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Aims Data on repolarization parameters in cardiac resynchronization therapy (CRT) are scarce. We investigated the association 
of baseline T-wave area, with both clinical and echocardiographic outcomes of CRT in a large, multi-centre cohort of CRT 
recipients. Also, we evaluated the association between the baseline T-wave area and QRS area.

Methods 
and results

In this retrospective study, 1355 consecutive CRT recipients were evaluated. Pre-implantation T-wave and QRS area were 
calculated from vectorcardiograms. Echocardiographic response was defined as a reduction of ≥15% in left ventricular end- 
systolic volume between 3 and 12 months after implantation. The clinical outcome was a combination of all-cause mortality, 
heart transplantation, and left ventricular assist device implantation. Left ventricular end-systolic volume reduction was 
largest in patients with QRS area ≥ 109 μVs and T-wave area ≥ 66 μVs compared with QRS area ≥ 109 μVs and T-wave 
area < 66 μVs (P = 0.004), QRS area < 109 μVs and T-wave area ≥ 66 μVs (P < 0.001) and QRS area < 109 μVs and T-wave 
area < 66 μVs (P < 0.001). Event-free survival rate was higher in the subgroup of patients with QRS area ≥ 109 μVs and 
T-wave area ≥ 66 μVs (n = 616, P < 0.001) and QRS area ≥ 109 μVs and T-wave area < 66 μVs (n = 100, P < 0.001) than 
the other subgroups. In the multivariate analysis, T-wave area remained associated with echocardiographic response 
(P = 0.008), but not with the clinical outcome (P = 0.143), when QRS area was included in the model.

Conclusion Baseline T-wave area has a significant association with both clinical and echocardiographic outcomes after CRT. The asso
ciation of T-wave area with echocardiographic response is independent from QRS area; the association with clinical out
come, however, is not.
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What’s new?

• Different left bundle branch block definitions and differences in 
clinical judgement encourage to study additional, less subjective elec
trocardiographic parameters to guide patient selection in cardiac 
resynchronization therapy (CRT).

• Data regarding the relation between vectorcardiographic T-wave 
area and CRT response on clinical outcomes are scarce. In addition, 
the relation between QRS area and T-wave area in CRT patients has 
not yet been assessed.

• Baseline T-wave area has a significant association with both clinical 
and echocardiographic outcomes after CRT.

• The association of T-wave area with echocardiographic response is 
independent from QRS area; the association with clinical outcome, 
however, is not.

Introduction
Cardiac resynchronization therapy (CRT) is a proven treatment modal
ity in heart failure (HF) with reduced ejection fraction (HFrEF) accom
panied by ventricular conduction abnormalities. It has been shown that 
the response to CRT is better in those patients with a wide QRS and 
left bundle branch block (LBBB).1–3 Therefore, guidelines recommend 
that patient selection for CRT should be based on QRS morphology 
and duration.4 However, due to different LBBB definitions and differ
ences in clinical judgement, significant variation in the classification of 

LBBB exists.5 Moreover, the use of these parameters entails a significant 
proportion of patients who experience little to no benefit from therapy 
despite being exposed to the risk of procedural and device-related 
complications. This encourages to study additional, less subjective elec
trocardiographic (ECG) parameters to guide patient selection in CRT.

Vectorcardiographic (VCG) QRS area has received a lot of attention 
as a new potential predictor of response to CRT.6,7 This VCG param
eter, converted from a conventional 12-lead ECG, quantifies the extent 
and duration of unidirectional electrical depolarization and is potentially 
a better biomarker of the extent of electrical dyssynchrony of the left 
ventricle (LV) compared with QRS morphology and duration. 
However, repolarization is also significantly affected by the presence 
of ventricular dyssynchrony. The repolarization phase is influenced by 
the activity of many ion channels, especially those that determine the 
intracellular calcium concentration, which plays a role in contraction 
and relaxation.8,9 Moreover, in the process of HF, significant changes 
occur in the expression of many of these ion channels, including K+ 

