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A B S T R A C T   

Background and Purpose: Deformable image registration (DIR) is a core element of adaptive radiotherapy 
workflows, integrating daily contour propagation and/or dose accumulation in their design. Propagated contours 
are usually manually validated and may be edited, thereby locally invalidating the registration result. This means 
the registration cannot be used for dose accumulation. In this study we proposed and evaluated a novel multi- 
modal DIR algorithm that incorporated contour information to guide the registration. This integrates 
operator-validated contours with the estimated deformation vector field and warped dose. 
Materials and Methods: The proposed algorithm consisted of both a normalized gradient field-based data-fidelity 
term on the images and an optical flow data-fidelity term on the contours. The Helmholtz-Hodge decomposition 
was incorporated to ensure anatomically plausible deformations. The algorithm was validated for same- and 
cross-contrast Magnetic Resonance (MR) image registrations, Computed Tomography (CT) registrations, and CT- 
to-MR registrations for different anatomies, all based on challenging clinical situations. The contour- 
correspondence, anatomical fidelity, registration error, and dose warping error were evaluated. 
Results: The proposed contour-guided algorithm considerably and significantly increased contour overlap, 
decreasing the mean distance to agreement by a factor of 1.3 to 13.7, compared to the best algorithm without 
contour-guidance. Importantly, the registration error and dose warping error decreased significantly, by a factor 
of 1.2 to 2.0. 
Conclusions: Our contour-guided algorithm ensured that the deformation vector field and warped quantitative 
information were consistent with the operator-validated contours. This provides a feasible semi-automatic 
strategy for spatially correct warping of quantitative information even in difficult and artefacted cases.   

1. Introduction 

Deformable image registration (DIR) plays an important role in 
image-guided adaptive radiotherapy. Currently, it is widely used for 
contour propagation, warping the planning contours to the anatomy of 
the day. The application of DIR for warping and/or accumulating 
quantitative information such as radiation dose or Hounsfield units is 
increasing [1–3]. In clinical workflows, the contours generated by DIR 
undergo visual inspection by an operator and may be adjusted. Thereby 
the underlying estimated deformation becomes locally invalid and in 
turn, the warping of quantitative information is inconsistent. A key 
challenge in incorporating automatic DIR into clinical workflows that 

involve warping quantitative information is to provide a suitable hands- 
on repair strategy for this scenario. Indeed, recent surveys of radio
therapy centers found that an important barrier to the clinical adoption 
and use of DIR was to determine what to do when a registration is un
satisfactory [4,5]. On the other hand, due to this workflow, every daily 
image-guided adaptive radiotherapy treatment fraction has these 
operator-approved contours available. 

Contours have been previously used to guide image registration. Gu 
and colleagues proposed a contour-guided adaption of the image 
intensity-based demons algorithm[6]. An additional term in the demons 
cost function matches the intensities of modified images constructed by 
incorporating one or multiple contour pair(s) onto the original images. 
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This method has a high memory demand as it requires a new set of 
images for every contour used for guidance, and it is sensitive to the 
tuning of multiple free parameters. This algorithm was also suitable for 
mono-modal image registrations, which can become a limitation. Multi- 
modal image registration is important for image-guided radiotherapy as 
it allows to combine modality-specific information from Computed To
mography (CT) and multi-contrast Magnetic Resonance (MR) images in 
the same reference frame. Multi-modal deformable image registration 
remains a particularly challenging task for state-of-the-art DIR algo
rithms. Recently, contours were used to segment part of the images to 
consider for registration, resulting in a transformation per organ that 
was validated for dose warping [7]. Alam and colleagues used an al
gorithm that optimized both image similarity and structure guidance 
[8]. The algorithm was shown to improve contour overlap compared to 
rigid registration and subsequently applied to dose accumulation. In 
other work, a multi-modal contour-guided algorithm was shown to 
improve contour-propagation [9]. The algorithm was however slower, 
at about 15 min per registration. A commercial registration solution 
exists that can combine the matching of image similarities with a 
minimization of contour surface distances [10]. 

The adoption of deep learning segmentation in the clinic is 
increasing [11–13]. These automatically generated contours can also be 
used as input for registration methods (after manual validation). In that 
way, this information can be used for the contour-propagation of 
structures that are not segmented and for warping quantitative infor
mation in accordance with these structures. 

