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Abstract: One of the most promising advancements in healthcare is the application of digital twin
technology, offering valuable applications in monitoring, diagnosis, and development of treatment
strategies tailored to individual patients. Furthermore, digital twins could also be helpful in finding
novel treatment targets and predicting the effects of drugs and other chemical substances in develop-
ment. In this review article, we consider digital twins as virtual counterparts of real human patients.
The primary aim of this narrative review is to give an in-depth look into the various data sources and
methodologies that contribute to the construction of digital twins across several healthcare domains.
Each data source, including blood glucose levels, heart MRI and CT scans, cardiac electrophysiology,
written reports, and multi-omics data, comes with different challenges regarding standardization,
integration, and interpretation. We showcase how various datasets and methods are used to over-
come these obstacles and generate a digital twin. While digital twin technology has seen significant
progress, there are still hurdles in the way to achieving a fully comprehensive patient digital twin.
Developments in non-invasive and high-throughput data collection, as well as advancements in
modeling and computational power will be crucial to improve digital twin systems. We discuss a
few critical developments in light of the current state of digital twin technology. Despite challenges,
digital twin research holds great promise for personalized patient care and has the potential to shape
the future of healthcare innovation.

Keywords: virtual twins; personalized medicine; precision medicine; digital twin methodology;
multi-modal data sources; AI; data integration

1. Introduction

Digital twin technologies have seen a rise in popularity in various industries, including
manufacturing, engineering, and rocketry, from where the term originated [1]. This rise
can be attributed to the developments in rapidly collecting, storing, and sharing data,
together with computers being able to apply complex models and algorithms in a short
amount of time [2]. In several fields of healthcare, such as precision medicine, clinical trials,
and public health, the application of digital twins has become more and more apparent
as they may serve as a tool to understand and simulate complex physiological processes.
Moreover, digital twins may also reduce the need for animal experimentation, which takes
an estimated 200 million animals per year [3], as it allows a direct translation of in vitro
measurements into what could be expected in vivo either in digital animal models or
humans [4].

General definitions of a digital twin have been given in the literature [5–9]. In this
narrative review, we work with the general definition of healthcare digital twins [10]
as virtual replicas of real human patients, through which clinicians can gain valuable
insights, optimize treatment strategies, and deliver personalized care [5,11,12]. For specific
healthcare domains, the operationalization of this definition depends very much on the
underlying methodology and data used to construct the digital twin. Though the general
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aim is expected to align with the definition above, a ‘cardiac’ digital twin (e.g., Section 2.2
below) differs considerably from a ‘drug response’ digital twin (e.g., Section 2.6 below) in
methodology, data types, and implementation. One of our goals is to take a deeper look
into the methodological aspects underlying digital twins across several healthcare domains
where this technology is being applied. By gaining an understanding of the methods and
data used, the potential value and important pitfalls of digital twins in future studies can
be more easily identified.

Healthcare digital twins require large amounts of data and often multiple data types.
These include measurements that can be made using a smartphone or -watch, like heart
rate, temperature, and location [13], and data that can otherwise be gathered at home, such
as blood pressure and blood oxygen saturation, but also medical imaging data recorded
during CT or MRI scans, electrophysiology, and various types of -omics data, which can be
collected through a wide range of techniques including sequencing, immunoprecipitation
and mass-spectrometry [14]. After generating the digital twin, a variety of methods can
be applied to make simulations and predictions. These range from fitting regression lines
to the data to designing deep neural networks [15] and can be used for many different
purposes. Apart from their clinical use, digital twin technologies may also be applied to
identify novel drug targets, simulate the effectiveness and safety of new treatments, or
predict patient traffic during a pandemic [5].

The aim of this narrative review is twofold. We aim to review the methodological
development of digital twin systems across several healthcare domains. Second, we aim to
identify the types of data required to construct the respective digital twins. Secondary to
these aims, we further discuss how to overcome the challenges introduced by handling
large amounts of data and standardization, integration, and interpretation of many different
types of data. The research questions we desire to answer are: (1) which data types and
sources are important for the development of healthcare digital twins? (2) What are the
prevailing methods and techniques employed in healthcare digital twin systems, and how
do they vary in their applications? (3) How can the challenges related to healthcare digital
twin methods and data be transformed into opportunities? Addressing these aims and
questions will be crucial to harnessing the full potential of digital twins, ensuring that this
promising idea can be integrated successfully into clinical practice.

