
Citation: Tsioumpekou, M.;

Krijgsman, D.; Leusen, J.H.W.;

Olofsen, P.A. The Role of Cytokines

in Neutrophil Development, Tissue

Homing, Function and Plasticity in

Health and Disease. Cells 2023, 12,

1981. https://doi.org/10.3390/

cells12151981

Academic Editors: Boris Chernyak,

Galina F. Sud’ina and Maria

A. Chelombitko

Received: 12 July 2023

Revised: 28 July 2023

Accepted: 31 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

The Role of Cytokines in Neutrophil Development, Tissue
Homing, Function and Plasticity in Health and Disease
Maria Tsioumpekou 1, Daniëlle Krijgsman 1,2, Jeanette H. W. Leusen 1 and Patricia A. Olofsen 1,*

1 Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
m.tsioumpekou@umcutrecht.nl (M.T.); d.krijgsman-4@umcutrecht.nl (D.K.); jleusen@umcutrecht.nl (J.H.W.L.)

2 Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
* Correspondence: p.a.olofsen@umcutrecht.nl

Abstract: Neutrophils are crucial innate immune cells and comprise 50–70% of the white blood
cell population under homeostatic conditions. Upon infection and in cancer, blood neutrophil
numbers significantly increase because of the secretion of various chemo- and cytokines by, e.g.,
leukocytes, pericytes, fibroblasts and endothelial cells present in the inflamed tissue or in the tumor
microenvironment (TME). The function of neutrophils in cancer has recently gained considerable
attention, as they can exert both pro- and anti-tumorigenic functions, dependent on the cytokine
milieu present in the TME. Here, we review the effect of cytokines on neutrophil development, tissue
homing, function and plasticity in cancer and autoimmune diseases as well as under physiologi-
cal conditions in the bone marrow, bloodstream and various organs like the spleen, kidney, liver,
lung and lymph nodes. In addition, we address several promising therapeutic options, such as
cytokine therapy, immunocytokines and immunotherapy, which aim to exploit the anti-tumorigenic
potential of neutrophils in cancer treatment or block excessive neutrophil-mediated inflammation in
autoimmune diseases.

Keywords: neutrophils; cytokines; tissue-resident neutrophils; autoimmune diseases; cancer; tumor
microenvironment; TME; NETs; cytokine therapeutics; immunocytokines; immunotherapy

1. Introduction

Neutrophils are the body’s first line of defense against pathogens, e.g., bacteria and
fungi, and comprise 50–70% of the white blood cell population in human circulation. They
are essential immune cells, and patients that lack (mature) neutrophils often succumb to
severe opportunistic bacterial infections [1]. Neutrophils contain at least four types of
granules: azurophilic/primary-, specific/secondary-, gelatinase/tertiary-, and secretory-
granules and are, therefore, together with eosinophils and basophils, also known as gran-
ulocytes [2]. The different classes of granules are formed sequentially during neutrophil
differentiation and contain different proteins important to pathogen killing (Figure 1) [2]. In
addition to granule proteins, neutrophils also produce various cytokines and chemokines
important for, e.g., pathogen killing and the attraction of leukocytes, respectively (Figure 2).
Cytokines comprise a large group of secreted pro- and anti-inflammatory factors, grouped
based on their structural homology, the similarity of their receptors and/or function
(Figure 2). Chemokines are a subgroup of cytokines whose generic function is to induce
cell migration.

Neutrophils have a short half-life in blood, ranging from 13 to 19 hours under homeo-
static conditions [3]. Given their rapid turnover, approximately 1 billion neutrophils per
kilogram of body weight are produced daily, which can be extended to 10 billion under
disease conditions, e.g., inflammation and cancer [4–6]. For a long time, it was believed
that neutrophils were specialized cells that existed to prevent infections and could not
be more versatile because of their short half-life. However, since several reports showed
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the prominent pro- and anti-tumorigenic roles of neutrophils in cancer, they have gained
increased attention [7–10]. In this review, we will discuss neutrophil production, function
and plasticity, with an emphasis on the role cytokines play in these processes, and describe
potential strategies to exploit the anti-tumorigenic potential of neutrophils, as well as
strategies to block excessive neutrophil-mediated inflammation in autoimmune diseases.
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Figure 1. Neutrophil development in the bone marrow. Long-term hematopoietic stem cells give 
rise to mature neutrophils via several stem and progenitor cell stages, promyelocytes, myelocytes, 
metamyelocytes and band cells. Granule content differs between various stages of differentiation 
and comprises proteins like neutrophil elastase, collagenase and gelatinase. LT-HSC: long-term 
hematopoietic stem cell; GMP: granulocyte–monocyte progenitor; MMP: matrix metalloproteinase. 

