting correlations between sleep,
behavior, vascular function, inflammation, and mitochondrial
function.

Connection of Air Pollution, Circadian Clock
Dysregulation, and Cardiovascular Disease

Cardiovascular health effects by general
environmental pollutants

As previously outlined, there is substantial evidence from
epidemiological and experimental data suggesting that heavy

metals and air pollution can contribute to cardiovascular
disease (39). Also, other environmental chemicals such as
pesticides are cardiotoxic (150). The links between envi-
ronmental pollutants and oxidative stress imply that there
would be a redox connection with the circadian clock. In
terms of terrestrial pollutants, heavy metal exposure also has
impacts on redox balance; an overview of these mechanisms
was recently published (176).

Briefly, in rats, cadmium induced alterations in the cells of
the circadian pacemaker (201) and disruption of the circadian
rhythm by cadmium was partially prevented by antioxidant
co-therapy, supporting the links to a role of oxidative stress
(121). Copper overload also has adverse effects on the cir-
cadian clock (81). Toxicity studies in Drosophilia have
demonstrated that the median lethal dose (LD50) value of
pesticides varied by time of day and correlated with the di-
urnal expression profiles of genes responsible for metabo-
lizing xenobiotics (15, 91).

FIG. 4. Mouse studies on noise
effects on the circadian clock. (A)
Noise (mean sound pressure level
72 dB(A) for 12 h/day for 1, 2 and
4 days) caused substantial dysre-
gulation of the expression of cir-
cadian clock genes in the aorta and
kidney, as revealed by Illumina
RNA sequencing (see heat map)
(117). (B) In particular, aortic gene
expression of the transcription
factor Foxo3 and Per1 was down-
regulated, whereas Arntl and Cry1
were upregulated by noise. FoxO3
has a binding site in BMAL1 and
thereby contributes to the regulation
of circadian rhythm. *, p < 0.05
versus WT group. Adapted from
Kroller-Schon et al. (117) with
permission. WT, wild-type.

688 DAIBER ET AL.



The preclinical and clinical evidence for a crosstalk
between environmental organic chemicals and circadian
pathways as well as the underlying mechanisms [e.g.,
involvement of aryl hydrocarbon receptor-dependent detox-
ification (79)] can be found in detail (135, 183). Of note,
these environmental chemicals may be also attached to the
surface of airborne PM and significantly affect their biolog-
ical effects.

Air pollution by PM effects on oxidative stress
and cardiovascular health/disease

Air pollution in the form of PM is recognized by the
American Heart Association and other cardiac societies as
cardiovascular risk factors (22) and further, it is well accep-
ted to induce cardiovascular oxidative stress (188, 251).
Exposure to PM exerts well-characterized effects on the
vasculature: endothelial dysfunction, inflammation, and strong
ties with the pathogenesis of atherosclerosis (189) as well as
increases the sensitivity to vasoconstrictors (258).

An in-depth review of the oxidative stress pathways and
inflammation induced by PM and diesel exhaust can be
found in (157). It was also recently reported that around 7%
of nonfatal MIs and 18% of sudden cardiac deaths could
have been triggered by exposure to traffic-derived pollution.
These numbers are equivalent to those arising from tradi-
tional lifestyle risk factors such as smoking, poor diet, and
obesity (39).

The importance of air pollution as a cardiovascular risk
factor is supported by data from the short-term reductions in
traffic, and industrial air pollution during the 2008 Beijing
Olympic Games resulted in a 13–60% reduction in the con-
centrations of air pollutants, which perfectly corresponded
with similar effects on the biomarkers of inflammation, oxi-
dative stress, and thrombosis in healthy adults (92, 111, 199,
203). Once restrictions were lifted, however, the beneficial
effects quickly dissipated, indicating that long-term mitiga-
tion of air pollution is necessary.