2. Case Studies

Digital twins of complex systems require vast amounts of data to accurately represent
their physical counterparts. Different types of data can be gathered via different methods,
and integrated into one model, to simulate pathways, organs, or entire organisms. How-
ever, gathering all that data may be especially challenging in medical care, compared to
the original DT application in rocketry, for example. While a lot of environmental data
can be continuously captured using body-worn sensors like a smartphone or -watch, more
complicated and intrusive methods may be necessary to gain -omics or imaging infor-
mation [5]. We present several key case studies in different healthcare fields where we
review the data sources used and the methodology applied to construct digital twins. To
aid in quickly searching the relevant literature regarding digital twin methodology, an
annotated overview of the significant literature is presented in a searchable spreadsheet
as Supplementary Material. Together with this supplementary overview, the case studies
reviewed below provide an overview of the methodological cornerstones of digital twins
across different healthcare domains.

2.1. Artificial Pancreas

One of the first digital twin-like systems is the artificial pancreas. It consists of two
essential parts: a system capable of continuously measuring blood glucose levels, and a
device containing a syringe used for insulin infusion when needed. Blood glucose levels
used to be measured by having the user collect a drop of blood from their finger, but less
invasive methods have been developed during the late 20th century and beyond. Instead
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of measuring true blood glucose levels, these values could be inferred by monitoring the
glucose concentration in extracellular space. However, as the relation between the new
interstitial glucose data and blood glucose levels is not one-to-one, the devices had to be
calibrated with true blood glucose readings. Furthermore, even after successful calibration,
this method was prone to loss of sensitivity and random noise. Addressing these issues
is essential in order to be usable as a ’near-future’ digital twin: for example, if glucose
levels are predicted to be too high or too low in the near future, the system can generate
preventive alerts, prompting the patient to take appropriate actions, such as adjusting
insulin dosage or dietary choices.

To combat these issues, a collection of signal processing algorithms has been applied to
ensure accurate prediction of blood glucose levels based on minimally invasive, interstitial
readings [16]. The ‘smart continuous glucose monitoring sensor’ combines the existing glu-
cose monitoring sensor with several software modules designed to reduce noise, improve
accuracy, and predict future glucose concentration (Figure 1) [17].
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Figure 1. Schematic of the smart continuous glucose monitoring sensor which allows for subcuta-
neous glucose reading, signal processing, and future reading prediction to reduce measurement noise
and under- and overestimations of blood glucose values. It also contains a prediction module to
generate timelier alerts. Figure taken from [17].

Denoising is used to improve the subcutaneous glucose concentration readings from
the sensor by reducing the impact of noise in the data. To estimate the true interstitial blood
glucose concentration, the denoising algorithm uses a Bayesian interference algorithm that
takes into account general information on signal-to-noise ratios, as well as the data it has
collected previously from the specific individual, to determine which parts of the signal
are noise. The algorithm also does not require user intervention and is designed to be
adaptive to the signal-to-noise ratio of every individual user. Further, to combat under- and
overestimations of blood glucose levels based on subcutaneous glucose readings, the data
is enhanced using a least squares linear regression model. Briefly put, blood glucose mea-
surements are fit against blood glucose estimations made based on the interstitial readings
taken at the same time. Then, the regression parameters are used to enhance future data
collected by the subcutaneous sensor to more accurately estimate the corresponding blood
glucose values. This linear regression can be updated in real-time, and it takes into account
the influence of blood-to-interstitium glucose transport and its delay on the individual
user. The addition of these two data processing steps resulted in a greatly improved blood
glucose estimation accuracy, which is essential for devices using subcutaneous readings
(Figure 2). Lastly, the smart sensor is capable of predicting future glucose concentrations to
enable the device to generate timelier alerts. Glucose level prediction is achieved by reading
all the past data generated by the sensor and assigning every measurement a different
weight, based on an autoregressive model. The future values are subsequently calculated
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by multiplying each past data point by its weight in real-time, and a preventive alert can be
generated when the predicted value is either too low or too high [17].
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In the last few years, glucose monitors using these algorithms have been approved
for use by the FDA without the need for calibration by capillary blood readings. These
devices are capable of measuring patient data, applying data processing, and predicting
future values in real-time [16]. However, many more variables other than blood glucose
are needed to create a complex pancreas digital twin. In 1979, the rate of glucose pro-
cessing was described in a nonlinear function [18] and that model has evolved into one
describing a glucose–insulin network using many functions and parameters to take into
account the glucose kinetics, insulin kinetics, rate of glucose appearance, endogenous
glucose production, utilization, secretion and excretion [19]. Furthermore, models that
describe the effect of external influences like physical activity and the delays associated
with subcutaneous, rather than intravenous, insulin delivery were designed. These models
make it possible to test the effect of any meal or insulin injection, as well as any extreme
scenarios digitally, before use in clinical trials. Currently, an increasing number of variables
are being added to the artificial pancreas systems. Heart rate monitoring, motion sensing,
additional hormones, and glucagon have all been analyzed for their use in mitigating
hypoglycemia during physical exercise. Technical developments, like the prevalence of
smartphones capable of running algorithms and a wireless connection, may offer patients
better monitoring of their glucose levels using a device that is already integrated into daily
life as the controller [16].