and Ca2+.10 Disturbances in these ion channels may affect repolariza
tion in dyssynchronous HF. Therefore, the changes in T-wave variables 
reflecting the plateau and repolarization phases of the action potential 
may provide additional information on ventricular dyssynchrony and 
CRT response. In a previous study, baseline T-wave area was found 
to be associated with LV ejection fraction (LVEF) increase following 
CRT in HF patients with LBBB.9 Subsequently, a large baseline 
T-wave area was shown to be a strong predictor of good clinical out
comes in CRT patients with LBBB.11 The results from these smaller, 
single-centre studies suggest that the T-wave area may provide 
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additional value to the selection of patients most likely to benefit from 
CRT. However, data regarding the relation between T-wave area and 
CRT response on clinical outcomes are scarce. Moreover, the relation 
between QRS area and T-wave area in HF patients with LBBB has not 
yet been assessed.

In this study, we aimed to evaluate the association of baseline T-wave 
area with both clinical and echocardiographic outcomes of CRT in a 
large, multi-centre cohort of CRT recipients, and we evaluated the as
sociation between the baseline T-wave area and QRS area.

Methods
For the current study, we analysed the Maastricht–Utrecht–Groningen 
(MUG) study cohort.6 This cohort retrospectively included all consecutive 
patients implanted with a CRT device in any of the three University Medical 
Centers in the Netherlands between January 2001 and January 2015. No 
formal inclusion or exclusion criteria were set on device, patient selection, 
or follow-up.

Patient population
The MUG cohort consists of 1946 patients with an available baseline 
12-lead ECG. Patient selection for CRT implantation was done according 
to the prevailing guidelines.12,13 Patients with right ventricular pacing (340 
patients; 17%) or QRS duration < 130 ms (236 patients; 12%) on their 
baseline ECG were excluded. An additional 15 (0.8%) patients in whom 

VCG analysis could not be performed due to frequent premature ventricu
lar complexes were excluded. The patient selection is shown in Figure 1.

Baseline data were obtained from local hospital patient information sys
tems. Clinical characteristics of patients such as HF cause and classification, 
medication, and comorbidity were retrieved from patient history and refer
ral letters. If there was clear evidence of myocardial infarction, extensive 
coronary artery disease, or coronary artery bypass grafting as the under
lying cause of the cardiomyopathy, the aetiology of HF was classified as is
chaemic. Device parameters were obtained from specific device databases. 
Chest X-ray or fluoroscopic images were used to evaluate the LV lead lo
cation. The Dutch Central Committee on Human-Related Research 
[CCMO (Centrale Commissie Mensgebonden Onderzoek)] allowed the 
use of anonymous data without prior approval of an institutional review 
board provided that the data are acquired for routine patient care. All 
data used were handled anonymously. The study was designed according 
to the principles of the Declaration of Helsinki.

Electro- and vectorcardiography
Recorded baseline ECGs were digitally stored (MUSE Cardiology, GE 
Medical System) for T-wave area calculation as well as QRS area, QRS dur
ation, and QRS morphology analysis. The ECGs up to 1 month prior to CRT 
implantation were included in the analysis. Automated ECG readings were 
used to evaluate the ECG parameters. QRS morphology was defined ac
cording to accepted criteria in the European Society of Cardiology (ESC) 
guidelines.12 For VCG analysis, the original digital signals were extracted 
from the digital PDF files stored in the MUSE system and converted from 
ECG to VCG automatically. For the T-wave area and QRS area calculation, 