Between 2003 and 2012, the city of Tokyo made efforts to
decrease diesel emissions, leading to a 44% decrease in PM
from traffic. Osaka introduced similar laws in 2009. Com-
parisons of mortality rates between Osaka and Tokyo
revealed a striking decrease in cardiovascular mortality by
11% among Tokyo’s population, which was mainly due to a
10% decrease in ischemic heart disease mortality (259).

Magnetic air pollution particles deriving from combustion
and friction were discovered inside mitochondria in ven-
tricular myocytes, as well as in the endoplasmic reticulum
(ER), mitochondria-ER contact sites, and intercalated disks
of human hearts, resulting in the upregulation of left-
ventricular prion protein (26), which is believed to contribute
to cardiac adverse effects (264). In dogs exposed to high
concentrations of air pollutants, including ultrafine PM, mito-
chondria possessed fragmented or missing cristae, with intra-
mitochondrial lucent areas and an increase in the fusion of
multiple mitochondria producing giant mitochondria and
the presence of nanoparticles; a vastly different morphol-
ogy from the uniform and linear mitochondria of control
samples. (240).

In vitro studies utilizing 24-h exposure to nano-PM
resulted in increases in mitochondrial DNA oxidation and
a decreased mitochondrial oxygen consumption rate (21).

Mitochondrial oxidative capacity was also altered after
exposure to diesel exhaust via interference with complex I
of the respiratory chain after repeated exposures (104).

Air pollution effects on circadian clock

Air pollution has been directly linked to disruption of the
circadian clock. In an untargeted analysis of the transcrip-
tome and methylome of primary human bronchial epithelial
cells exposed to PM, it was shown that genes associated with
circadian system are not only differentially regulated, but
also DNA methylation associated with them changed sig-
nificantly in comparison to the nonexposed controls (89).

In an experiment exposing both pregnant and offspring rats
to air containing PM, the downregulation of key clock genes
Per1, Per2, Per3, Rev-erba, and Dbp and upregulation of
Bmal1 was found versus filtered-air-exposed controls (220).
As recently reviewed, air pollutants have also been linked
to changes in sleep–wake pattern, which was then seen to
increase risk for vascular and cardiometabolic diseases due to
several cardiovascular and even pulmonary functions that are
rhythmically regulated (80).

Air pollution is also mentioned as a factor of chronobio-
logic aspects of venous thromboembolism (63). Chronic
exposure to ambient particles with an aerodynamic diameter
of <2.5 lm (PM2.5) was also found to accelerate the devel-
opment of atherosclerotic plaques (227), and to exacerbate
vascular oxidative stress and inflammation (103). In addition
to effects on redox balance and clock gene expression, PM2.5
exposure was found to increase levels of stress hormone
metabolites, 18-oxocortisol, and 5a-tetrahydrocortisol, and it
altered the levels of circadian rhythm biomarkers, including
melatonin, retinol, and 5-methoxytryptophol (255).

Rats exposed to PM2.5 exhibited pathological changes
and ultra-structural damage in hearts, which included mito-
chondrial swelling and cristae disorder accompanied by
significantly increased mitochondrial fission/fusion genes
(optic atrophy protein 1, mitofusin 1, dynamin-related pro-
tein 1, and fission-mediator protein 1) expression (134).
Similar to previously discussed data, on exposure to PM, rats
did not display inhibition of mitochondrial function basally
but manifested greater myocardial mitochondrial swelling
and fusion after ischemia and reperfusion (75). In male
Sprague-Dawley rats, exposure to PM caused a significant
increase in mitochondrial transition pore opening, leading to
decreased mitochondrial function (167). TNF-a antibody
infliximab alleviated the impairment in mitochondrial func-
tion in residual oil fly ash-exposed mice (144).