 
Figure 2. Cytokines and chemokines produced by neutrophils and/or other cells that affect neutro-
phil function, which will be discussed in this review. IL = interleukin; MIF = macrophage migration 
inhibitory factor; CSF = colony-stimulating factor; IFN = interferon; TGF = transforming growth fac-
tor; LTB4 = leukotriene B4; PAF = platelet-activating factor; CXCL = C-X-C motif ligand; CCL = C-C 
motif ligand; TNF = tumor necrosis factor; APRIL = a proliferation-inducing ligand; BAFF = B cell-
activating factor; RANKL = receptor activator of NF-κB ligand; C3a/C5a = complement factor 3a/5a; 
PDGF = platelet-derived growth factor. Of note, the CXCL8 gene (indicated in blue) is lacking in 

Figure 1. Neutrophil development in the bone marrow. Long-term hematopoietic stem cells give
rise to mature neutrophils via several stem and progenitor cell stages, promyelocytes, myelocytes,
metamyelocytes and band cells. Granule content differs between various stages of differentiation
and comprises proteins like neutrophil elastase, collagenase and gelatinase. LT-HSC: long-term
hematopoietic stem cell; GMP: granulocyte–monocyte progenitor; MMP: matrix metalloproteinase.
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Figure 2. Cytokines and chemokines produced by neutrophils and/or other cells that affect neu-
trophil function, which will be discussed in this review. IL = interleukin; MIF = macrophage
migration inhibitory factor; CSF = colony-stimulating factor; IFN = interferon; TGF = transforming
growth factor; LTB4 = leukotriene B4; PAF = platelet-activating factor; CXCL = C-X-C motif ligand;
CCL = C-C motif ligand; TNF = tumor necrosis factor; APRIL = a proliferation-inducing ligand;
BAFF = B cell-activating factor; RANKL = receptor activator of NF-κB ligand; C3a/C5a = complement
factor 3a/5a; PDGF = platelet-derived growth factor. Of note, the CXCL8 gene (indicated in blue)
is lacking in mice, and the neutrophil mobilization factors (shown in gray) are not produced by
neutrophils but do affect neutrophil mobilization.
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2. Neutrophils in the Bone Marrow

Neutrophils are derived from long-term hematopoietic stem cells (LT-HSCs) in the
bone marrow and, via several stem and (multipotent) progenitor cell stages, differentiate
into granulocyte–monocyte progenitors (GMPs) [11,12]. These GMPs give rise to mature
neutrophils via promyelocyte, myelocyte, metamyelocyte and banded neutrophil stages
(Figure 1). This differentiation process is controlled by colony-stimulating factor 3 (CSF3),
better known as granulocyte colony-stimulating factor (G-CSF). CSF3 is not only involved
in neutrophil differentiation but also plays a key role in the release of neutrophils from
the bone marrow into the circulation. CSF3 signaling results in the downregulation of
CXCL12 and its receptor CXCR4, which are essential for neutrophil retention in the bone
marrow [13,14]. Mice lacking Csf3 or its receptor (Csf3r) are severely neutropenic, indicating
that this signaling pathway is essential for normal neutrophil production and release [15,16].
In addition to data obtained from genetically altered mice, mutations in the CSF3R gene
are found in humans and result in severe congenital neutropenia, characterized by low
absolute neutrophil counts (<0.5 × 109/L) in the circulation [17]. Activating mutations of
CXCR4 are also found in humans, resulting in neutrophil accumulation in the bone marrow
and neutropenia in the circulation, in a disease known as WHIM syndrome [18].