The aims of this paper are as follows: develop a solution for the 
integration of operator-validated or corrected contours into the regis
tration for consistent dose warping and/or accumulation; design this 
method to be compatible with the low latency required by online 
workflows, as well as suitable for use in the scope of multi-modal ap
plications; validate the algorithm for multiple anatomies, deformation 
patterns, and image modalities using multiple benchmarks relevant to 
adaptive image-guided radiotherapy; and explicitly test its application 
to the warping of quantitative information such as dose and/or 
Hounsfield units. 

2. Materials and methods 

2.1. Proposed registration algorithm 

To incorporate contour information in the deformable image regis
tration process, we combined the image data fidelity term D and reg
ularization term R of EVolution [14] with an optical flow data fidelity 
term on the binary masks of the contours [15]:  

with 

f ( u→( r→), Ir, Im)) = −

∑

s→∈Γ( r→)

|∇
→

Ir( s→)⋅∇→Im( s→+ u→( s→))|

∑
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‖∇
→
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→
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, (2)  

where u is the deformation vector field with components u1,2,3, Ir,m are 
the reference and moving images, Cr,m the reference and moving con
tours, and Γ( r→) is a neighborhood around r→. There are two free pa

rameters weighting the contour guidance (β) and regularization (α). The 
performance of the algorithm was investigated for α ∈ [0.4, 1.2], β ∈

[0.5, 2.5] while α = 1.0 and β = 2.0 were used for all experiments in this 
manuscript. 

We used an iterative fixed-point scheme on the Euler–Lagrange 
equations derived from Eq. 1. Their derivations are given in Supple
mentary Material A. The registration was performed using a coarse-to- 
fine scheme, starting the iterations on the 16-fold downsampled im
ages and contours, and upsampling with factors of two. We used itera
tive refinement, restarting the registration process 50 times at each 
resolution level. Each iteration was stopped when the average variation 
of the motion magnitude from one update to the next was smaller than 
10− 3 voxels. The deformations from the previous refinement iteration 
were then used as a starting point [16]. 

The algorithm was implemented using the Compute Unified Device 
Architecture (CUDA) and executed on a Nvidia Quadro RTX 5000 
graphics card. 

2.2. Helmholtz-Hodge decomposition 

Using contour-guidance may introduce the risk of over-constraining, 
leading to anatomically implausible deformations. Therefore, we 
introduced the Helmholtz-Hodge decomposition as an optional post- 
processing step [17–19]. This was used to decompose the estimated 
deformation vector field into three components: a curl-free component, 
a divergence-free component, and a harmonic remainder that is both 
curl-free and divergence-free. The details of its derivation and compu
tation are presented in Supplementary Material B. The Helmholtz-Hodge 
decomposition thus provided local control over the registration result 
and allowed to demand incompressible (i.e. divergence-free) de
formations in incompressible regions, to potentially resolve the risk of 
over-fitting. 

2.3. Test data and evaluation methods 

We tested our algorithm on experiments representing mis
registrations of different origins. These experiments will be discussed in 
detail below. An overview of the anatomies, modalities, and evaluation 
criteria used for the experiments can be found in Table 1. For all data
sets, we evaluated the contour correspondence using the mean distance 
to agreement and the Hausdorff distance [20] and the anatomical 
plausibility using the range of the Jacobian determinant on incom
pressible organs. For the simulated datasets, we evaluated the voxelwise 
endpoint error [21], i.e. the Euclidean distance between the benchmark 
and estimated vector for each voxel, and dose warping error. Additional 

details of the evaluation criteria and acquisition parameters used are 
provided in Supplementary Material C and D. 