A study in mice explored the influence of PM2.5 on
the hepatic lipid metabolism and found that peroxisome
proliferator-activated receptor alpha ( ppara)-mediated
genes responsible for fatty acid transport and oxidation were
upregulated (267). In addition, expression of Bmal1 was
enhanced at ZT 0/24. Dysfunction in white and brown adi-
pose tissue, as demonstrated by downregulation of adipo-
kines, was accompanied by disruption in expression patterns
of Sirt1, Sirt3, and Ucp1 in PM2.5 exposed mice, which could
be detrimental since disturbance in the lipid metabolism is
tightly linked to cardiovascular disease (65).

Cigarette smoke derived PM was shown to shift circadian
clock gene expression by up to 9 h in rat intervertebral disks
(169). Altered regulation of circadian clock genes Bmal1 and
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Clock was also observed in the lungs of mice exposed to
shisha and electronic cigarette derived PM (108). Knockout
mice for Rev-erba, an important circadian clock component,
showed increased susceptibility to inflammation after expo-
sure to cigarette smoke-derived PM (228). Natural physio-
logical rhythms of mice did not recover even 4 weeks after
cessation of smoke exposure (239). Also, altered methyla-
tion of the Clock gene was found in blood cells of free-living
birds in dependence of PM10 exposure (202).

Circadian-dependent cardiovascular functions, including
blood pressure (in the form of nocturnal dipping), daytime
urinary sodium excretion (237), and nocturnal heart rate
variability (128), were found to be affected by PM levels.
Chen et al. demonstrated short-term PM2.5 exposure to be
associated with lower pulse pressure, decreased maximum
rate of left-ventricular pressure rise, and increased systemic
vascular resistance in subjects with nighttime blood pres-
sure dip of <10%, whereas no hemodynamic changes were
observed in subjects with nighttime blood pressure dip of
‡10%, indicating that individuals with circadian-dependent
dysregulations are more susceptible to PM-related cardio-
vascular risks (37).

Outside of cardiovascular complications, evidence dem-
onstrating a role for airborne PM in alteration of the circadian
molecular clocks via redox regulation was found in chronic
airway diseases (229) and complementary findings were
reported after exposure to ambient reactive gases (e.g.,
ozone), where authors proposed that maintaining an intact
circadian clock was protective against damage to skin and
keratinocytes (17). In asthmatic school children, exposure to
PM2.5 and PM10 was shown to increase the diurnal vari-
ability of lung function (132).

Further, exposure to secondhand smoke led to changed
circadian rhythm of peak respiratory flow in children (29). A
relationship between environmental arsenic exposure, which
can be found in PM, and changes in circadian genes was
revealed by data mining and interaction network analysis of
sources related to human bladder cancer (182). An inverse
relationship between occupational indoor PM2.5 exposure
and heart rate variability was found in a study by Chuang
et al., with a pronounced decrease in heart rate variability of
the participants during nighttime working hours compared
with daytime periods of work (38).

Bisulfite sequencing of 407 newborns revealed epigenetic
regulation of circadian genes in dependence of the regional
PM2.5 exposure levels of their mothers during gestation
(165). Epigenetic regulation was observed by altered pla-
cental methylation of CpG sites within the promoter regions
of circadian genes Npas2, Cry1, Per2, and Per3, suggesting
that PM2.5 exposure might affect placental processes and
fetal development.

Approaches Related to Environmental Risk Factors
and ‘‘Chrono’’ Therapy for Cardioprotection

Classical risk factors, comorbidities, and comedications
undeniably play an important role in cardiovascular detri-
ment or cardioprotection (4, 64). However, it is becoming
clearer that this is not a ‘‘complete picture’’ and that these
concepts are complemented by the contribution of environ-
mental factors and a properly maintained circadian clock.
Lifestyle is crucial in predisposing individuals to developing

cardiovascular diseases not only through its ‘‘classical’’
contributions (e.g., diet and exercise), but also in its role
impacting circadian rhythms.