In addition to CSF3, colony-stimulating factor 2 (CSF2), also known as granulocyte–
macrophage colony-stimulating factor (GM-CSF), and interleukin-6 (IL-6) are described
as being involved in the production of neutrophils, especially during inflammatory re-
sponses in a process called emergency granulopoiesis (described in more detail in Section 7.
Neutrophils in Severe Infection and Inflammation) [19–21].

3. Circulating Neutrophils

Once neutrophils are released from the bone marrow, they enter the circulation, where
they can stay up to 19 hours [3]. Because of the rapid turnover of circulating neutrophils,
they have long been viewed as a homogeneous population. However, the density gradient
separation of peripheral blood using Ficoll has identified neutrophils in both the high-
density granulocytic fraction and the low-density mononuclear cell fraction, suggesting
some degree of functional or structural stratification [22]. In healthy humans and mice,
this low-density neutrophil (LDN) population is negligible, but it increases with tumor
growth. Follow-up studies have determined that LDN consists of both a mature and
an immature population, possibly caused by different degranulation and/or maturation
states [23]. In addition to an altered phenotype, increased levels of blood neutrophils
have been associated with poor disease outcomes in advanced cancer patients, and the
neutrophil-to-lymphocyte ratio is used as a prognostic factor in many tumor types [24,25].

In recent years, striking new insights have been gained about circulating neutrophil
subsets using new techniques, e.g., single-cell RNA sequencing and single-cell mass cytom-
etry by time-of-flight (CyTOF). Zilionis et al. described the identification of six different
circulating neutrophil subsets (termed N1 to N6) based on single-cell RNA sequencing
blood from six treatment-naïve patients with non-small-cell lung cancer [26]. Whether all
six transcriptionally defined subsets can be found in healthy individuals or whether some
subsets are cancer-associated remains to be determined, but what is clear is that neutrophils
are more diverse than previously thought.
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In addition to the subdivision of circulating neutrophils based on their transcriptomes,
Zhu and colleagues used a CyTOF panel containing 40 of the most commonly used surface
markers of neutrophil maturation, activation and function to investigate neutrophil subsets
in blood from 21 treatment-naïve patients with melanoma [27]. In addition to a neutrophil
progenitor (hNeP) population, they identified six neutrophil clusters (Cneut1 to Cneut6),
each with a distinct surface marker expression. Significant variations in subset frequencies
were observed when comparing the data from the blood of melanoma patients with
blood samples from two healthy controls. The largest neutrophil subset, the terminally
differentiated mature neutrophil, Cneut2, decreased from >95% of the total neutrophil
population in healthy donors to <90% in patients with melanoma, while the hNeP subset
significantly increased. This is in line with previous data, where part of the tumor-associated
circulating LDN is described as displaying immature characteristics [28].

4. Neutrophil Extravasation

As first responders upon microbial infection or injury, neutrophils rapidly migrate
into affected tissues to regulate pathogen dissemination and contribute to the resolution
of inflammation. Neutrophil extravasation and emigration to infected sites are complex
multi-step cascades, highly dependent on the interplay between neutrophils and various
cell types, such as endothelial cells, perivascular cells and stromal cells (Figure 3) [29–31].
Specifically, chemoattractants, such as chemokine C-X-C motif ligand 1 (CXCL1), CXCL2,
CXCL12 and leukotriene B4 (LTB4), are secreted by activated perivascular leukocytes and
induce neutrophil capture by endothelial cells and rolling along the vascular wall (Figure 3).
Neutrophil priming then occurs, mediated by CXCL8; interferon gamma (IFN-γ); tumor
necrosis factor-alpha (TNF-α); platelet-activating factor (PAF); complement factors C3a
and C5a; and/or bacterial peptides, leading to firm adhesion to the endothelial cells and
eventual transendothelial migration (diapedesis) through the pericyte layer and basement
membrane (Figure 3) [31–33]. Extravasated neutrophils migrate toward the infected site
following a gradient of chemokines secreted by tissue-resident cells, where they produce
reactive oxygen species (ROS), phagocytose bacteria or neutrophil extracellular traps (NETs)
in a process called NETosis (Figure 3) [34]. NETs are composed of chromatin (DNA and
histones) fibers associated with various antimicrobial proteins. NETs can trap and kill
microbes; however, their excessive or dysregulated production can also contribute to
tissue damage and inflammation, including autoimmune disorders and cancer (discussed
in more detail later on in this review). Although neutrophils were long considered to
be devoid of significant transcriptional activity, it is now accepted that they are capable
of the de novo production and release of various cytokines and chemokines, e.g., pro-
inflammatory cytokines (IL-1α, IL-1β, IL-6 and TNF-α), anti-inflammatory cytokines and
leukotrienes, which affect leukocyte attraction and activation as well as the enhancement
or resolution of inflammation, among others [35,36]. Neutrophil migration into tissues has
been investigated thoroughly over the last few decades, and it has become evident that the
mechanisms underlying it are organ-specific and dependent on inflammatory stimuli [37].
Structural specializations; variations in the tissue microenvironment and/or neutrophil
priming; and the activation state prior to reaching the tissue, as well as the differential
expression of the molecules involved, can contribute to this specificity, and understanding
these differences is crucial for future therapeutic interventions.
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attract neutrophils to the vessel wall and mediate capture, rolling, adhesion and diapedesis into
the inflamed tissue. In the tissue, neutrophils can perform phagocytosis and NETosis; secrete ROS,
granules and pro-inflammatory cytokines; and present antigens.

