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A B S T R A C T   

Background: Non-invasive diabetes risk models are a cost-effective tool in large-scale population screening to 
identify those who need confirmation tests, especially in resource-limited settings. 
Aims: This study aimed to evaluate the ability of six non-invasive risk models (Cambridge, FINDRISC, Kuwaiti, 
Omani, Rotterdam, and SUNSET model) to identify screen-detected diabetes (defined by HbA1c) among Gha-
naian migrants and non-migrants. 
Study design: A multicentered cross-sectional study. 
Methods: This analysis included 4843 Ghanaian migrants and non-migrants from the Research on Obesity and 
Diabetes among African Migrants (RODAM) Study. Model performance was assessed using the area under the 
receiver operating characteristic curves (AUC), Hosmer-Lemeshow statistics, and calibration plots. 
Results: All six models had acceptable discrimination (0.70 ≤ AUC <0.80) for screen-detected diabetes in the 
overall/combined population. Model performance did not significantly differ except for the Cambridge model, 
which outperformed Rotterdam and Omani models. Calibration was poor, with a consistent trend toward risk 
overestimation for screen-detected diabetes, but this was substantially attenuated by recalibration through 
adjustment of the original model intercept. 
Conclusion: Though acceptable discrimination was observed, the original models were poorly calibrated among 
populations of African ancestry. Recalibration of these models among populations of African ancestry is needed 
before use.  
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1. Introduction 

There is a compelling argument for frequent screening among people 
who are at high risk of getting diabetes [1]. Early-stage detection would 
enable appropriate interventions that can slow the progression of dia-
betes, and limit related complications, disability, and mortality [2]. This 
has led to a booming field in clinical research where mathematical 
models, also known as prediction models, prediction equations, or risk 
scores, used to assess the probability of an individual having (diagnostic 
prediction scores) or developing (prognostic prediction scores) diabetes 
[3]. Depending on the scope of predictors included, diabetes risk scores 
may be distinguished as invasive and non-invasive risk scores. Invasive 
risk scores include laboratory-acquired biomarkers as predictors while 
non-invasive risk scores do not [4,5]. 

Due to differences in genetic factors, environment, and body 
composition, the varying performance of several risk models has been 
reported when evaluated in different settings [6–9]. Risk scores are 
evaluated on their discriminative power to distinguish people with the 
outcome of interest from those without [10], and their calibration 
property, which is the model’s ability to accurately estimate the prob-
ability of the event under consideration [11]. Diagnosis of diabetes by 
invasive biochemical laboratory testing has been found to perform 
better than noninvasive models [9]. However, due to the need for 
large-scale screening in high-risk populations especially in 
resource-poor settings, the use of noninvasive risk models is more 
cost-effective than invasive risk models [5,11]. 

Available diabetes risk scores mostly originate from non-African 
populations and have rarely been validated in people of African 
ancestry [12,13]. The few validation studies conducted have reported 
varying predictive performance for different noninvasive diabetes 
models in sub-Saharan African populations [9,14]. It is therefore not 
clear which diabetes risk score may be most suitable for diagnostic 
prediction of diabetes among people of African ancestry both within 
Africa and in the diaspora. This work is therefore aimed at evaluating 
the predictive performance of six noninvasive diabetes risk scores 
(Cambridge, FINDRISC Original, Kuwaiti, Omani, Rotterdam, and 
SUNSET model) to detect new cases of diabetes and prediabetes among 
Ghanaian migrants and non-migrants. 

2. Methods 

2.1. Study population and design of the study 

Data from the Research on Obesity and Diabetes among African 
Migrants (the RODAM study) was used as the basis for validation of 
models. The detailed rationale and design of the RODAM study are 
published elsewhere [15]. The current analysis includes 4843 partici-
pants with an average age of 45.5 years and between 25 and 70 years, 
who have no previous diagnosis of diabetes and were not on treatment 
for diabetes (Figure A1 Appendix). 

2.2. Ethical clearance 

Ethical clearance was obtained from relevant ethics committees at 
each of the study sites: Ghana (Kwame Nkrumah University of Science & 
Technology: CHRPE/AP/200/12), Netherlands (Amsterdam University 
Medical Center: W12-062#12.17.0086), Germany (Charité University 
Berlin: EA1/307/12) and UK (London School of Hygiene & Tropical 
Medicine: 6208). The aim of the study and the use of participant data for 
the purposes of understanding obesity and diabetes related outcomes 
was explained to each participant before written consent was taken. 
Participant confidentiality was assured during data collection, storage 
and analysis. 