Our proposed contour-guidance algorithm was compared to the 
original EVolution implementation 1 and to the mutual-information B- 
spline algorithm from the openly available Elastix toolbox [22,23]. 
Details on the parameters used are given in Supplementary Material E. 
We compared the results both with and without the Helmholtz-Hodge 
decomposition. We performed statistical testing using the paired t-test. 
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1 http://bsenneville.free.fr/RealTITracker/ 
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Large and complex deformations datasets. Using cone-beam CT linac 
systems [24] or the MR-linac [25–27], treatment plans can be updated to 
the anatomy of the day. Image registration can be used to propagate the 
contours to the new anatomy, and to perform dose accumulation. This 
can be challenging when large day-to-day anatomical variations occur. 
We used pretreatment (T2w) MR and daily MR scans for 20 prostate 
cancer patients (5x7.25 Gy) with delineations of the bladder, prostate 
and rectum on both image sets made by experienced radiation oncolo
gists. Ethical approval for use of all internally acquired patient data was 
provided by the Ethics Board of the University Medical Center Utrecht. 

Registration of thoracic inhale to exhale images represents a chal
lenge for image registration due to the large magnitude of the de
formations as well as their complex nature at the lung-liver interface and 
the sliding motion between the lungs and the ribs. We tested our algo
rithm on twenty thoracic 4DCT image pairs from the DIR-lab and COPD- 
gene datasets2 [28,29]. For images of full inhale and full exhale, 300 
manually annotated anatomical landmarks were available to quantify 
the target registration error. An experienced staff member delineated the 
lung contours on both image sets. 

Signal dropout datasets. With the MR-linac, the patient’s anatomy can 
be imaged during treatment. This can be used to track the tumor and to 
reconstruct the delivered dose. Typically, this is done with bSSFP- 
sequences that offer sufficient anatomical detail for organ tracking 
combined with low acquisition and reconstruction times. The problem is 
that these sequences are prone to susceptibility artefacts, caused e.g. by 
gas pockets in the rectum. 

We tested the algorithm on a 4D cine-MR series acquired during 
treatment of a prostate cancer patient on the 1.5T MR-Linac Unity sys
tem (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht, The 
Netherlands. During imaging, a signal dropout appeared due to a gas 
bubble passing through the rectum, see Figure S1 in the Supplementary 
Material. 

To quantify the accuracy of the resulting deformation vector field, 
we also simulated a cine-MR with a synthetic signal dropout for a 
prostate cancer patient. First, we simulated a clinically observed and 
anatomically plausible rectal filling organ movement [30] using the 
biomechanical modeling software FEBio [31]. Thereafter an artificial 
signal dropout was created on the moving image, see Figure S1 in the 
Supplementary Material. The mean planned dose on the prostate for this 
patient was 62.6 Gy. 

Multi-modal and cross-contrast datasets. CT-to-MR registration is 
needed in radiotherapy to combine information from both of these 
modalities. Especially for adaptive radiotherapy on the MR-Linac, it is 

essential to warp the electron density or planned dose distribution from 
the planning CT to the MR of the anatomy of the day. In the lower 
abdomen, a lot of anatomical changes can happen that make for a 
challenging registration task that in turn may lead to corrections in the 
propagated contours. We used abdominal CT and MR scans for 8 patients 
from the Learn2Reg challenge3 [32]. The data was selected from The 
Cancer Imaging Archive project [33–36] and manual segmentations of 
the liver, spleen, right kidney and left kidney were added by the orga
nizers. We have cropped the images for a matching field of view. 

To quantify the accuracy of the resulting deformation vector field, 
we also simulated a cross-contrast experiment using a set of DIXON 
images of a prostate cancer patient. These images were acquired in the 
same anatomical state, allowing the simulation of the deformation of 
one of the images with a known benchmark. A typically observed 
prostate deformation was simulated using biomechanical modeling 
software FEBio, which resulted in the prostate moving in the anterior 
and caudal direction. The in-phase image was deformed to create the 
moving image and the water-only image was used as the reference 
image. 

3. Results 

A visual comparison of a thorax CT-to-CT registration with and 
without contour-guidance demonstrated that in particular the caudal 
boundary of the lungs matched better when using contour-guidance, see 
Fig. 1. Also for MR-to-MR and MR-to-CT registrations, an improved 
contour and image overlap was visible, see Figures S2 and S3 in the 
Supplementary Material. For all three experiments, the case with results 
closest to the mean of the dataset is shown. 

The proposed algorithm was relatively stable with respect to the free 
parameters α and β, see Figures S4, S5, and S6 in the Supplementary 
Material. The difference in error between the used configuration and the 
optimal one was low at 6 to 8%. 