5. Tissue-Resident Neutrophils

Research on neutrophil recruitment into the lungs, spleen, lymph nodes, kidneys and
other organs has highlighted the existence of different neutrophil subpopulations with
distinct functions. Interestingly, the presence of neutrophils in these organs occurs not only
upon infection or inflammation but also under homeostatic conditions. Marginated pools of
neutrophils that adhere to the endothelium and serve as a reservoir upon stimulation have
been identified in the liver, spleen and lungs (although more controversially in the latter).
The biodistribution of neutrophils is dependent on their maturation and activation state and
is, among other things, affected by microvascular blood flow and factors such as exercise,
drugs and infection [38–41]. Apart from circulatory and marginated neutrophils, studies
have also highlighted the existence of resident neutrophils patrolling healthy tissue matrices,
especially at mucosal sites, including the gastrointestinal, respiratory, reproductive and
ocular mucosa, where there is a constitutive microbial biofilm (Figure 4) [42,43].

5.1. Neutrophils in the Spleen

Puga et al. were the first to identify two neutrophil subpopulations residing in the
marginal zone (MZ) of the spleen in mice, which showed a different marker profile com-
pared with circulating neutrophils. They demonstrated that IL-10 secreted by sinusoidal
endothelial cells upon microbial TLR signaling would reprogram neutrophils residing in
the spleen into B helper neutrophils. This novel neutrophil subset would then activate
MZ B cells by secreting B cell-activating factor (BAFF), a proliferation-inducing ligand
(APRIL) and IL-21, thus inducing Ig class switching, somatic hypermutation and anti-
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body production [44]. The existence of MZ B helper neutrophils was later verified in
mice via intravital imaging by Deniset et al., who additionally discovered two neutrophil
subpopulations (Ly6Gint immature and Ly6Ghigh mature) in the red pulp (RP) of the spleen
both under steady state and upon S. pneumoniae infection. Upon infection, the mature
neutrophils played an immune surveillance role and facilitated bacterial clearance along
with RP macrophages, whereas the immature neutrophils served as a reservoir in case
of emergency [45].
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Figure 4. Tissue infiltration and reverse transmigration of neutrophils. Following their generation in
the bone marrow, neutrophils are released into the bloodstream through a CSF3-induced decrease
in CXCR4/CXCL12 signaling. Under homeostatic conditions, neutrophils routinely patrol different
organs to limit the growth of the commensal biofilm. Upon injury or infection and subsequent
cytokine secretion, neutrophils are actively recruited into the tissue to perform their effector functions.
Pro-inflammatory neutrophils have also been shown to exit the damaged tissue and re-enter the
circulation. Via reverse transmigration, neutrophils can either migrate to other organs and lead to the
dissemination of inflammation or age and return to the bone marrow to finally undergo apoptosis.