2.3. Model selection 

Diabetes prediction models included in this study were prevalence 
models with non-invasive predictors that have been previously validated 
in sub-Saharan African ancestry populations [14], with predictor vari-
ables available in the RODAM study database. Six non-invasive preva-
lent diabetes models were selected for this study. These include the 
Cambridge Risk Score [16], FINDRISC Original [1], Kuwaiti diabetes 
risk score [17], Omani diabetes risk score [18], Rotterdam Predictive 
Model [19], and the SUNSET Risk Score [20]. 

Details of the method employed including, criteria for inclusion in 
the current study, physical measurement, used outcome variables and 
cut-offs, statistical methods for predictive performance measurement 
and recalibration are place in the supplementary sheet due to manu-
script word limits. 

3. Results 

3.1. Participants’ characteristics and prevalent screen-detected diabetes 

Of the 4843 Ghanaian participants selected for this analysis, 57.2% 
were residents in Europe and 42.8% were residents in Ghana. The 
prevalence of screen-detected diabetes was 4.6% in the overall popu-
lation, with an additional 30% classified as prediabetes. A higher 
prevalence of screen-detected diabetes was found among participants 
resident in Europe with 5.5% screen-detected diabetes compared to 
3.4% of those in Ghana (Table 1). 

3.2. Prediction of prevalent screen-detected diabetes 

All six diabetes risk models assessed produced acceptable discrimi-
nation (AUC = 0.70 to 0.75) for the detection of screen-detected dia-
betes in the total study population. The Cambridge risk model showed 
the highest discrimination with an AUC of 0.75 (95% CI, 0.73-0.76), 
with the Rotterdam risk score having the lowest AUC of 0.70 (95% CI 
0.69-0.72). The SUNSET risk model was the best performing model for 
screen-detected diabetes among Ghanaians resident in Ghana (AUC =
0.78) but the worst performing model among Ghanaians resident in 

Table 1 
Socio-demographic characteristics and diabetes status of RODAM Study 
participants.  

Parameter Total Europe Ghana 

Total population 4843(100) 2768(57.2) 2075(42.8) 
Age (yrs)a 45.5 ± 11.7 45.7 ± 10.4 45.7 ± 12.2 
Gender 
Male 1823(37.6) 1160(41.9) 663(32.0) 
Female 3020(62.4) 1608(58.1) 1412(68.0) 
Participant Occupation 
Upper non-manual 393(8.1) 265(9.6) 128(6.2) 
Lower non-manual 881(18.2) 481(17.4) 400(19.3) 
Skilled manual 409(8.4) 126(4.6) 283(13.6) 
Unskilled manual 1551(32.0) 1039(37.5) 512(24.7) 
Farmer 544(11.2) 6(0.2) 538(25.9) 
Unknown 1065(22.0) 851(30.7) 214(10.3) 
Body Adiposity 
BMI (Kg/m2)a 28.0 ± 5.6 29.4 ± 5.0 24.9 ± 5.1 
WC (cm)b 92.1(90.7-93.2) 94.4(93.5-95.1) 84.6(83.4-85.5) 
Hypertension 2181(45.0) 1508(54.5) 673(32.4) 
Diabetes Statusc 

Normoglycemia 3170(65.5) 1473(53.2) 1697(81.8) 
Prediabetes 1452(30.0) 1144(41.3) 308(14.8) 
Screen-detected Diabetes 221(4.6) 151(5.5) 70(3.4) 

Data are presented as figures and corresponding percentages. 
a Age & BMI are presented as mean and standard deviation of the mean. 
b WC is presented as median and 95% confidence interval of the median. 
c Diabetes HbA1c ≥48 mmol/moL, prediabetes HbA1C ≥39 and < 48mmol/ 

moL and normoglycemia HbA1C <39 mmol/mol. 
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Europe (AUC = 0.70) (Table 2 and Figure A2). Among the population 
living in Ghana, model performance did not differ between urban and 
rural dwellers (Table A5). As seen in Supplementary Table A6, poor 
discrimination was observed for all models when fasting blood glucose 
was used to define the outcome variable. 