2.2. Cardiac Digital Twins

In healthcare, generating digital twins to mimic a human organ has seen much popu-
larity in cardiovascular research. Multiple types of data are combined to create a cardiac
digital twin (CDT), which can be used to test patient-specific monitoring and treatment
strategies (Figure 3). The process of creating a CDT can be split into two distinct stages;
the anatomical and functional twinning stages. The anatomical twinning stage consists
of creating a very detailed 3D copy of the physical twin, based on CT or MRI scans of the
patient [20]. This cardiac 3D mesh is based on Universal Ventricular Coordinates. This
model essentially describes the location of specific cardiac regions such as the apex or
septum and can be automatically computed with relatively little input data. It requires an
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epicardial apex surface point, a left ventricular endocardial surface point, a right ventricular
septal surface point, and surface points of the ventricular base, to compute the ventricular
coordinates of the heart base, epicardium, left ventricular endocardium, and right ventricu-
lar endocardium and septum. The UVC algorithm is also capable of computing coordinates
for trabeculae and certain heart valve openings [21]. A similar approach can be used to
map Universal Torso Coordinates.
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anatomical meshes. A reference frame (X) is computed based on UVC and UTC. ECG waveforms
generated with a forward ECG model are compared to clinically measured 12-lead ECG data for
optimization of the model parameters contained in w(X). Figure taken from [20].

The input data is recorded during the MRI study of the patient. The 3D whole-heart
MRI scans are segmented automatically by a convolutional neural network, and corrected
manually. Automatic UVC computations are then run to create the cardiac mesh for the
specific heart [20].

The second stage in creating the CDT, functional twinning, covers the electrophysiol-
ogy of the heart. Four factors responsible for the ECG waveforms during activation and
repolarization were defined mathematically: depolarization caused by the His–Purkinje sys-
tem and distribution to the subendocardium, the conduction velocity within the ventricles,
spatially varying action potential duration, and the conductivity of the torso surround-
ing the heart. Electrophysical activity of the anatomical reference frame was simulated
using a fast-forward ECG model, and compared to clinical measurements of 12-lead ECGs
(Figure 4). These comparisons show that with this two-stage twinning method, cardiac
electrophysiology can be simulated automatically and in near real-time.
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2.3. Single-Cell Flux Analysis

Apart from organ-specific measurements like heart electrophysiology and blood glu-
cose levels, the vast amounts of data generated in omics research may also be used in
generating digital twins. In cancer research, single-cell digital twins based on metabolomics
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and fluxomics, the analysis of production and consumption of metabolites, have been
proposed as a tool to better discriminate between cancer phenotypes. The model used to
create the single-cell digital twin integrates single-cell RNA (scRNA) sequencing data and
extracellular metabolite fluxes to obtain a view of the single-cell metabolic phenotype at
any given time [22].

The single-cell Flux Balance Analysis (scFBA) model requires three types of input
(Figure 5). Firstly, it needs a template metabolic network, describing the different metabo-
lites, their biochemical reactions, and their consumption or secretion [22]. The complete
human metabolic network has been reconstructed by integrating pharmacogenomic associ-
ations, large-scale phenotypic data, and structural data for proteins and metabolites. The
metabolic fluxes in this network have been predicted by models that have also been fed data
from other omics analyses, describing the pathways that are expressed in any given cell
or tissue [23]. Secondly, the scFBA model is given an scRNA-seq dataset that contains the
normalized read count of each gene in each cell in the analysis. Lastly, extracellular fluxes
in the patients’ cell population are approximated from the measurement of metabolite
concentrations in the cell culture medium of the patient-derived organoid or xenograft,
for example.
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Figure 5. Schematic overview of the scFBA workflow. Single-cell RNA-seq and bulk RNA-seq are
performed on patient-derived organoids or xenografts. Extracellular metabolite exchange rates are
also measured. A template metabolic network is imported from a public database. The bulk RNA
and flux data are integrated to form a population model. Single-cell networks can be computed by
incorporating bulk constraints based on bulk data, and single-cell constraints based on the single-cell
RNA-seq data. Figure taken from [22].