RV pacing
N = 340

MUG
database
N = 1,946

Echocardiographic
response

Endsystolic volume
reduction
N = 852

Clin ical outcome
All-cause

mortality/HTx/LVAD
N = 1,354

QRS < 130 ms
N = 236

Current study cohort
N = 1,355

No appropriate
baseline ECG

N = 15

No clinical FU
N = 1

No baseline or FU
echocardiography

N = 503

Figure 1 Patient data selection and availability for analyses. The entire MUG cohort consisted of all patients with a CRT device implanted from 
January 2001 to January 2015 in three university hospitals in the Netherlands. For the present study, patients with QRS < 130 ms and patients receiving 
an upgrade to biventricular pacing were excluded. Availability of data for analyses on the primary and secondary outcomes is also shown. ECG, elec
trocardiography; FU, follow-up; HTx, heart transplantation; LVAD, left ventricular assist device; RV pacing, right ventricular pacing.
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custom MATLAB software (MathWorks Inc., Natick, Massachusetts) was 
used to convert the 12-lead ECG into three orthogonal VCG leads (X-, 
Y-, and Z-) using the Kors conversion matrix.9,14 The beginning and end 
of the T-wave and QRS complex were determined manually using the 
superimposed X, Y, and Z leads of the VCG. Thus, the area of the loops 
was analysed from the VCG. The T-wave area was calculated as the ‘three- 
dimensional’ areas between the curve and the baseline in the X, Y, and Z 
direction by using the following formula: (T2

area,x + T2
area,y + T2

area,z)
1/2 

(Figure 2).9,11 QRS area was calculated similarly as the sum of the area under 
the QRS complex in the calculated VCG X, Y, and Z lead [QRS area =  
(QRSarea,x

2 + QRSarea,y
2 + QRSarea,z

2)1/2].

Study outcomes
Echocardiographic outcome was the reduction in LV end-systolic volume 
(LVESV) determined by echocardiography between 3 and 12 months after 
implantation. Left ventricular ejection fraction and dimensions were prefer
ably calculated by Simpsons modified biplane method. Echocardiographic re
sponse was defined as LVESV reduction ≥ 15%. If follow-up was not 
performed in the implantation centre, data were considered missing.

Clinical outcome was defined as the combination of all-cause mortality, 
heart transplantation (HTx), and LV assist device (LVAD) implantation. 
Data were obtained from hospital records linked to municipal registries 
for mortality data.

Statistical analysis
The statistical analysis was performed using IBM SPSS statistics software 
version 28 (SPSS Inc.). Continuous and discrete variables are presented 
as mean ± SD and counts (percentages), respectively. Dichotomous vari
ables were compared using Pearson’s χ2 test. Continuous variables were 
compared using a Student’s t-test. Stratification of T-wave area subgroups 
for presentation purposes and initial analyses was based on optimal binning 
with echocardiographic response as the determinant. Furthermore, the 
stratification of QRS area subgroups was based on optimal cut-off values 
found in binning analyses in previous studies6,7 using the same study popu
lation. Lastly, the study population was stratified according to the combin
ation of T-wave area and QRS area, into four subgroups based on similar 
cut-offs. Kaplan–Meier survival analyses and cumulative hazard analyses 
were used when appropriate to evaluate the association between T-wave 
area and the clinical outcome. The log-rank test was used to determine 
the difference in survival probabilities between groups. Comparison of con
tinuous echocardiographic (secondary) outcomes was performed using a 
one-way analysis of variance. Follow-up paired comparisons were made 

using the Tukey test. Cox and logistic regression analyses were used to as
sess univariable- and multivariable-adjusted effects of T-wave area on the 
association with the clinical and echocardiographic outcomes. Hazard ratio 
(HR) and odds ratio (OR) were reported, respectively. Multivariable regres
sion analyses included covariates known to be associated with outcomes 
(clinical and echocardiographic) to CRT (including demographic, clinical, 
echocardiographic, device-type, and ECG parameters). QRS area was 
added to the model in a separate analysis to evaluate the additive value of 
T-wave area, next to QRS area. A two-sided P-value of <0.05 was consid
ered statistically significant.

Results
Patient characteristics
The population represented a typical CRT population with ischaemic 
HF aetiology that was present in 49% of the patients and most of 
them were in New York Heart Association (NYHA) functional class 
II or III (93%). Mean QRS duration was 162 ± 19 ms and LBBB morph
ology was present in 80% of patients. The baseline characteristics of the 
patients are shown in Table 1.

Based on optimal binning with echocardiographic response as the 
determinant, the population was divided according to the optimal cut- 
off value of the baseline T-wave area before CRT implantation, resulting 
in a group of patients with a T-wave area ≥ 66 μVs (high T-wave area 
subgroup, n = 794) and a group of patients with a T-wave area <  
66 μVs (low T-wave area subgroup, n = 561).