When an individual is ‘‘phase shifting,’’ there the change
in Per1 and Per2 expression is faster than that of Clock,
thereby causing desynchrony (109). Mutations in genes such
as Bmal1, Cry1, Cry2, Rora, and Clock can alter sleep pat-
terns (113). Shift workers show disturbances in circadian
rhythms that result in disturbed blood glucose control and as a
result, insulin resistance (76). Another factor, obesity, has
been linked with Clock (96), PER2 (58), and Bmal1 (250)
mutations, observable in both human and mouse models.
Accordingly, chronotherapy is the method of administering
therapy at specific points in the circadian rhythm in the hopes
of improving efficacy and tolerance to drug therapy (Fig. 5)
(265). Typical examples of human and animal studies are
listed in Table 1.

Many factors can be influenced within the circadian path-
way by environmental risk; however, the common denomi-
nator is the resultant dysregulated release of melatonin, a
hormone from the pineal gland that plays an important role in
maintaining regular circadian rhythm, antioxidant clearance,
and is an anti-depressor (137). Melatonin is also believed to
be cardioprotective and reduces infarct size while decreasing
ventricular fibrillation after ischemia–reperfusion, although
clinical results have been conflicting (137).

More time-targeted therapy may have given different
results, and treating individuals with dysregulated circadian
rhythms due to depression, jet lag and sleep disorders can
re-regulate circadian rhythms to help prevent the develop-
ment of cardiovascular events (224). A study carried out in
Maastricht has shown that introducing light therapy to pati-
ents resulted in improved sleep patterns in cardiac patients
(72). Animal studies reinforce this finding with comple-
mentary evidence: Altering the diurnal environment worsens
their outcomes and increases inflammation in the infarct zone
after an MI (215).

The administration of dexamethasone, a synthetic GC, at
different times of day showed varying efficacy in protecting
mice from acute noise trauma. Specifically, efficacy was only
found when administered during daytime, when circulating
GCs are already low, highlighting the benefits of chrono-
therapy (31). Noise is also part of a murine model of stress
known as ‘‘chronic mild stress.’’ In this model, the admin-
istration of melatonin nocturnally was found to alleviate
stress-induced behaviors (83).

Since air pollution is known to exacerbate inflammation
(188), chronotherapy could be a useful tool to modulate
additional burden in patients suffering from chronic inflam-
matory conditions. The peptide hormone adropin is known
to regulate glucose homeostasis (71). It was recently sug-
gested that adropin could be used in chronotherapy (116).
Glucose levels and impairment of glucose homeostasis have
been positively correlated to ambient air pollution exposure
(71), and therapy in patients without metabolic disease could
benefit from giving medications such as adropin during
specified times of the day. Circadian rhythm is also linked
to autophagy, apoptosis, and necrosis (187).

These cell death pathways are regulated differently during
different times of the day, and air pollution is known to
trigger them (44, 170). Chronotherapy of different cardio-
vascular diseases that can benefit from alterations to these

690 DAIBER ET AL.



pathways might be promising since autophagy is an impor-
tant pro-survival mechanism that protects cells from envi-
ronmental insult such as air pollution (126).

As discussed in detail earlier and previously reviewed in
detail (157, 160, 161), air pollution and traffic noise exposure
induce oxidative stress. Accordingly, drugs acting on the
earlier mentioned redox regulatory pathways of the circadian
clock may normalize dysregulated rhythms in various disease
conditions triggered by air pollution and traffic noise expo-
sure, at least in preclinical models (Fig. 5). The AMPK
activating drug metformin affected the circadian clock and
metabolic rhythms in different tissues of healthy mice (12)
and opposed the deleterious changes in core clock protein
expression in white adipose tissue of genetically obese db/db
mice (30).

The treatment of cultured chick pineal cells with
SB203580, a selective and reversible inhibitor of p38 MAPK,
had effects on the period and phase of the circadian rhythm of
the melatonin release (85) and the inhibition of p38 MAPK

activity with VX-745 led to cell-type-specific period changes
in the molecular clock in different cancer cell lines (74).
Hypoxia-induced pathways (e.g., via HIF-1a) may not only
harbor great therapeutic potential of normalizing impaired
circadian signaling in cardiovascular diseases (13) but also
contribute to the cardiovascular complications observed due
to hypoxic episodes in obstructive sleep apnea (243).