5.2. Neutrophils in the Kidneys

Single-cell sequencing studies have provided new insights into the presence and het-
erogeneity of neutrophils in kidneys in both healthy and pathological conditions [46–48].
Particularly, the transcriptional profiling of kidney biopsies from healthy controls and
clear-cell renal carcinoma (ccRCC) patients revealed the presence of two neutrophil sub-
populations in a healthy kidney, one related to renal autoimmunity and another providing
protection against infections, whereas six subpopulations were identified in ccRCC patient
kidneys [49]. Although the mechanisms underlying neutrophil recruitment in the kidney
remain quite understudied, it is now known that it can occur in all three distinct capillary
networks found in this organ and that various proteins, e.g., P-selectin, E-selectin, inter-
cellular adhesion molecule 1 (ICAM-1), β2-integrins and P-selectin glycoprotein ligand-1
(PSGL-1), can be of importance depending on the exact location [40]. Furthermore, upon
infection with Shiga-toxin-producing enterohemorrhagic E. coli, neutrophil recruitment
was dependent on TNF-α, CXCL1 and CXCL2 produced by tissue-resident macrophages
and was directly associated with kidney injury and poor disease outcomes [50]. This is
not the first study highlighting the contradictory role of neutrophils, as their presence in
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kidneys has been extensively correlated with poor prognosis for patients suffering from
acute kidney injury, renal cancer, diabetic kidney disease and renal failure [51–53].

5.3. Neutrophils in the Liver

The dual role of neutrophils has also been investigated in liver tissues. Although
the routine patrolling of neutrophils in liver sinusoids fortifies the liver upon infection,
increased hepatic infiltration is also a key feature of most liver pathologies. Neutrophils are
able to contribute to liver regeneration following hepatectomy by promoting the Kupffer
cell/tissue-resident macrophage-dependent secretion of IL-6 and TNF-α. However, their
excessive secretion of ROS and cytokines such as IL-1β, TNF-α, transforming growth factor
beta (TGF-β) and IL-17, as well as their degranulation and NET formation, can aggravate
the liver upon injury, ischemia-reperfusion, cirrhosis, fibrosis and cancer [54,55].

5.4. Neutrophils in the Lungs

Owing to the COVID-19 pandemic, the role of neutrophils in the lung has gained
increasing attention and heightened research conducted in this area. Excessive neutrophil
infiltration in the lung is considered a hallmark of acute respiratory distress disease (ARDS),
observed in 29–42% of COVID patients, often resulting in fatality [56,57]. Under physio-
logical conditions, the lung possesses a marginated pool of neutrophils. These neutrophils
serve as a reservoir and are the first responders against the various pathogens and allergens
that constantly enter the airways and make the lungs prone to inflammation [41]. The small
size of the capillaries; the unique anatomical architecture of the lung with its bronchial and
pulmonary vasculature; and the expression of CXCL12 by lung endothelial cells, which
binds to CXCR4 on the neutrophils, contribute to the retainment of neutrophils in the
lungs [40,58]. Upon infection, chemoattractants such as CXCL1, CXCL2 and IL-17 are
produced in the lung, leading to further neutrophil recruitment and transmigration into the
tissue, a process that is highly dependent on C-C chemokine receptor type 2 (CCR2)-positive
blood monocytes [59,60]. Specifically, an RNA-sequencing analysis of CCR2+ monocytes
recruited in cystic fibrosis airways showed a skewed pro-inflammatory profile with an
increased expression of cytokines, e.g., Cxcl1, Cxcl2 and Csf3, known to drive neutrophil
chemotaxis and differentiation [61]. Additionally, intravital imaging revealed that, upon
the depletion of monocytes using clodronate liposomes, neutrophil extravasation into the
lung was severely reduced [59]. Following recruitment, neutrophils activate and elicit
their effector functions, and their activation status can significantly differ based on the
levels of chemokines and cytokines present. This has been especially highlighted in severe
COVID cases, where a cytokine storm, characterized by elevated levels of IL-1β, IL-2, IL-6,
IL-7, CXCL8, IL-10, IL-17, IFN-γ, IFN-γ-inducible protein 10 (IP-10/CXCL10), monocyte
chemoattractant protein 1 (MCP1/CCL2), CSF3, macrophage inflammatory protein 1α
(MIP-1a, also known as CCL3) and TNF-α was linked with increased neutrophil infiltration,
NETosis, ROS production, thrombosis and mortality [56,57,62–64]. Interestingly, these
observations are not restricted to SARS-CoV-19 infection, as excessive neutrophil recruit-
ment in the lungs has been related to age-associated increases in influenza mortality [65].
Furthermore, single-cell analyses of non-small-cell lung cancer (NSCLC) patient samples
have illustrated that neutrophils are the dominant immune cell type in the tumor mi-
croenvironment (TME) and found a correlation between neutrophil abundance and tumor
heterogeneity, further highlighting the need for therapeutic manipulation of neutrophils
in cancer [66–68].