The scFBA pipeline starts with pre-processing, by removing genes with zero read
count from the template metabolic network. Then, a population model is generated. This
model is created by integrating all the RNA data of all the available cells in the template
metabolite network. The resulting network corresponds to the scRNA of the average
cell in the sample and is copied to produce a population model consisting of replicas
of the single metabolic network. All the cells in the population now have the same set
of metabolites as the template network. Each single-cell network can be reconstructed
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by introducing cooperation reactions, which allow metabolite exchange among cells and
with the environment. These reactions are then linked to the scRNA data via logistically
expressed rules. The ‘AND’ operator is used to describe genes that encode for different
subunits of the same enzyme, while the ‘OR’ operator describes genes that encode for
isoforms of the same enzyme. These logical operators are then used to calculate the reaction
activity scores for each reaction. These scores represent the expression of the genes in
transcripts per kilobase million. For the reactions that are caused by genes that are linked
only through the AND operator, all the genes are necessary. This means that the reaction
activity score can be defined as the expression of the least-expressed gene that is necessary
for that reaction to occur. If the genes involved in the reaction are only linked through the
OR operator, the activity score is calculated as the sum of the expression values.

After the population model and the reaction activity scores for each cell are computed,
bulk and single-cell constraints are imposed. These represent boundaries on the metabolite
exchanges with the environment and within the cells based on their reaction activity scores,
respectively. The model, now describing the metabolite exchange between single cells and
the environment, constrained by the reaction activity scores for each cell, as well as by
boundaries set through measurements of the entire sample, can be used to simulate the
effect of single gene deletions. The reactions that are associated with that gene which is
only linked to other genes by the AND operator should be disabled by the deletion. These
reactions are removed from the network, and the population model is reoptimized for total
biomass production. This allows analysis of the effect of single genes on tumor growth in a
patient-specific cell system, which may lead to identifying genes or clusters of cells that can
be exploited to deregulate cancer metabolism [22].

2.4. Protein and DNA Interactions

Networks like the ones generated with scFBA may be created and applied in digital
twin computations for other -omics data, as well. Protein interactions may be studied
through multiple techniques. The yeast two-hybrid and LUMIER methods can both be
applied to check for interaction between two specific proteins [24,25]. A high-throughput
platform combining immunoprecipitation and high-throughput mass spectrometry (IP-
HTMS) is capable of rapidly identifying novel protein interactions for a protein of interest
(Figure 6).
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To demonstrate the IP-HTMS workflow, 407 ‘bait’ proteins of interest were flag-tagged
and isolated, together with any interacting ‘prey’ partners, via immunoprecipitation. The
proteins were then subjected to SDS-PAGE and mass spectrometry for identification. All
proteins and peptides that were associated with the same bait protein were clustered
and an ‘anchor’ protein was selected for each cluster by ranking the proteins within the
cluster based on the number of peptides. Interactions that were non-specific, bait–bait
interactions, and interactions with contaminant proteins were removed from the interaction
network. Several metrics were used to generate a measure of confidence in the bait–prey
interactions, and high-scoring pairs were further analyzed by integrating other types of
genomic information, such as gene expression, sub-cellular location, and function. With
this pipeline, many protein interactions may be studied rapidly to create complex protein–
protein interaction networks [26]. Networks like these can provide critical information
to human digital twins, as they enable in-depth analysis of the effects of the absence or
abundance of specific proteins on their pathways, which can lead to understanding why
certain diseases occur, as well as pinpointing potential targets for treatment.

Protein–DNA interactions can also be analyzed, although the regulatory networks
are more incomplete in comparison with protein–protein interaction networks, metabolic
networks, and RNA networks [27]. Chromatin immunoprecipitation (ChIP), combined
with next-generation sequencing can be used to identify DNA-bound proteins, as well
as the DNA sequence they are bound to. This information may explain the effect of an
altered DNA sequence if it results in a transcription factor not being able to interact with
the DNA, for example. Protein–DNA interactions uncovered via ChIP-sequencing have
been reported in databases like UniPROBE and JASPAR [28,29], but the technique is limited
by the cost as well as the availability of the high-quality antibodies needed to retrieve the
DNA–protein complexes [27].