Patients in the high T-wave area subgroup showed a significantly low
er rate of ischaemic HF aetiology (43% vs. 57%, P < 0.001), history of 
atrial fibrillation (11% vs. 18%, P < 0.001), and diabetes mellitus (22% 
vs. 29%, P = 0.006). Baseline LVESV (174 ± 81 mL vs. 159 ± 74 mL, 
P = 0.03), QRS duration (168 ± 19 ms vs. 155 ± 16 ms, P = 0.005), 
and the presence of LBBB morphology (88% vs. 69%, P < 0.001) 
were significantly higher in patients with a high T-wave area (Table 1).

Clinical outcome
Data on the clinical outcome, the combination of all-cause mortality, 
HTx, and LVAD implantation, were available for 1354 patients 
(Figure 1). In total, 425 patients (31%) reached the clinical outcome 
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Figure 2 Transformation of ECG to VCG and calculation of baseline T-wave area. Twelve-lead ECGs are mathematically converted into VCGs with 
the three orthogonal X, Y, and Z leads using the Kors matrix. The X, Y, and Z leads of a patient before CRT are shown. T-wave area is then calculated 
from these three orthogonal leads using the formula presented.
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with a mean follow-up time of 3.7 ± 2.9 years. The clinical outcome oc
curred significantly less in patients with a high T-wave area than in those 
with a low T-wave area [27% vs. 37%, HR 0.66 (0.54–0.81), P < 0.001). 
The Kaplan–Meier estimates of event-free survival in patient divided 
into subgroups based on baseline T-wave area are shown in Figure 3.

Echocardiographic response
Baseline and follow-up LVESV measurements were available in 852 pa
tients (63%). The mean time between implantation and echo was 6.6 ±  
2.4 months. The mean reduction in LVESV for all patients was 19 ±  
31%. Echocardiographic response to CRT, defined as LVESV reduc
tion ≥ 15%, was seen in 487 (57%) of the 852 patients. Significantly 
more patients with high T-wave area were classified as echocardio
graphic responders than patients with low T-wave area (68% vs. 
40%, respectively; OR: 3.1; confidence interval: 2.3–4.1, P < 0.001). In 
addition, mean LVESV reduction was significantly higher in patients 
with high T-wave area than in the low T-wave area subgroup (26 ±  
30% vs. 9 ± 31%, P < 0.001, Figure 4).

Regression analysis in relation to the 
clinical outcome and echocardiographic 
response
Multivariable regression analysis including ECG and clinical parameters 
showed that male sex, ischaemic HF aetiology, creatinine clearance, 
NYHA functional class, LVESV, and baseline T-wave area were asso
ciated with clinical outcome (Table 2). For the echocardiographic re
sponse, male sex, ischaemic HF aetiology, LBBB morphology, and 
T-wave area were the predictors (Table 2). Baseline T-wave area 
showed the strongest association with both the clinical outcome [HR 
0.46 (0.31–0.69), P < 0.001] and echocardiographic response [OR: 
3.1 (2.02–4.76), P < 0.001] (Table 2).

T-wave area and QRS area
In accordance with previous studies, subgroups with baseline QRS area  
< 109 μVs6 showed a significant association with the clinical outcome. 
The risk of events was significantly lower in patients with high QRS area 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics and P-values for statistical difference between baseline T-wave area groups

All patients  
(n = 1370)

T-wave area  
(μVs) ≥ 66 (n = 794)

T-wave area  
(μVs) < 66 (n = 561)