The impact of SIRT1 on circadian clock and cardiac health
is a two-edged sword, with low activity being cardioprotec-
tive and higher activity leading to cardiac hypertrophy (221),
which is also supported by differential effects of SIRT1
activation by resveratrol and inhibition by Ex-527 on rhythms
in neonatal cardiomyocytes (54). Selective chemical remo-
val of endogenous CO by hemoCD1 in mice caused disrup-
tion of rhythmic expression of the clock genes and promoted
the binding of NPAS2 and CLOCK to DNA (E-box) in
the murine liver, resulting in upregulation of the E-box-
controlled clock genes (Per1, Per2, Cry1, Cry2, and Rev-
erba) (151).

FIG. 5. Approaches related to environmental risk factors and ‘‘chrono’’ therapy for cardioprotection. Left: The
central clock is controlled by different zeitgebers, leading to the release of melatonin via the pineal gland and the en-
trainment of peripheral clocks, for example, in the heart (40). Middle: Lifestyle and environmental risk factors were shown
to disrupt circadian rhythms, causing asynchrony in circadian gene/protein expression patterns and thereby increase the risk
of developing cancer and cardiovascular diseases. Right: Chronotherapy is believed to reduce side effects and to increase
the efficacy of classical cardiovascular or chemotherapeutic drugs (133). Chronotherapy by sleep/light therapy, melatonin
administration, and optimization of temporal drug administration/surgical interventions can improve clinical outcomes after
a cardiovascular event in both human and animal models. In addition, preclinical redox approaches modulating circadian
gene/protein expression or activity, and restoring synchrony, may help improve cardiovascular outcomes in patients, when
applied in the optimal concentration range. Created with BioRender.com. MACE, major adverse cardiovascular events;
NPAS2, neuronal PAS domain-containing protein 2; Rev-Erba, nuclear receptor subfamily 1, group D, member 1; SCN,
suprachiasmatic nucleus.
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Table 1. Examples of Chrono Therapy Approaches in Humans and Animals

Author, year Type of study Major finding Reference

Human evidence
Wang, 2016 Pharmacokinetic study

in 12 healthy subjects
Melatonin metabolism is inhibited in people whose

diets are rich in coumarins
(245)

Carlson, 2019 Study in 12 healthy
male subjects

Exercise in the morning has reparative effects on
circadian rhythm via beneficial effects on
melatonin signaling, compared with afternoon
exercise

(28)

Bonten, 2014 Study in 14 healthy
subjects

Administration of aspirin in the evening reduces
platelet reactivity the next morning, which could
reduce the overall risk of developing MI

(18)

Rezvanfar, 2017 Study in 76 patients
with T2DM

Melatonin administration (6 mg/12 weeks) lowers
fasting glucose and HbA1c levels in patients with
type 2 diabetes mellitus

(197)

Raygan, 2019 Study in 60 patients
with diabetes and
CHD

Favorable effect of melatonin (10 mg/12 weeks) on
glycemic control in diabetic patients with
coronary heart disease

(191)

Doosti-Irani, 2018 Meta-analysis of 12
randomized
controlled trials

Melatonin administration reduces fasting glucose
levels, whereas insulin and HbA1c levels are not
affected by melatonin

(50)

Celinski, 2014 Study in 74 patients
with NAFLD

Administration of melatonin (5 mg/2 times per day/
14 months) reduces LDL cholesterol and
triglycerides in patients with nonalcoholic fatty
liver disease

(32)

Wang, 2016 Study in 63 healthy
subjects

Cigarette smokers display reduced free fatty acids,
markers of inflammation and endothelin-1 after
2 weeks of melatonin administration (3 mg/kg)

(248)

Akbari, 2019 Meta-analysis of 8
randomized
controlled trials

Melatonin administration is associated with
decreased systolic and diastolic blood pressure in
patients with metabolic disorders