5.5. Neutrophils in Lymph Nodes and Neutrophil–Dendritic Cell Hybrids

In recent years, a lot of attention has been drawn to the recruitment and role of
neutrophils in the lymph nodes. Neutrophils routinely patrol the lymph nodes during
steady-state conditions, and upon infection, they recruit additional neutrophils by releasing
LTB4 [69]. As revealed by intravital imaging, the migration of neutrophils into the draining
lymph nodes occurs both via high endothelial venules (HEVs), in a manner similar to
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lymphocytes, and via lymphatic vessels. Different molecules are involved based on the
route of migration, i.e., HEV entry is L-selectin-; lymphocyte function-associated antigen
1 (LFA-1)-; very late antigen-4 (VLA-4)-; and C5a-dependent, whereas entry via efferent
lymphatics highly depends on ICAM-1, CD11b, CXCR4, matrix metalloproteinases (MMPs)
and occasionally CCR7 [70–72]. Based on the stimulus, additional cytokines may be
involved in neutrophil recruitment into the lymph nodes, as IL-1β and IL-17 have also
been suggested to mediate neutrophil migration upon injecting Vaccinia Virus Ankara and
local tumor lysis, respectively [73,74]. Following challenges with P. aeruginosa, S. aureus
and Salmonella enterica or the injection of Bacillus Calmette–Guérin (BCG), neutrophils have
been shown to localize in different zones of the lymph nodes and be in close proximity to T
and B cells, as well as innate-like lymphocytes such as γδ T cells, natural killer (NK) cells
and natural killer T (NKT) cells [75–78]. This observation raised questions regarding the
role of neutrophils in the lymph nodes and possible interactions with other immune cell
types. In addition to their primary role in pathogen killing, lymph node neutrophils have
been discovered to have additional functions. They have the ability to positively regulate
leukocyte recruitment by secreting CCL3 and attracting dendritic cells (DCs) following
L. major infection. Conversely, they can also negatively impact the immune response by
facilitating the removal of subcapsular sinus macrophages during parasite infection [70].
Their ability to transfer antigens and stimulate adaptive immune responses can also be
exploited by pathogens, as neutrophils can serve as “Trojan horses”, facilitating bacterial
dissemination [70,78–80]. Although more research is needed on the role of cytokines in
this process, CXCL8 and CXCL2 have been shown to mediate the uptake and intracellular
survival of pathogenic bacterial strains (S. aureus and Leishmania major) in human and mouse
neutrophils, respectively [81,82]. Infection with these bacterial or protozoan strains delays
neutrophil apoptosis, resulting in an increased lifespan of up to 2–3 days, in which they
release the monocyte attractant MIP-1β/CCL4 [82]. The uptake of apoptotic neutrophils
by recruited monocytes/macrophages silences their antimicrobial functions, resulting
in parasite survival and multiplication, followed by disease development [82–84]. The
modulation of adaptive immunity by neutrophils has been extensively investigated and
debated. Several research groups have reported the existence of a neutrophil subset with
antigen presentation capabilities in patients suffering from cancer, infectious diseases
or autoimmune disorders. These neutrophil–dendritic cell hybrids, upon exposure to
cytokines such as CSF2 and IFN-γ or immune complexes, can express MHC-II and co-
stimulatory molecules and function as antigen-presenting cells, activating both CD4+

and CD8+ T cells [85–87]. As these antigen-presenting neutrophils have been found in
tumor-draining lymph nodes earlier than DCs [88], it has been suggested that they can
orchestrate the initial and crucial first anti-tumor responses. However, in more advanced
tumor stages, because of elevated CSF2 and IFN-γ levels in the TME, they start expressing
PD-L1 and acquire an immunosuppressive phenotype, leading to worse prognoses for
cancer patients [85,88,89].