2.5. Clinical Reports in Oncology

Advancements in machine learning and specifically natural language processing (NLP)
have enabled the use of written records in creating digital twins. In cancer research, struc-
tured, written reports containing ‘findings’ and ‘impressions’ from CT-scan analysis of
multiple organs were annotated for the presence or absence of metastases by five radiolo-
gists (Figure 7). Individual reports from each patient were concatenated in chronological
order to enable multi-report analysis. This allows the model to access every previous report
when it predicts the presence of metastases during the time of a patient’s third report, for
example. This is especially important in the event of no change compared to the last analy-
sis being reported for a particular organ. The multi-report analysis enables the algorithm to
decide whether ‘no change’ means an analysis based on the previous information.
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The structured reports are first converted into numeric vector representations to be
used as inputs for the three machine learning models developed to predict metastasis
presence over time. This can be achieved by removing the punctuation and unknown
words in the report and assigning each word an index value. The strings of index values
representing the written text are fed as input to the convolutional neural network (CNN),
capable of learning which combinations of words mean the presence and which mean the
absence of metastasis in each analyzed organ. An augmented CNN with an attention layer
is used to better capture important information in the reports by assigning higher weights
to the indices that represent more important words. Thirdly, to take the context into account,
a bi-directional long short-term memory (LSTM) network was developed. This variant of
a recurrent neural network is capable of processing the data both forward and backward.
This allows the network model to account for both past and future contexts when learning
the meaning of different word combinations. The LSTM network is designed to deal with
long sequences, and it can determine what information needs to be remembered and what
can be forgotten [30]. The three models were tested on over fourteen thousand radiology
reports on the lung, liver, and adrenal glands. Prediction accuracies exceeded 96% across
all combinations of models and organs. This shows that with the use of NLP algorithms,
written report data could contribute to developing a cancer digital twin, as these texts still
contain much of the information in the medical record [30].

2.6. Predicting Drug Effectiveness

Once available, healthcare digital twins may be used to predict treatment outcomes,
simulate various events, or digitally test the effects of the absence of a certain protein, for ex-
ample. Different goals require different statistical methods and, just like during the creation
of the twins, speed, and accuracy are key in creating viable digital twin applications.

During clinical trials of a new treatment, the efficacy of the new treatment is usually
tested against a standard treatment or a placebo when given to a random sample of the
population. However, the new treatment could only be more beneficial to a select subgroup
of patients in the sample. It is worth trying to analyze what characteristics define this
subgroup, to understand why the treatment is especially effective for them [31]. Although
selecting a couple of features to create subgroups is known to be prone to finding false
positives, various statistical methods have shown to be capable of this task [32].

The classical method consists of fitting a regression model based on the interactions
between treatments and patient data. One drawback of this model is that it is not suitable
for use with datasets containing many different variables, as it would need to consider many
different possible interactions [33]. Multiple new algorithms for defining the boundaries of
a certain subgroup have been tested.

One method relies on the use of random forests and regression or classification trees
to prioritize covariates that predict which patients will benefit most from a treatment.
First, random forests are applied to the data which take the variable values, including
the treatment group, as input, and give the probability of a certain outcome as output.
The estimated treatment effect is subsequently calculated by subtracting the probability
of a positive outcome under control from the positive outcome after treatment. So, a high
estimated treatment-effect value means that the treatment greatly affected the patients’
chances of a positive outcome. Then, the variables that have a strong effect on the estimated
treatment-effect value are selected through either regression or classification trees. With the
regression tree method, a regression tree is created with the estimated treatment effect as
the response and the variables as the other input data. This tree is used to again predict
the treatment-effect value for each patient, and patients with a high estimated value are
grouped. The variable values that result in an increased effect can be found by analyzing the
tree and finding the paths that lead to terminal nodes with high predicted-effect values [31].
With the classification method, the estimated treatment-effect value is dichotomized by
splitting the outcomes using a threshold value. This binary estimated treatment-effect
value is used to generate the classification tree that is used to classify the patients into either
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the ‘low effect’ or ‘high effect’ groups. This means that every variable used by the tree to
classify a patient in the ‘high effect’ group can also be used to define a digital twin [31].