The GPU-accelerated EVolution and GPU-accelerated contour- 
guided EVolution were considerable faster than Elastix, see Table S3 in 
the Supplementary Material. Using contour-guidance decreased the 
registration time for the prostate and abdomen anatomies, but increased 
the time for the thorax anatomies. 

3.1. Contour correspondence and anatomical plausibility 

The mean distance to agreement decreased by a factor of 1.9 on 
average by using contour-guidance, see Table 2. After the Helmholtz- 
Hodge decomposition the contour overlap was still considerably 
improved. For the Hausdorff distance, qualitatively similar results were 
found, see Table S1 in the Supplementary Material. 

The Helmholtz-Hodge decomposition decreased the non-outlier 
range of the Jacobian determinant by a factor of 2.0 on average, see 
Table S3 in the Supplementary Material. It also brought the values closer 
to the benchmark ranges for the biomechanical simulations. The 
decomposition furthermore resolved any undesired negative (outlier) 
values that indicate the estimation of tissue folding. 

3.2. Registration errors and dose warping errors 

For the manually annotated 4DCT, the mean target registration error 
over the 20 cases was 15.9 mm before registration, see Fig. 2. Using 
Elastix and EVolution this became 4.3 and 5.6 mm. Including contour- 
guidance decreased the error by a factor of 1.3 and 1.8, to 3.2 mm. 
Applying the Helmholtz-Hodge decomposition kept the error at 3.2 mm. 

For the simulated cross-contrast prostate experiment, the mean 
endpoint error on the prostate plus its vicinity of 2 mm before regis
tration was 25.7 mm, see Fig. 3. Using Elastix this became 10.6 mm, and 

Table 1 
Overview of the test data used, with the experiment name indicating its rele
vance, the organ contour(s) used for guidance and evaluation of contour cor
respondence, the modalities and image types involved, and the evaluation 
criteria used. Evaluation criteria were the Hausdorff distance (HDD), Jacobian 
determinant (JD, evaluated on the indicated contour), target registration error 
(TRE), endpoint error (EE), and dose warping error (DE).  

Experiment name Contours Modalities Evaluation  

Large complex 
deformations 

Prostate 3D T2w MRI HDD, JD  

Large complex 
deformations 

Lungs 3D CT HDD, JD, TRE  

Signal dropout Prostate 3D cine MRI HDD, JD  
Signal dropout 

simulation 
Prostate 3D cine MRI HDD, JD, EE, 

DE  
Multi-modal Liver, spleen, 

kidneys 
3D CT & 3D T1w 
MRI 

HDD, JD  

Cross-contrast 
simulation 

Prostate 3D DIXON MRI HDD, JD, EE   

2 https://med.emory.edu/departments/radiation-oncology/research-labora
tories/deformable-image-registration/index.html 3 https://learn2reg.grand-challenge.org/Learn2Reg2021/ 
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using EVolution this became 5.9 mm. Including contour-guidance, the 
mean error was reduced by an additional factor of 2.2, to 2.8 mm. After 
the Helmholtz-Hodge decomposition, the mean error slightly increased 
to 3.0 mm. When considering a larger area of the prostate and the sur
rounding 10 mm of tissue, contour-guidance reduced the mean error by 
a factor of 1.7 to 2.9 mm, indicating that it did not lead to unrealistic 
deformations outside the guiding contour. 

For the simulated signal dropout, the mean endpoint error on the 
prostate plus its vicinity of 2 mm before registration was 4.8 mm, see 
Figure S7 in the Supplementary Material. This became 1.3 mm after 
using Elastix or EVolution. Using contour-guidance, the mean endpoint 
error decreased with an additional factor of 1.5 to 0.9 mm. After per
forming the Helmholtz-Hodge decomposition, this was further lowered 
to 0.8 mm. The voxel-by-voxel dose error on the prostate plus vicinity 
decreased from 2.4 Gy (3.8% of the planned dose) to 0.5 Gy and 0.4 Gy, 
when using Elastix and EVolution, see Fig. 4. Including contour- 
guidance decreased the mean dose error with an additional factor of 

1.2, to 0.3 Gy. When applying the Helmholtz-Hodge decomposition, the 
mean dose error slightly decreased further and the maximum error 
decreased with a factor of 1.2. Also for the dose error on the rectal wall, 
using contour-guidance on the prostate decreased both the mean and 
maximum dose errors on this nearby organ-at-risk by a factor of 1.2, 
compared to the best algorithm without guidance, see Figure S8 in the 
Supplementary Material. Including the Helmholtz-Hodge decomposi
tion decreased the error with a factor of 1.3. 