6. Reverse Transmigration of Neutrophils

Neutrophil clearance at inflammatory sites is essential to maintain homeostasis. The
established theory in which activated neutrophils undergo apoptosis/necrosis and sub-
sequent phagocytosis via macrophages after executing their effector functions has been
modified over the last two decades. Several groups utilizing in vivo advanced imag-
ing technologies have demonstrated that activated neutrophils show high expressions of
ICAM1 and low expressions of CXCR1, a unique phenotype compared with circulatory
(ICAM1low/CXCR1high) and tissue-resident neutrophils (ICAM1high/CXCR1high), are able
to migrate from the peripheral organs back to the circulation [90]. The mechanisms under-
lying this process, known as reverse transmigration, are complex and not fully elucidated.
CXCL1 leakage from the tissue into the circulation upon breach of the endothelium; dam-
ages to the endothelial junctions because of neutrophil elastase secretion triggered by LTB4;
the increased expression of CXCL8, prostaglandin E2 (PGE2), lipoxin 4 (LXA4) and cathep-
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sin C; as well as the inactivation of hypoxia-inducible factor 1 alpha (HIF-1α), are a few of
the proposed mechanisms involved in neutrophil reverse transmigration (Figure 4) [90–92].
The biological role of this novel process remains to be determined. However, based on the
timing and severity, it has been suggested to be both a protective response, such as promot-
ing inflammation resolution, and a tissue-damaging event, leading to the dissemination of
inflammation and organ failure. This diverse function has been depicted by different stud-
ies. Wang et al. demonstrated that, upon sterile hepatic injury, activated PMNs migrated
from the liver to the lungs, where, via the modulation of their CXCR4/CXCL12 signaling,
they eventually returned to the bone marrow to undergo apoptosis (Figure 4) [93,94]. In
addition, several research groups showed that the reverse transmigration of neutrophils
(induced by LTB4 or extracellular cold-inducible RNA-binding protein—CIRP) resulted in
worse outcomes in sepsis in mice [95,96].

7. Neutrophils in Severe Infection and Inflammation

The most common, everyday function of neutrophils is combating infection. Neu-
trophils routinely patrol tissues for pathogens like bacteria and viruses. Upon encountering
signs of microbial infection, neutrophils quickly respond to trap and kill the invading
pathogens. In addition, they secrete chemokines, e.g., CXCL8, causing additional neu-
trophil influx in the inflamed tissue.

7.1. Emergency Granulopoiesis

During severe systemic inflammation, additional neutrophils are produced in a process
called emergency granulopoiesis. Clinical signs of this demand-adapted hematopoiesis are
blood leukocytosis, neutrophilia and the appearance of immature neutrophil precursors in
the peripheral blood (also known as left-shift), caused by the enhanced de novo generation
of neutrophils as a result of increased myeloid progenitor cell proliferation [97,98]. This
switch from steady-state granulopoiesis to emergency granulopoiesis is mediated by a
change at the transcription factor level, where CCAAT/enhancer-binding protein (C/EBP)β
takes over from C/EBPα, accelerating the cell cycle progression of myeloid progenitors
and increasing neutrophil production [99]. Several cytokines have been associated with
emergency granulopoiesis, of which CSF3, CSF2 and IL-6 are the best studied. CSF3 is
not only essential for steady-state granulopoiesis but also plays a key role in emergency
granulopoiesis, as indicated by increased CSF3 levels in patient sera upon severe infection
and the fact that the administration of CSF3 accurately mimics the physiological responses
observed during emergency granulopoiesis [100,101]. In addition to CSF3, CSF2 and IL-6
are shown to play an important role in emergency granulopoiesis [102]. Csf2−/− mice show
normal steady-state hematopoiesis, but upon Listeria monocytogenes and Mycobacterium
avium infection, they present with severe depletions in hematopoietic cells in the bone
marrow and a deficient inflammatory response in infected tissues [103,104]. IL-6-deficient
mice have been shown to be more susceptible to Candida albicans infection [19]. In addition,
in mice that lack both Csf3 and Csf2, IL6 trans-signaling was shown to be important,
and the additional knockout of this third cytokine resulted in a 50% further decrease in
granulopoiesis in vitro [20].