The random forest and regression tree approaches, as well as the classical model,
have been tested on data from a clinical trial in 1019 patients, 517 of whom received the
experimental treatment, while the others received a placebo. The patient’s condition was
possibly fatal, so the positive outcome was defined as survival 28 days after receiving
the treatment or placebo. Both the regression and classification methods resulted in the
identification of variables that could be used to define the subgroup of patients to whom
the experimental treatment was especially beneficial. The models identified four variables
that affected the estimated treatment effect the most, three of which were related to the
severity of the patient’s condition [31]. In this case, the differences in treatment effectiveness
between patients in the subgroup and the average patient were not convincing enough
to definitively prove that patients in the subgroup have a significantly better outcome.
However, it shows that these digital twin-centric methods are an improvement on the
classic logistic regression method when it comes to identifying and defining a subgroup
of patients during clinical trials. The methods are more suited to bigger datasets, easier
to interpret, and better at defining subgroup boundaries. Developments like these are
essential for the application of digital twins in healthcare research.

2.7. Drug Repurposing for SARS-CoV-2

When the SARS-CoV-2 (or COVID-19) pandemic began, a lot of research was carried
out to find agents that could either prevent or cure a COVID infection in a relatively short
time. One quick way of obtaining suitable drugs on the market was to find drugs that
had already been approved for use in another healthcare application and repurpose them
for COVID treatment. One study started by searching for drugs that were approved for
diseases with a similar molecular effect as COVID-19 [34]. To find these drugs, 332 host
protein targets of the coronavirus were mapped to the human interactome. Of these targets,
208 turned out to be connected within the interactome network.

Three methods were used to identify potentially repurposable drugs for COVID-19
treatment (Figure 8). Firstly, an AI-based algorithm was used to map drug–protein targets
and disease–protein targets. Secondly, a diffusion algorithm ranked the available drugs
based on their ability to affect the pathways that contained the SARS-CoV-2 protein targets
in the network. Lastly, a proximity algorithm was applied to calculate the distance between
the host protein targets of SARS-CoV-2 and the closest proteins that were targeted by
the drugs.
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The predictions made using the three methods were compared to compounds that
had been experimentally screened for their efficacy in SARS-CoV-2 in monkey kidney cells.
Of the 918 tested drugs, 77 had a positive effect, 806 showed no effect, and 35 turned
out to be toxic to the cells. The drugs were subsequently compared to another dataset
containing outcomes of clinical trials, as well [34]. Lastly, the drugs were given a rank
based on their scores in the different pipelines described above. Multiple rank aggregation
algorithms were tested for this purpose. CRank, capable of extracting the predictive power
of the individual methods, consistently showed a strong predictive performance among
datasets [34]. Of the 200 drugs ranked by this algorithm, 13 had positive outcomes in the
monkey cells. Two drugs were already tested repeatedly, and of the remaining eleven, six
showed potential for treating SARS-CoV-2 infection when tested on human cells. Of these
drugs, three were highly ranked by CRank and had strong outcomes in the experimental
tests, but were not yet used in clinical trials [34].

Studies like these show how digital twins containing protein–protein interaction
networks may be used to estimate the effect of new treatments. In this case, a general
interactome network was used to find drugs that may be potent in the treatment of COVID-
19 infection in a population. However, these methods may also prove useful for a personal
digital twin-based approach to evaluate treatment options for specific individuals.

3. Discussion

Recent developments in digital twin research in healthcare show great promise in
understanding complex physiological processes, and may be applicable in several medical
fields. To fully grasp the possibilities and pitfalls of these digital twins, we provide an
in-depth look into the methodology and data types used in constructing digital twins.
Though unified by their common goal, digital twins from different fields vary considerably
in methods and data used. The main findings are summarized in Table 1.

Table 1. Summarizing overview of the various methodologies and data types used to construct
digital twins across several healthcare fields.

Case Study Aim of Digital Twin Input Data Methodology

Artificial
Pancreas

Enhance blood glucose level
monitoring and insulin delivery for
individuals with diabetes, ensuring
accurate predictions, noise
reduction, and timely alerts without
the need for frequent calibration.

Blood glucose data collected
non-invasively via continuous
monitoring.
Calibration data for accurate
glucose level predictions.
Data related to glucose–insulin
networks, external factors
(e.g., physical activity), and
additional hormones.

Signal processing algorithms for
denoising and data enhancement.
Bayesian inference for denoising.
Least squares linear regression for
data enhancement.
Autoregressive modeling for future
glucose concentration prediction.