(1)

Scheer, 2004 Study in 16 men with
untreated essential
hypertension

Administration of 2.5 mg/day of melatonin for
3 weeks lowers both systolic and diastolic blood
pressure

(210)

Review articles
Jiki, 2018 Mechanistic review Dietary melatonin can increase the blood levels of

melatonin and improve circadian rhythm
(101)

Imenshahidi, 2020 Mechanistic review Beneficial effects of melatonin on cardiometabolic
risk factors such as diabetes, dyslipidemia, and
hypertension

(93)

Pandi-Perumal, 2017 Clinical and
mechanistic review

Beneficial effects of melatonin on blood pressure
regulation, circulating catecholamines, and
vascular reactivity in healthy subjects

(174)

Animal evidence
Lamont, 2011 & 2015 Mouse and rat studies Chronic and moderate consumption of melatonin or

resveratrol at dietary doses reduces infarct size in
rats/mice subjected to MI

(123, 124)

Maarman, 2015 Rat study Chronic and moderate consumption of melatonin at
dietary improves cardiac function in rats with
pulmonary arterial hypertension

(138)

Qiu, 2018 Rat study Exercise has positive effects on melatonin signaling
in a model of hypertension

(186)

Martino, 2011 Mouse study Angiotensin-converting enzyme inhibition has more
beneficial effects on cardiac remodeling when
administrated during sleep time in a model of
pressure overload hypertrophy

(146)

Wang, 2016 Rat study Cigarette smoke induced higher levels of
inflammatory markers, endothelin-1, and impaired
metabolic pathways, which were normalized by
melatonin administration (10 mg/kg)

(248)

Yaekura, 2020 Mouse study Cytokine blocker Baricitinib reduces IL-6,
interferon-c, TNF-a, and granulocyte–macrophage
colony-stimulating factor most efficiently during
the period of increased cytokine expression in a
mouse model of collagen-induced arthritis

(256)

IL-6, interleukin-6; MI, myocardial infarction; TNF-a, tumor necrosis factor-a.
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Vice versa, the overexpression of HO-1 decreased the
binding of NPAS2 and CLOCK to E-box, leading to down-
regulation of the clock genes. Pharmacological induction
of HO-1 by hemin caused dose-dependent and reversible
dampening of PER2 rhythms in the hypothalamic tissue of
mice (78). The antioxidant N-acetylcysteine prevented
alcohol- or hydrogen peroxide-induced increases in intesti-
nal cell CLOCK and PER2 expression levels as a model of
alcohol-induced intestinal hyperpermeability (69).

Of note, not all processes that are detrimental for the
heart have been so far explored for chronotherapy. Although
NFkB appears to interact with the circadian system (90)
and is known to play a role in the inflammation associated
with cardiovascular diseases, a few studies have explicitly
probed this association. In support of this notion, myocar-
dial ischemia–reperfusion injury was associated with higher
NFkB levels that were most efficiently suppressed by a com-
bination therapeutical approach of ischemic postconditioning
and melatonin (9).

Likewise, many targets that play an important role in car-
dioprotection were not yet investigated in full detail with
respect to circadian regulation (e.g., PTEN, mitochondrial
permeability transition pore, dipeptidyl peptidase-4, Toll-
like receptors, or cardioprotective microRNAs), and therefore,
they have not been deeply explored for chronotherapy so
far (218). Circadian regulation of these processes should
be considered in light of the substantial knowledge on the
importance of time of the day for cardioprotective interven-
tions (153), although not all studies confirmed a daytime
dependence of elective cardiac surgery and clinical outcome
(77, 107, 166).

Conclusions and Clinical Implications

In conclusion, the circadian rhythm is susceptible to
alterations from lifestyle and environmental factors, which,
in turn, influence the development and onset of cardiovas-
cular disease. Considerations for these factors in regulatory
and therapeutic undertakings could yield beneficial results
in the considerable burden generated by cardiovascular dis-
ease. Anti-stress therapy, chronotherapy, and melatonin
treatment alongside tighter regulations against air and noise
pollution could reduce circadian rhythmic desynchronization
and prevent the development of cardiovascular diseases.