P-value

Mean age (years) 67 ± 11 66 ± 11 67 ± 10 0.34

Women (%) 30 30 29 0.51

BMI, m/kg2 27 ± 5 26 ± 5 28 ± 5 0.30

Ischaemic CMP (%) 49 43 57 <0.001

Atrial fibrillation (%) 14 11 18 <0.001

Diabetes Mellitus (%) 25 22 29 0.006

Hypertension (%) 42 43 39 0.16

LVEF (%) 25 ± 9 24 ± 9 26 ± 9 0.77

LVEDV (mL) 220 ± 89 225 ± 92 211 ± 84 0.07

LVESV (mL) 168 ± 78 174 ± 81 159 ± 74 0.03

NYHA I (%) 2 3 2 0.03

NYHA II (%) 39 41 38

NYHA III (%) 54 51 56

NYHA IV (%) 5 5 4

NT proBNP (pmol/L) 342 ± 610 363 ± 630 315 ± 583 0.26

CreatClear, mL/min 71 ± 32 72 ± 33 69 ± 31 0.13

Hb, mmol/L 8.5 ± 3 8.6 ± 3.5 8.4 ± 1 0.34

Beta-blocker (%) 82 82 82 0.94

ACEi/ARB (%) 90 90 91 0.57

MRA (%) 45 41 51 0.002

Upgrade (%) 14 12 17 0.007

CRT-D (%) 93 93 93 0.94

Appropriate lead positiona (%) 91 91 90 0.33

QRS duration (ms) 162 ± 19 168 ± 19 155 ± 16 0.005

LBBB morphologyb (%) 80 88 69 <0.001

T-wave area (μVs) 81 ± 41 106 ± 36 46 ± 13 <0.001

P-value was calculated using χ2 test. P-value below the alpha of 0.05 represents a statistical significant result. 
ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; CMP, cardiomyopathy; CreatClear, creatinine clearance; CRT-D, cardiac 
resynchronization therapy with defibrillation function; Hb, haemoglobine; LBBB, left bundle branch block; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection 
fraction; LVESV, left ventricular end-systolic volume; MRA, mineral corticoid receptor antagonist; NT proBNP, N-terminal prohormone of brain natriuretic peptide; NYHA, 
New York Heart Association. 
aLateral or posterolateral lead positioning 
bAccording to ESC guidelines.
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as compared with low baseline QRS area [HR 0.46 (0.38–0.56), P <  
0.001]. Furthermore, echocardiographic response to CRT occurred 
significantly more often in patients with high QRS area than low QRS 
area [OR 3.8 (2.85–0.56), P < 0.001]. Interestingly, a significant correl
ation was found between T-wave area and QRS area (P < 0.001, 
r = 0.783) (Figure 5).

When the patients were divided into four groups based on T-wave 
area (≥66 μVs vs. <66 μVs) and QRS area (≥109 μVs vs. <109 μVs), 
LVESV reduction was larger in patients with QRS area ≥ 109 μVs and 
T-wave area ≥ 66 μVs as compared with the other groups (P <  
0.001) (Figure 6). Event-free survival rate was higher in patients with 

both QRS area ≥ 109 μVs and T-wave area ≥ 66 μVs [n = 616, HR 
0.47 (0.38–0.58), P < 0.001], and patients with QRS area ≥ 109 μVs 
and T-wave area < 66 μVs [n = 100, HR 0.35 (0.21–0.56), P < 0.001], 
compared with the other two subgroups (Figure 7).

The addition of QRS area to the multivariable regression model 
showed that QRS area was associated with both the clinical outcome 
[HR 0.55 (0.33–0.93), P = 0.026] and the echocardiographic response 
[OR 2.2 (1.33–3.76), P = 0.002]. The association between the T-wave 
area and the echocardiographic response remained significant 
[OR 2.0 (1.20–3.36), P = 0.008] while the association with the clinical 
outcome did not persist [HR 0.68 (0.40–1.14), P = 0.143].
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left ventricular end-systolic volume.
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Discussion
This large, multi-centre retrospective cohort study shows that base
line T-wave area is significantly associated with both the clinical and 
echocardiographic outcomes to CRT. This association is independ
ent from known demographic, clinical, and ECG baseline determi
nants in CRT response. Even though T-wave area is significantly 
correlated to QRS area at baseline, it remains independently asso
ciated with echocardiographic response; it, however, does not with 
clinical outcome.