3.3. Prediction of prevalent prediabetes 

All the assessed diabetes risk equations had a modest to acceptable 
discrimination power for the detection of prediabetes, with the Rotter-
dam risk model showing the lowest AUC 0.64 (0.63-0.66) and the 
Cambridge risk model the highest 0.70 (0.69-0.71) in the overall sample 
(Table A3 and Figure A5, Appendix). 

3.4. Comparison of model performance 

The Rotterdam risk model was found to have been outperformed by 
all other risk scores assessed among Ghanaians living in Ghana. The 
FINDRISC and Cambridge diabetes risk models outperformed the Rot-
terdam diabetes risk model in the prediction of screen-detected diabetes 
irrespective of gender. The SUNSET exhibited superior discriminative 
power over the Omani and the Kuwaiti among Ghanaian residents in 
Ghana (Table 3). 

3.5. Model calibration and recalibration 

In general, we observed an overestimation of the risk of diabetes by 
the original models with no agreement between the expected risk and 
the observed risk (p<0.0001 for the Hosmer & Lemeshow statistic). 
Intercept adjustment substantially attenuated these differences 
(Table 4). The Kuwaiti and Cambridge models underestimated the risk at 
the lower deciles and overestimated the risk at the higher deciles after 
intercept adjustment and the reverse was observed for the Rotterdam 
and the SUNSET models. The Omani models produced an undulating 

pattern of both underestimation and overestimation. Both the original 
and the recalibrated Rotterdam models produced an intercept >0. All 
the original models of the remaining five models produced an intercept 
<0. This did not change after intercept adjustment for 4 out of the 5 
remaining models, except for the SUNSET model, which produced an 
intercept >0 after recalibration. Three models (Kuwaiti, Omani, and 
Cambridge) produced a slope <1. The other two models (Rotterdam and 
SUNSET) produced a slope >1. In general, both the original and reca-
librated models exhibited low Brier scores. The exception was observed 
for the original SUNSET model, which had a Brier score of 0.129. Eye-
balling of the calibration graphs revealed that the Omani model pro-
vided sufficient attenuation for satisfactory recalibration (Figures A3 
and A4, Appendix). The deciles of risk plots are shown in Figures A6 and 
A7 in Appendix. 

4. Discussion 

In general, the six selected non-invasive models assessed had 
acceptable discrimination for the detection of diabetes and modest-to- 
acceptable discrimination for prediabetes. Findings from the few vali-
dation studies of the selected diabetes models among populations of 
African ancestry are consistent with modest-to-acceptable discrimina-
tion [14,21]. The discrimination observed for the Cambridge model in 
the current study (AUC: 0.75) was higher than in two earlier reports [22, 
23] (AUC: 0.67, and C-statistic: 0.67 respectively). The Performance of 
the FINDRIC original model in the current study was found to be lower 
than what was earlier reported in Nigeria [24], similar to that reported 
in Kenya [21], but higher than that reported in Botswana [25]. With an 
AUC range of 0.70 to 0.73, the Kuwaiti, Omani, and, Rotterdam pre-
dictive models recorded higher discrimination ability in the RODAM 
study compared to those reported for the Bellville South study (AUC: 
0.64-0.68) [22], but lower discrimination ability compared to those 
recorded among African Surinamese (AUC: 0.78-0.81) and Ghanaians 
(AUC: 0.74-0.76) in the HELIUS study [26]. The lower performance of 

Table 2 
Predictive performance of diabetes risk score for screen-detected diabetes among the population of Ghanaians living in Europe and Ghanaians living in Ghana.  