Cardiac
Digital Twin

Create detailed replicas of the heart
(anatomical twinning) and simulate
cardiac electrophysiology
(functional twinning) for
personalized testing and
treatment strategies.

Three-dimensional heart scans
from MRI.
Clinical ECG measurements.

Universal Ventricular Coordinates
for anatomical twinning.
Mathematical models for cardiac
electrophysiology.
Fast-forward ECG modeling.
Near real-time simulation of
cardiac electrophysiology.

Single-cell Flux
analysis

Integrate single-cell RNA
sequencing data and metabolite
fluxes to understand single-cell
metabolic phenotypes, particularly
in cancer research, aiding in
phenotype discrimination.

Template metabolic networks.
scRNA-seq datasets.
Extracellular flux
measurements.

scFBA model for metabolic analysis.
Logical operators to calculate
reaction activity scores.
Constraints for
metabolite exchanges.
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Table 1. Cont.

Case Study Aim of Digital Twin Input Data Methodology

Protein and DNA
interactions

Construct protein–protein
interaction networks for studying
protein interactions and regulatory
networks for protein–DNA
interactions, enabling a deeper
understanding of various biological
processes and disease mechanisms.

Protein interaction data from
techniques like IP-HTMS.
Protein–DNA interaction data
from ChIP-sequencing.

Bioinformatic analysis to identify
and prioritize interactions.
Integration with other genomic
information for
comprehensive analysis.

Clinical
reports in
oncology

Utilize natural language processing
(NLP) to extract valuable
information from clinical reports,
particularly in cancer diagnosis,
enabling better analysis and
prediction of metastases presence
over time.

Structured clinical reports from
CT scans.
Concatenated reports for
multi-report analysis.

NLP for text processing.
Machine learning models, including
CNN and LSTM, for prediction.
Multi-report analysis to
improve accuracy.

Drug
effectiveness

Identify subgroups of patients who
may benefit from specific
treatments during clinical trials,
providing a more personalized and
efficient approach to
treatment evaluation.

Patient data and treatment
outcomes.
Variables describing patient
characteristics.

Random forests, regression trees,
and classification trees.
Identification of variables affecting
treatment effectiveness.
Subgroup definition based
on variables.

Drug
repurposing for
SARS-Cov-2

Identify existing drugs that can be
repurposed for COVID-19
treatment by analyzing their
interactions with the virus’s protein
targets and predicting their efficacy,
thereby accelerating drug discovery
for the pandemic.

A total of 332 host protein
targets mapped to the human
interactome.
Experimental and clinical
trial outcomes.

AI-based algorithms for
drug mapping.
Diffusion algorithms for
pathway analysis.
Proximity algorithms for
target prediction.
Rank aggregation for
drug prioritization.

There exist several opportunities and challenges in the methodology and data types un-
derlying digital twins. In diabetes management, the artificial pancreas is a prime example of
a digital twin-like system that can greatly improve the ability to monitor and predict blood
glucose levels and administer insulin based on non-invasive glucose monitoring methods.
The data and methodology employed in the ‘smart sensor’ represent a multifaceted and
data-driven approach, namely continuous glucose monitoring, signal processing algo-
rithms, Bayesian interference, least squares linear regression, and autoregressive models.
While this ‘smart sensor’ system can already offer great benefits to diabetes patients, there
is still much room for improvement. The denoising and data enhancement methods could
be combined and performed at the same time to reduce the complexity of the pipeline.
Furthermore, the prediction module could be expanded to account for information such as
meals, sleep, or physical activity. Even with these challenges that still need to be addressed,
the reliability and effectiveness of these systems are demonstrated by the fact that the FDA
has already approved them for personal use in their current state.

In cardiovascular research, a field that has seen many new ideas and improvements
in digital twin systems recently, multiple types of data, including MRI and CT scans
and electrophysiology measurements, can be integrated to compile a digital heart model
through which ECG patterns can be simulated and predicted in any location and in real-
time. This ability allows for the testing of patient-specific monitoring and treatment
strategies and has the potential to significantly improve patient outcomes in cardiovascular
diseases. The approach here consists of two distinct stages: anatomical twinning and
functional twinning. In the anatomical twinning stage, detailed 3D representations of the
heart are generated based on patient-specific CT or MRI scans. The second stage focuses on
the electrophysiology of the heart, where mathematical models are used to describe and
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simulate electrophysiological activity of the heart. One important limitation of this method
is that it requires accurate, multi-label segmentation to create anatomical CDTs. This is the
largest computational time sink in the whole pipeline. While some studies have shown
neural networks trained for this purpose, a fully automated method for segmentation of
the cardiac chambers is not available at this time. The same is true for the segmentation
of the torso. Models capable of fully automatically threshold-based segmentation that
account for patient-specific anatomy will have to be achieved in the future. Additionally,
the representation of the His–Purkinje System in the CDT may be too simplistic, as its
workings are not yet fully understood. However, it was noted that once an activation profile
has been identified, an automated workflow for integrating a topological representation of
the HPS can be readily implemented [20].