4. Discussion 

Using contour-guidance significantly increased contour overlap. 
Importantly, it significantly decreased the registration error and the 
dose warping error, compared to the algorithms without contour- 
guidance. These errors were evaluated on the contour used for guid
ance and its vicinity, ensuring no errors arise due to over-fitting or 
boundary inconsistencies. Results confirmed that the proposed 

Fig. 1. An example case for the experiment on large complex deformations of the thorax with CT-to-CT registrations. A coronal slice of the full inhale and full exhale 
images is shown (TRE before registration 10.9 mm), as well as the exhale image registered to the inhale using Elastix (TRE 2.9 mm), the original EVolution (3.9), our 
proposed contour-guided algorithm (1.7), and this contour-guided algorithm with the Helmholtz-Hodge decomposition (HHD) on the body excluding the lungs (1.8). 
The lung contours used for guidance are shown in white and the registered contours are shown in red. In particular, the caudal side of the lungs is better aligned when 
using contour-guidance. 

Table 2 
Mean distance to agreement in mm for the different experiments when using no registration, Elastix, EVolution without contour-guidance, the proposed algorithm with 
contour-guidance, and the proposed algorithm with contour-guidance and the Helmholtz-Hodge decomposition (HHD). For the experiments with multiple registra
tions the mean (standard deviation) is shown. Contour-guidance reduced the distance by a factor of 7.0 on average (range 1.3–13.7), compared to the best algorithm 
without guidance. This was statistically significant for all experiments (p < 0.01). The contour overlap after the HHD was still significantly (p < 0.03) improved. The 
mean distance to agreement split per organ for the abdomen experiment is shown in TableS2 in the Supplementary Material.  

Experiment No DIR (mm) Elastix (mm) EVolution (mm) Contour-guided (mm) With HHD (mm)   

Large complex deformations prostate 9.8 (12.1) 1.1 (1.1) 0.8 (1.0) 0.1 (0.2) 0.2 (0.2)   
Large complex deformations thorax 2.0 (2.2) 0.1 (0.0) 0.1 (0.1) 0.0 (0.0) 0.1 (0.0)   
Signal dropout prostate 1.0 0.7 0.4 0.0 0.1   
Signal dropout simulation prostate 0.6 0.1 0.1 0.1 0.1   
Multi-modal abdomen 13.3 (12.0) 6.0 (12.5) 4.6 (9.3) 0.7 (2.4) 1.8 (2.9)   
Dixon cross-contrast simulation prostate 7.9 0.6 0.4 0.1 0.1    
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algorithm can integrate operator-validated contours into the dose 
warping and accumulation process by matching deformation vector 
fields to these contours. 

A major contribution of this work is that the proposed solution was 
specifically designed and validated for low-latency dose accumulation 
(as well as warping e.g. Hounsfield units) during adaptive radiotherapy 
workflows. As shown in the work of Willigenburg and colleagues, an 
MR-guided RT workflow for prostate cancer patients required some 
degree of post-registration manual correction of the propagated con
tours in approximately 50% of the cases [37]. This, in turn, invalidated 
the underlying deformations making them thus unusable for warping 
quantitative information. Moreover, it is worth taking into account that 
the study was conducted for intra-fraction adaptations. It is expected 
that the number of corrections will further increase for inter-fraction 
cases and/or in areas with higher mobility such as the thorax and the 
upper abdomen. Prior work in the area of contour-guided image regis
tration has only partially fulfilled the specific requirements for this 
application. To our knowledge, this is the first study testing a contour- 
guided registration method on a voxel-by-voxel basis for its registra
tion and dose warping performance. Our method is designed for and 
validated for multi-modal registrations (as some previous work [9]) 
while also GPU-accelerated and converging within a few seconds (like 
[10]). Furthermore, we explicitly incorporated and integrated the con
tour information and generated a single transformation. Finally, the 
algorithm was very stable with respect to the (additional) free parameter 
on a wide range of modalities and anatomies. It was previously indicated 
that this is a challenge for contour-guided methods [6]. In fact, we used 
the same parameter configuration for all experiments, in contrast to the 
algorithms without contour-guidance. 