Association of T-wave area with clinical 
and echocardiographic outcome to cardiac 
resynchronization therapy
Although there are many large studies examining depolarization-related 
ECG changes with CRT, data on repolarization parameters in CRT are 
scarce. Increased collagen content, loss of myofibrils, and gap junctional 
remodelling, which causes abnormal ventricular activation and electrical 
dyssynchrony, can also alter the repolarization pattern in patients with 
HF.15–17 Disturbances in ventricular repolarization can be evaluated by 
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Table 2 Uni- and multivariable regression analyses for baseline T-wave area, ECG, and clinical parameters in relation to clinical outcome and 
echocardiographic response

Univariable regression Mulitvariable regression

Clinical outcome (all-cause mortality, heart transplantation, LVAD)

Variable HR (95% CI) P HR (95% CI) P

Male sex 1.81 (1.43–2.28) <0.001 1.98 (1.27–3.10) 0.003

Age 1.02 (1.01–1.03) <0.001 1.01 (0.98–1.03) 0.564

CRT-D 0.87 (0.59–1.29) 0.491

Ischaemic CMP 1.53 (1.26–1.85) <0.001 0.63 (0.42–0.92) 0.019

CreatClear 0.98 (0.98–0.99) <0.001 0.98 (0.97–0.99) <0.001

Beta-blocker 0.72 (0.57–0.90) 0.004 1.05 (0.66–1.68) 0.832

MRA 1.37 (1.06–1.77) 0.017 1.13 (0.79–1.61) 0.498

NYHA 1.89 (1.58–2.25) <0.001 1.56 (1.15–2.13) 0.005

LVESV 1.00 (1.00–1.01) <0.001 1.00 (1.00–1.01) <0.001

Atrial fibrillation 1.72 (1.36–2.19) <0.001 1.48 (1.00–2.28) 0.075

LBBB morphologya 0.57 (0.46–0.71) <0.001 1.15 (0.75–1.77) 0.520

QRS duration ≥ 150 ms 0.77 (0.63–0.95) 0.015 0.72 (0.47–1.10) 0.119

T-wave area (μVs) 0.64 (0.53–0.78) <0.001 0.46 (0.31–0.69) <0.001

Echocardiographic response (ΔLVESV ≥15%)

Variable OR (95% CI) P OR (95% CI) OR (95% CI)

Male sex 0.56 (0.41–0.75) <0.001 0.61 (0.38–0.96) 0.033

Age 0.99 (0.98–1.00) <0.092

CRT-D 0.54 (0.30–0.97) 0.041 0.53 (0.25–1.12) 0.095

Ischaemic CMP 0.50 (0.38–0.66) <0.001 0.59 (0.39–0.90) 0.013

Diabetes Mellitus 0.90 (0.65–1.24) 0.529

Beta-blocker 1.03 (0.70–1.51) 0.886

ACEi/ARB 1.14 (0.70–1.84) 0.607

MRA 0.67 (0.47–0.95) 0.024 0.77 (0.51–1.15) 0.199

NYHA 0.79 (0.62–0.99) 0.044 0.77 (0.56–1.06) 0.110

LVESV 1.00 (0.99–1.00) 0.569

Atrial fibrillation 0.51 (0.34–0.76) <0.001 0.68 (0.38–1.21) 0.194

LBBB morphologya 2.96 (2.05–4.29) <0.001 2.34 (1.37–4.00) 0.002

QRS duration ≥ 150 ms 1.91 (1.39–2.61) <0.001 1.34 (0.83–2.18) 0.225

T-wave area (μVs) 3.15 (2.37–4.20) <0.001 3.10 (2.02–4.76) <0.001

P-value below the alpha of 0.05 represent a statistical significant result. 
CI, confidence interval; CMP, cardiomyopathy; CreatClear, creatinine clearance; CRT-D, cardiac resynchronization therapy with defibrillation function; ECG, electrocardiography; HR, 
hazard ratio; LBBB, left bundle branch block; LVESV, left ventricular end-systolic volume; MRA, mineral corticoid receptor antagonist; NYHA, New York Heart Association; OR, odds 
ratio. 
aAccording to ESC guidelines.
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performing T-wave morphology analysis on 12-lead ECG.18 Some para
meters derived from T-wave morphology analysis have been shown to 
be associated with adverse outcomes in patients with myocardial infarc
tion and HF.19,20 While there are certain definitions for QRS morph
ology and duration, there are no clear criteria for T-wave morphology 
and duration. In many studies, T-wave properties were evaluated by 
combining them with other ECG parameters or determining the 
changes in duration, amplitude, and morphology from beat to beat or 
in a certain time interval.21–23 In a study, biventricular pacing has been 
shown to reduce T-wave alternans in tandem with reduced T-wave 
amplitude compared with right ventricular and LV pacing.24 Assessment 
of these parameters may be hard to implement in clinical practice. In 
each ECG lead, not only the T-waves follow the direction of the wide 