Ultimately, a fully comprehensive healthcare digital twin would also require the
integration of different types of omics data. The scFBA model can be used to incorporate
single-cell RNA sequencing data and extracellular metabolite fluxes into digital twins
that can provide insights into the metabolic phenotypes of cancer cells and allow for the
analysis of the effect of genetic alterations. In the scFBA model, three main types of input
are required: a template metabolic network, a single-cell RNA sequencing dataset, and
approximated extracellular fluxes from the patient’s cell population. Using these data,
gene-to-metabolic reaction links are calculated and used to simulate the effect of single gene
deletions. This approach offers a powerful tool to study cancer phenotypes and identify
potential novel targets for therapeutic intervention.

Furthermore, the developments in machine learning and AI-based statistical methods
allow for the prediction of drug effectiveness in patients (regression and random forests),
identification of already approved drugs that may be repurposed for another cause (drug-
and disease-protein mappings and rank aggregations), and the ability to extract data from
clinical reports (natural language processing and neural networks), for example.

However, several challenges need to be addressed. Firstly, while the metabolic network
maps are very comprehensive, protein–protein and regulatory networks are still considered
incomplete. Gathering and integrating large amounts of data from diverse sources remains
a significant hurdle and the continuous development of non-invasive and high-throughput
data collection methods will be crucial to improve the accuracy and effectiveness of digital
twin-based approaches. This is especially important for strategies that rely on digital twin
systems to monitor health in real-time, to be able to predict a drop in blood glucose levels or
to generate alerts based on simulated EEG patterns, for example. Additionally, a wide range
of variables and parameters in digital twin models is necessary to accurately mimic complex
physiological systems. Integration of these variables requires ongoing advancements in
computational power and modeling techniques. Lastly, it is paramount to the practical
application of digital twin systems that the privacy of the patient can be guaranteed, while
large amounts of data are collected and ideally shared, to enable researchers to collaborate
all over the world.

A lot of research is already being carried out to overcome these obstacles, and access
to an ever-increasing amount of computational power allows for the use of more and
more data, as well as complex models and algorithms. An increasing number of publicly
available template models describing protein interactions, single-cell metabolomics, and
thoracic cell coordinates, for example, will also be paramount in creating patient-specific
digital twin systems in a short time. Additionally, modern systems and standards for data
management will enable secure and efficient ways to store personal data and share them
with others all over the world.

In conclusion, the development of digital twins in healthcare has the potential to
revolutionize medical care and personalized treatments. The examples discussed in this
review demonstrate the effectiveness of digital twin technology in artificial pancreas sys-
tems, cardiac digital twins, and single-cell digital twins for cancer research. By integrating
diverse data sources and advanced modeling techniques, digital twins offer a powerful tool
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to simulate and understand complex physiological processes. Continued research and de-
velopment in this field will pave the way for improved patient care and precision medicine.

4. Conclusions

Recent developments in digital twin research in healthcare hold great promise for
understanding complex physiological processes and their potential applications in various
medical fields. The examples discussed include digital twins in diabetes management,
such as the artificial pancreas, which improves blood glucose monitoring and insulin
administration. Challenges exist in denoising data and expanding prediction modules.
In cardiovascular research, digital heart models enable real-time prediction of ECG pat-
terns, allowing for patient-specific monitoring and treatment strategies, yet segmentation
and representation challenges persist. Integrating omics data and AI-based methods in
comprehensive healthcare digital twins provides insights into cancer phenotypes and
drug effectiveness prediction. Addressing challenges in data integration, computational
power, and privacy, is crucial for advancing digital twin-based approaches. Overall, digital
twins have the potential to revolutionize medical care and precision medicine, offering
personalized solutions for patients.
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Twin literature. An annotated overview of some of the literature covering digital twins is given in the
form of a (searchable) Excel spreadsheet. Besides the complete citation, a brief summary, definition of
a digital twin, and statement of value is given where needed.
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