Parameter Cambridge FINDRISC Kuwaiti Omani Rotterdam SUNSET 

All Individuals 
AUC 0.75(0.73-0.76) 0.74(0.72-0.75) 0.73(0.71-0.73) 0.72(0.71-0.73) 0.70(0.69-0.72) 0.73(0.72-0.75) 
Sensitivity 65.6% 66.1% 73.9% 59.6% 73.9% 69.7% 
Specificity 72.3% 68.0% 60.0% 74.4% 59.5% 69.9% 
Criterion >0.1776 >0.054 >0.0249 >0.1638 >0.0718 >0.3726 
p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Male Ghanaians 
AUC 0.76(0.74-0.78) 0.75(0.73-0.77) 0.73(0.71-0.75) 0.76(0.74-0.78) 0.71(0.69-0.74) 0.77(0.75-0.78) 
Sensitivity 76.1% 84.4% 50.0% 77.2% 75.0% 81.5% 
Specificity 69.1% 56.3% 85.9% 65.3% 61.1% 64.9% 
Criterion >0.1771 >0.014 >0.1082 >0.1171 >0.0718 >0.3243 
p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Female Ghanaians 
AUC 0.73(0.72-0.75) 0.73(0.71-0.75) 0.73(0.71-0.74) 0.70(0.68-0.71) 0.69(0.67-0.71) 0.72(0.71-0.74) 
Sensitivity 82.5% 66.4% 77.8% 46.8% 73.0% 73.8% 
Specificity 53.5% 72.4% 56.3% 82.6% 58.6% 64.8% 
Criterion >0.0839 >0.09 >0.0249 >0.2442 >0.0691 >0.3778 
p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Ghanaians Living in Ghana 
AUC 0.73(0.71-0.75) 0.73(0.71-0.75) 0.72(0.70-0.74) 0.71(0.69-0.73) 0.64(0.62-0.66) 0.78(0.76-0.79) 
Sensitivity 74.3% 62.0% 67.1% 72.9% 61.4% 64.3% 
Specificity 66.6% 73.9% 69.5% 63.4% 67.3% 80.0% 
Criterion >0.0839 0.0465 >0.0249 >0.1171 >0.0718 >0.3778 
p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Ghanaians Living in Europe 
AUC 0.74(0.72-0.76) 0.71(0.69-0.72) 0.72(0.70-0.74) 0.72(0.70-0.73) 0.72(0.71-0.74) 0.70(0.68-0.72) 
Sensitivity 64.2% 57.5% 62.8% 67.6% 62.8% 72.3% 
Specificity 73.5% 75.0% 73.5% 67.0% 71.1% 62.8% 
Criterion >0.2621 >0.096 >0.1081 >0.1638 >0.0824 >0.3726 
p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Data are presented as AUC (95% CI), AUC- Area under the curve. A score of 0.50 indicates no discrimination; 0.50<AUC<0.70 poor discrimination; 0.70≤AUC<0.80 
acceptable discrimination; 0.80≤AUC<0.90 excellent discrimination; 0.90≤AUC outstanding discrimination; and a score of 1.00 perfect discrimination. 
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these models in the current study compared to that of the HELIUS study 
may be explained by the inclusion of participants with known diabetes 
(prevalent diabetes) in the HELIUS analysis. 

The Rotterdam model was outperformed by all the other models 
among participants living in Ghana, but it produced acceptable pre-
dictions among participants living in Europe. Masconi, Matsha [22] also 
reported that the Rotterdam model had the lowest validation perfor-
mance range among the South African population. The SUNSET model 
was the best performing model for Ghanaians living in their home 
country, but the worst among Ghanaian migrants in Europe. Thus, the 
two models have exhibited inverse geographical inconsistencies among 
a homogeneous population. This could be explained by variations in the 
baseline risk profile across settings [27], such as higher obesity and 
hypertension rates among participants living in Europe than those living 
in Ghana [26]. However, such geographical variations in performance 
may also be attributed to the influence of migration and its impact on 
diabetes risk profile. Earlier findings from the RODAM study have shown 
the probability of developing diabetes is higher among Ghanaians living 
in Europe compared to rural Ghanaians with the same level of BMI [28]. 
A plausible explanation seems that Ghanaians in the home country may 
engage in more physical activity with a similar level of BMI compared to 
their peers living in Europe. Therefore, the interaction between captured 
and non-captured behavioural and biomedical risk factors in the models 
could account for these differences in performance [26]. Among the 
participants included in this study, 46.4% of Ghanaians living in Europe 
confirmed having tested for diabetes within the last two years to sam-
pling as compared to 5% of testing among those in Ghana. Since the 
design excluded participants with known diabetes, a higher degree of 
testing standards in the European setting may have yielded both dif-
ferences in screen-detected diabetes prevalence and inclusion rates. 
However, with a higher prevalence of screen-detected diabetes among 
Ghanaians living in Europe (5.5%) compared to those in the home 
country (3.4%), the assumption that a higher frequency of previous 
diabetes screening in the population living in Europe would affect the 

Table 3 
Differences in AUC among the six diabetes risk scores in the prediction of screen-detected diabetes among Ghanaian living in Europe and Ghana.  