QRS complex, but also the whole T-wave three-dimensional vector 
aligns with the wide QRS vector when assessed using VCG.25–27 There
fore, it may be more appropriate to choose the VCG method to assess 
repolarization in this group of patients. T-wave area, which can be calcu
lated quantitatively from the VCG, may provide important information 
about ventricular repolarization. Since T-wave area is a product of 
T-wave amplitude and T-wave duration, it can be assumed that a large 
T-wave amplitude and duration would also result in a larger T-wave 
area. However, little is known about its relation to clinical outcomes 
and reverse remodelling induced by CRT. In the study by Engels 
et al.,9 the relation between echocardiographic response at the sixth 
month and baseline ECG parameters was investigated in a medium-sized 
study of 244 CRT patients. Mean T-wave area was 84 ± 45 μVs and the 
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Figure 5 Scatter plot of the correlation between T-wave area and QRS area.
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Figure 6 Echocardiographic reduction in LVESV and response rate according to QRS and T-wave area. Echocardiographic LVESV reduction in per
centage at follow-up echocardiography in patient groups stratified by QRS area of < or ≥109 μVs and T-wave area of < or ≥66 μVs. Echocardiographic 
response was defined as ≥15% reduction of LVESV. LVESV, left ventricular end-systolic volume.
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increase in LVEF was larger in LBBB patients with T-wave area above the 
median value. Also, they found that a larger baseline T-wave area was 
associated with LVEF increase following CRT in patients with LBBB.9

Subsequently, the same investigators examined the relationship be
tween baseline T-wave area and clinical outcomes in 335 CRT recipi
ents.11 Patients reaching the primary composite endpoint of HF 
hospitalization, HTx, LVAD implantation, or death had a significantly 
smaller T-wave area (74 ± 45 μVs) compared with patients not reaching 
the primary endpoint (88 ± 47 μVs). They evaluated the patients by 
grouping them according to QRS morphology and T-wave area below 
or above the median value. During a mean 2.4-year follow-up period, 
the primary composite endpoint was significantly lower in the patient 
subgroup with a large T-wave area and LBBB than in patients with 
LBBB and a small T-wave area or non-LBBB patients with a small or large 
T-wave area.11 These findings are in line with the results from the pre
sent study. Considering the mean 3.7-year follow-up results of our 
study, containing 1354 patients, it was seen that primary outcomes oc
curred significantly less and echocardiographic response was larger in 
those with T-wave area ≥ 66 μVs. Additionally, the results of the pre
sent study show that T-wave area is an independent predictor of both 
clinical and echocardiographic outcomes. This study strengthened the 
results of previous studies by showing that baseline T-wave area is asso
ciated with both clinical and echocardiographic outcomes in CRT pa
tients, with a large number of patients from different hospitals and a 
long follow-up duration.

Combined evaluation of T-wave area and 
QRS area in response to cardiac 
resynchronization therapy
In recent studies, the QRS area appears to be a superior marker in the 
prediction of response to CRT, compared with QRS morphology and 

duration.6,7,28 As QRS area, representing the dispersion of the electrical 
depolarisation of the ventricles, and T-wave area, representing the dis
persion of the repolarisation of the ventricles, represent different 
phases of the electrical cycle, these measurement might be comple
mentary to each other in their association with outcomes in CRT pa
tients. There are very few studies evaluating the QRS area and 
T-wave area together in CRT response. In our study, a total of 276 pa
tients had baseline QRS area and T-wave area in the reverse direction, 
including 100 patients with high QRS area + low T-wave area and 176 
patients with low QRS area + high T-wave area. When patients were 
stratified according to baseline QRS area and T-wave area, event-free 
survival was found to be significantly better in patient groups with base
line high QRS area + low T-wave area and high QRS area + high T-wave 
area, compared with the low QRS area + high T-wave area and low 
QRS area + low T-wave area, but no significant differentiation occurred 
within a QRS area of ≥109 and <109 subgroups by adding T-wave area 
cut-offs. Conversely, there was a significant difference between patient 
with baseline T-wave area of < and ≥66 within the QRS area of ≥109 
group with respect to echocardiographic outcomes. T-wave area con
tinued to be an independent predictor of echocardiographic response, 
but no longer was an independent predictor of clinical outcomes when 
QRS area was added to the model.