Normalizing the cellular redox state arising from the dys-
functional mitochondria or improving mitochondrial func-
tion itself could also represent a possible strategy for
abrogating the subclinical symptoms of developing cardio-
vascular and even neurological disease. Though the current
research is somewhat inconsistent, this can be overcome
through careful translational approaches and targeted clin-
ical data to make chronotherapy a practicable therapeutic
option.

As a final consideration, it is important to note that young
animals are more resilient to changes in the environment
than older animals (34), which makes age of the specimen
an important consideration when conducting in vivo stud-
ies. Preclinical animal studies are usually performed during
the day with the lights turned on; therefore, experiments
performed on mice should be interpreted as their inactive
phase, which does not directly translate to the times of the
highest ‘‘cardiovascular circadian risk’’ in humans.

To gain insights translationally, data should be gathered
during the night or the mice could be phase-shifted (127).
Light settings could also be adjusted to coincide with the
seasons in the outside environment (100). Therefore, when
designing a study to assess the cardioprotective potential of
a new therapy, it is important to take the time of day into
consideration to improve the efficacy and tolerability of the
treatment.
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ACTH¼ adrenocorticotrophic hormone
AKT¼ protein kinase B
AMI¼ acute myocardial infarction

AMPK¼AMP-activated protein kinase
ARNTL¼ aryl hydrocarbon receptor nuclear

translocator-like protein

BDNF¼ brain-derived neurotrophic factor
BMAL1¼ brain and muscle arnt-like

protein-1
CLOCK¼ circadian locomotor output cycles

protein kaput
CO¼ carbon monoxide

CRY¼ cryptochrome
dCRY¼Drosophila cryptochrome
eNOS¼ endothelial nitric oxide synthase

ER¼ endoplasmic reticulum
FAD¼ flavin-adenin-dinucleotide

FBXL3¼ F-box/leucine rich-repeat
protein 3

FOXO¼ Forkhead box O
GCs¼ glucocorticoids

HbA1c¼ glycated hemoglobin levels
as a long-term measure of
blood glucose levels

HIF-1a¼ hypoxia-inducible factor 1a
HO-1¼ heme oxygenase-1
HPA¼ hypothalamic-pituitary-adrenal
IL-6¼ interleukin-6

MACE¼major adverse cardiovascular
events

MAPK¼mitogen-activated protein kinase
mCRY1¼mammalian cryptochrome 1

MGRS¼MTNR1B variants
MI¼myocardial infarction

mPER1¼mammalian period 1
mPER2¼mammalian period 2

MTNR1B¼melatonin receptor 1B
NADPH¼ nicotinamide adenine

dinucleotide phosphate
NASH¼ non-alcoholic steatohepatitis
NOX2¼NADPH oxidase isoform 2

NPAS2¼ neuronal PAS domain-containing
protein 2

NRF2¼ nuclear factor erythroid 2-related
factor

PARP-1¼ poly(ADP-ribose) polymerase-1
PER¼ period

PGC1a¼ peroxisome proliferator-activated
receptor gamma coactivator
1-alpha

PI3K¼ phosphatidylinositol 3-kinase
PM¼ particulate matter

Rev-Erba (or NR1D1)¼ nuclear receptor subfamily 1,
group D, member 1

ROR-a¼RAR-related orphan receptor
alpha

ROS¼ reactive oxygen species
SCN¼ suprachiasmatic nucleus

SREBP1c¼ sterol regulatory element-binding
transcription factor 1

SIRT1¼ sirtuin 1
TNF-a¼ tumor necrosis factor-a

VSMCs¼ vascular smooth muscle cells
WT¼wild-type
ZT¼Zeitgeber time
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