Parameters Cambridge FINDRISC Kuwaiti Omani Rotterdam SUNSET 

All Individuals 
AUC 0.743 0.732 0.726 0.720 0.703 0.729 
FINDRISC 0.0103      
Kuwaiti 0.0179 0.0076     
Omani 0.025* 0.0146 0.0070    
Rotterdam 0.0421*** 0.0318 0.0242 0.0171   
SUNSET 0.0112 0.00084 0.0068 0.00138 0.0309  
Male Ghanaians 
AUC 0.762 0.766 0.734 0.763 0.714 0.765 
FINDRISC 0.0042      
Kuwaiti 0.0279 0.0321     
Omani 0.0012 0.0030 0.0291    
Rotterdam 0.0476* 0.0519* 0.0197 0.0488*   
SUNSET 0.0028 0.0015 0.0307 0.0016 0.0504  
Female Ghanaians 
AUC 0.731 0.741 0.727 0.698 0.691 0.722 
FINDRISC 0.0101      
Kuwaiti 0.0040 0.0141     
Omani 0.0332 0.0433* 0.0292    
Rotterdam 0.0405** 0.0506** 0.0365* 0.0073   
SUNSET 0.0092 0.0193 0.0052 0.0240 0.0313  
Ghanaians Living in Ghana 
AUC 0.734 0.760 0.722 0.711 0.643 0.777 
FINDRISC 0.0263      
Kuwaiti 0.0111 0.0373     
Omani 0.0228 0.0491 0.0117    
Rotterdam 0.0909*** 0.117** 0.0798* 0.0681*   
SUNSET 0.0431 0.0168 0.0542* 0.0659** 0.134***  
Ghanaians Living in Europe 
AUC 0.740 0.708 0.721 0.717 0.722 0.698 
FINDRISC 0.0327*      
Kuwaiti 0.0188 0.0139     
Omani 0.0234 0.0092 0.0046    
Rotterdam 0.0185 0.0142 0.0003 0.0049   
SUNSET 0.0424** 0.0097 0.0236 0.0189 0.0239  

Data are presented as AUC and difference in AUC. *p<0.05, **p<0.01, ***p< 0.001. 

Table 4 
Chi-Square from Hosmer and Lemeshow tests for the calibration of diabetes risk 
models for screen-detected diabetes before and after recalibration through 
intercept adjustment among Ghanaians residents in Ghana and Ghanaian 
Migrants.  

Parameter All Sex Location 

Female Male Europe Ghana 

Cambridge 
Original 915.4 496.1 437.9 308.5 157.5 
Recalibrated 156.5 26.7 32.1 17.4 28.1 
Kuwaiti 
Original 134.7 116.1 24 97.2 44.9 
Recalibrated 67.8 102.6 33.1 119.5 48.3 
Omani 
Original 300.1 236.5 74.4 193.5 111.4 
Recalibrated 33.4 30.7 26.9 25.5 21.1 
Rotterdam 
Original 87.2 42.1 53.2 44.7 46.3 
Recalibrated 34 18 31.3 29.5 13.8 
SUNSET 
Original 1902.5 1354.8 553.8 1163.7 740.6 
Recalibrated 28.6 41.6 33.1 44.6 32.5 

Values are Hosmer & Lemeshow Chi-square value obtain for calibration of the 
original model and after intercept adjustment of the model (recalibrated model). 
The bigger the value, the more deviation there is between the expected preva-
lence predicted by the model and the observed prevalence. At a 2 degree of 
freedom, the p-value for the Hosmer & Lemeshow test was <0.0001 for all chi- 
square values. 
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performance of models among Ghanaians in Europe seems implausible. 
Model composition, which includes the number of variables (parsi-

monious/extended) and type of variables (behavioural/anthropometric) 
may influence the performance of the model. For example, most studies 
suggest a higher predictive ability of diabetes by waist circumference 
(WC) than body mass index (BMI) [29,30]. Thus, a model using WC or 
both WC and BMI may be a better predictor of diabetes than a model 
using BMI only. Apart from the variables common to all the models, the 
Cambridge includes smoking and current steroid treatment, the FIN-
DRISC includes physical activity, fruit, and vegetable intake while the 
SUNSET includes ethnicity, resting heart rate, and family history of 
premature cardiovascular diseases. These variables may share/pick up 
different aspects of the underlying diabetes risk of these models and 
therefore have the potential of influencing the performance. However, 
the benefit of these additional variables in the extended models in the 
current study is not clear, since the difference in performance among the 
models with additional variables did not differ significantly from those 
without. 