The study by Engels et al.9 showed that T-wave area is a predictor of 
echocardiographic response to CRT, and even better than QRS 
complex-related parameters, including QRS area, in LBBB patients. 
On the other hand, T-wave area had no predictive value in the 
non-LBBB subgroup and the relationship to clinical outcomes was 
not evaluated. Similar to our study, in the study of Vegh et al.11 inves
tigating clinical response to CRT, they showed that T-wave area was 
an independent predictor of clinical response. However, QRS area 
was not included in this analysis. Also, the rate of patients with ischae
mic HF, atrial fibrillation, and NYHA functional class III and IV was high
er, while the rate of patients with LBBB was lower in their study as 
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Figure 7 Kaplan–Meier estimates of survival free of the clinical outcome (combination of all-cause mortality, cardiac transplantation, and LVAD im
plantation) according to QRS and T-wave area. Patients are stratified by QRS area of < or ≥109 μVs and T-wave area of < or ≥66 μVs. HTX, heart 
transplantation; LVAD, left ventricular assist device.
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compared with our study. Unlike these studies, outcomes were exam
ined by combining T-wave area with QRS area rather than QRS morph
ology in our study. Due to the different definitions of LBBB 
morphology, its use in clinical practice is not straightforward.12,29,30

Also, the LBBB classification by clinical judgement may show significant 
variability.5 From this perspective, VCG QRS area is a quantitative 
measurement and is more objective.

The results of our study show that patients with a high baseline 
T-wave area will benefit more from CRT if they also have a large 
QRS area. This may be explained by factors that are related to the vari
ability in the relation between QRS and T-wave area. Further 
large-scale, prospective studies are needed to clarify the value of 
both T-wave and QRS areas in the prediction of response, before wide
spread adoption of these markers could improve patient selection in 
CRT.

Limitations
Due to the retrospective design of our study, comparison with a non- 
treated group cannot be made. Therefore, it is not possible to allocate 
the difference in clinical outcomes to the effect of CRT. However, echo
cardiographic response is assessed using each patient as his/her own 
control and hence points to a clear association with the efficacy of resyn
chronization therapy and not a baseline difference in clinical prognosis, 
apart from amenability to CRT. In addition, due to the weak association 
between T-wave area and clinical outcome to get a binning value, strati
fication of T-wave area subgroups was based on its association with 
echocardiographic response. Moreover, response to CRT is affected 
by the patient's ECG and clinical characteristics, as well as the timing 
of the procedure and whether or not a defibrillator is present.31,32

Factors that have previously been associated with response to CRT, 
like time from first signs of HF to implantation, multipoint pacing, elec
tromechanical coupling, and the overall improved outcomes in CRT 
over time, could not all be accounted for in the present analysis.33–36

It has been suggested that female hearts may show greater LV dyssyn
chrony than male hearts with the same QRS duration due to their smal
ler size.37–39 Other limitations of our study are that sex-related 
differences in outcomes were not evaluated and normalization of 
T-wave area for heart size was not performed. The retrospective nature 
limits the collection of these potentially confounding characteristics.

Conclusions
This large population-based study demonstrates that baseline T-wave 
area has a significant association with both clinical and echocardiograph
ic outcomes to CRT independent from baseline ECG determinants. 
Even though T-wave area remains associated with echocardiographic 
outcomes independent from QRS area, it does not with clinical out
comes. T-wave area, which is a simple and objective measurement, 
may contribute to patient selection for CRT, in addition to known 
parameters.
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