The Helmholtz-Hodge decomposition post-processing step [17–19] 
decreased the (non-outlier) range of the Jacobian determinant by about 
a factor of two and resolved unwanted negative values. For 

Fig. 2. Box plot of the mean target registration error (TRE) for the large 
complex deformations of the thorax CT-to-CT when using no registration, 
Elastix, EVolution without contour-guidance, the proposed algorithm with 
contour-guidance, and the proposed algorithm with contour-guidance and the 
Helmholtz-Hodge decomposition (HHD). Contour-guidance on the lungs 
significantly (p < 10− 4) decreases the mean error compared to registration 
without guidance for all cases, on average by a factor of 1.3 and 1.8. The error 
after performing a Helmholtz-Hodge decomposition (HHD) is very similar. 

Fig. 3. Box plot of the endpoint error on the prostate and its vicinity of 2 mm 
for the cross-contrast biomechanical simulation of a prostate MRI. Shown are 
the results without registration, using Elastix, using EVolution without contour- 
guidance, our algorithm with contour guidance, and the algorithm with 
contour-guidance combined with the Helmholtz-Hodge decomposition (HHD). 
Using contour-guidance significantly (p < 10− 5) decreases the error, reducing 
the mean error by a factor of 2.2, compared to EVolution. Including the HHD 
decreases the non-outlier maximum error by a factor of 1.1. 

Fig. 4. Box plot of the dose error on the prostate and its vicinity of 2 mm for the 
simulated signal dropout experiment. Shown are the results without registra
tion, using Elastix, using EVolution without contour-guidance, our algorithm 
with contour guidance, and the algorithm with contour-guidance combined 
with the Helmholtz-Hodge decomposition (HHD). The maximum error before 
registration is 33 Gy. Using contour-guidance significantly (p < 10− 5) decreases 
the error, decreasing the mean, median, 75th percentile, and non-outlier 
maximum with a factor of 1.2, compared to the best non-guided algorithm. 
The Helmholtz-Hodge decomposition (HHD) decreases the non-outlier 
maximum error with a factor of 1.1. 
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incompressible tissues, like the prostrate on intra-fraction timescales, 
this brought the Jacobian determinants closer to the simulated bench
mark and improved the registration, decreasing the mean and maximum 
errors. 

In many clinical radiotherapy situations where DIR is employed, 
operator-validated contours are available. Examples include daily plan 
adaption where contours are propagated to or re-segmented on the 
anatomy of the day. All adapt-to-shape plan adaption workflows on the 
MR-linac have validated contours available. With our proposed algo
rithm, it becomes possible to accumulate the dose for these workflows. 
An additional application is some inter-fraction registration problems 
where tissues are not conserved, and a voxel reclassification is needed 
for registration [38]. We expect that contour-guidance might prove 
useful in these cases as well, paving the way for additional instances 
where the warping of quantitative information can be applied. Finally, 
deep learning may be used for the automatic segmentation of contours to 
use for guidance. With our method, these contours can be used for 
warping the dose and CT, for plan comparison, and for treatment 
response assessment. Additionally, this can improve contour propaga
tion for contours that are not automatically segmented. This may be 
useful as automatic segmentation can be slow and including additional 
structures for deep learning segmentation may require retraining. We 
are currently implementing the algorithm presented here in our clinical 
workflow to allow these operations. Future work will also focus on 
validating the algorithm for additional anatomies such as the abdomen. 

In conclusion, we introduced a solution for integrating (manually 
edited) contours in dose warping, matching the deformation vector field 
with operator-validated contours, and improving the registration per
formance. The multi-modal algorithm was fast and robust and ensured 
substantial contour overlap while improving the registration result as 
well as the warped dose. Importantly, no over-constraining errors were 
created by the contour-guidance. The algorithm can thus be used to 
warp doses and other quantitative information in accordance with 
operator-validated contours, providing a solution for adaptive radio
therapy workflows. 
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