Poor calibration performance by original models and the inability of 
model updating/improvement through intercept adjustment, to achieve 
total attenuation that was seen in the current study, corroborate with 
earlier studies [22,26]. The initial difference in prediction by the orig-
inal models could result from a true difference in the prevalence of the 
outcome in the development and validation populations or from a dif-
ference in the methods of outcome measurement between the develop-
ment and the validation study [22,26]. The persistence of non-optimal 
calibration after intercept adjustment has been attributed to the sensi-
tivity of the Hosmer and Lemeshow statistic to sample size, where small 
differences between estimated and observed risks can still produce a 
significant p-value in large sample size [11,26]. In general, low Brier 
scores were observed in the current study, lower compared to those 
reported by Masconi, Matsha [22]. However, a lower Brier score does 
not necessarily imply higher calibration [31]. 

The pattern of misprediction revealed that the Kuwaiti and the 
Cambridge models underestimated the probability of the low-risk group 
and overestimated the probability of the high-risk group, while the 
Omani model produced sufficient attenuation for a satisfactory cali-
bration based on visual inspection. A good model would be one that 
would be able to i. identify those at high risk who need confirmation 
testing, ii. identify those at low risk to be screened out since the 
confirmation test is invasive and comes at additional costs. Thus, the 
misclassification as seen with the Kuwaiti and the Cambridge models 
would not affect their use for first-line screening of diabetes, more so 
when a threshold is set for absolute risk requiring a further confirmation 
test (i.e. ≥ 32 points for Kuwaiti and >0.37 for Cambridge). Therefore, 
an overestimation beyond such values does not cause a change in the 
public health strategy [26]. The other two models (Rotterdam and 
SUNSET) underestimated the probability of the high-risk group and 
overestimated that of the low-risk group and therefore could not be 
desirable for the screening of diabetes among such a population of Af-
rican ancestry. Hence, the usage of the Rotterdam and SUNSET models 
would tend to subject people with low risk to a confirmation test and 
delay the diagnosis of those who have diabetes. 

4.1. Strengths and limitations 

The use of a large randomly selected homogeneous sub-Saharan 
African adult population living in Ghana and Europe with a wide age 
distribution and capturing a population at high risk through a random 
selection method limits potential selection bias a strength of this study. 
The finding of this study could therefore be potentially extrapolated to 
other sub-Saharan African ancestry migrants living in the western 
Europe and their counterparts living in West Africa. However, the 
extension of the current findings among people with African ancestry 
born in and living in high-income countries such as Europe and North 
America is uncertain, since the population of this study does not include 

significant numbers of second generation migrants. Another strength is 
that HbA1c was measured in one laboratory for samples from all sites. 
However, the use of HbA1c for the definition of screen-detected diabetes 
and prediabetes in an African population where there is a high preva-
lence of hemoglobinopathies and other conditions that may shorten the 
life of erythrocytes is a potential limitation due to misclassification 
arising as a result of underestimation [32,33]. Also, since there is limited 
overlap between the various available biochemical tests for diabetes, 
positive diabetes cases could remain undetected when using such a 
one-test definition, the false-negative cases could be present, which 
would lead to underestimation of the prevalence of diabetes and cali-
bration of the model. However, the recalibration of the models through 
intercept adjustment attenuates such an effect. Another limitation of this 
study is the fact that the FINDRISC model was originally designed for the 
detection of incident diabetes prediction and therefore its estimate does 
not reflect the likelihood of being a prevalent undiagnosed diabetes case. 
However, the FINDRISC model has been used over the years as both a 
prevalent and an incidence model, and therefore adding it to the current 
analysis is appropriate [14,22,34]. 

5. Conclusion 

Our findings suggest an acceptable discrimination ability of all six 
non-invasive risk screening models to detect diabetes and moderate 
discrimination to detect prediabetes among this population of African 
ancestry. Three out of the five models (Kuwaiti, Omani, and Cambridge) 
assessed for calibration were found to be useful in the estimation of the 
absolute risk after adjusting for the prevalence of screen-detected dia-
betes in the validation population. Further validation and recalibration 
of these models in non-migrant African and African migrant populations 
are needed before large-scale use is to be recommended. 
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