7.2. Neutrophils in Autoimmune Diseases

In contrast to their protective function against pathogens, increasing evidence links an
abundance of pro-inflammatory neutrophils to the pathogenesis of several autoimmune
diseases like multiple sclerosis (MS); systemic lupus erythematosus (SLE); rheumatoid
arthritis (RA); type I diabetes; and inflammatory bowel diseases, including Crohn’s dis-
ease and ulcerative colitis [98,105]. In mouse models of MS, ROS and the azurophilic
granule protein myeloperoxidase (MPO) were shown to destruct the blood–brain barrier
and damage tissue [106–108]. In addition, central nervous system (CNS)-infiltrating neu-
trophils were shown to secrete IL-6, IL-12, IFN-γ and TNF-α, resulting in dendritic cell
maturation, which subsequently activated myelin-specific T-cells, considered to be the
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initiating event in MS pathology [109]. Neutrophils are an important source of TNF-α and
BAFF in RA, involved in the recruitment of T and B cells, respectively [110,111]. More-
over, neutrophils participate in the destruction of cartilage by stimulating the release of
MMPs, while the activation of osteoclast via RANKL signaling results in bone resorp-
tion [112–114]. In type I diabetes, ROS, IL-1, TNF-α and IFN-γ produced by neutrophils
participate in the initiation of pancreatic β-cell destruction [115,116]. In addition, NETs
have been shown to contribute to pathological processes in SLE and RA, inducing endothe-
lial damage and the externalization of citrullinated autoantigens and immunostimulatory
molecules, respectively [117,118].

8. Neutrophils in Tumor Tissue

Classical views of neutrophils in cancer define them as either anti- or pro-tumorigenic,
also known as N1 or N2 tumor-associated neutrophils (N1 and N2 TANs), respectively
(Figure 5). Pro- and anti-tumorigenic neutrophils can be distinguished based on their
cytokine repertoire. Anti-tumorigenic neutrophils produce cytokines that can promote
CD8+ T cell recruitment and activation, e.g., CCL3, CXCL9 and CXCL10, as well as pro-
inflammatory cytokines like IL-12, TNF-α and CSF2 (Figure 5) [119,120]. On the other
hand, pro-tumorigenic neutrophils upregulate CCL2, CCL3, CCL4, CCL8, CCL12, CXCL1,
CXCL2, CXCL8 and CXCL16 and attract CD4+ regulatory T cells (Tregs) by secreting high
levels of CCL17 (Figure 5) [121,122].
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cells, e.g., suppressive macrophages and regulatory T cells (Tregs); form NETs; and promote tumor
growth, angiogenesis and metastasis.

A transition from N1 to N2 TANs can occur and is described as being regulated by
TGF-β, while CSF3 and IL-6 have also been linked to inducing a pro-tumorigenic neutrophil
phenotype (Figure 5) [119,123]. In contrast, IFN-β treatment, as well as IL-12, are associated
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with a transition toward anti-tumorigenic N1 neutrophils (Figure 5) [124–126]. Among the
described anti-tumorigenic functions of neutrophils are direct cytotoxicity (via the release
of a combination of ROS, granule contents and cytokines, such as TNF-α (by binding
to TNFR1), IFNs and IL-1β,) and antibody-dependent cellular cytotoxicity (ADCC). Pro-
tumorigenic neutrophils have been shown to directly promote tumor growth via cytokine se-
cretion (e.g., TNF-α (by binding to TNFR2), IL-6 and IL-17) and ROS production (thereby in-
creasing mutagenesis); form NETs; recruit tumor-supporting cells into the TME; promote an-
giogenesis; and induce tumor cell motility, migration and invasion (Figure 5) [121,127–129].
TNF-α can exert both anti- and pro-tumorigenic functions, depending on which of the
two receptors it interacts with [130,131]. Upon binding to TNFR1, TNF-α induces pro-
inflammatory responses; activates NF-κB and MAPK signaling; and induces apoptosis. On
the other hand, TNF-α can induce cellular transformation, survival, proliferation, invasion,
angiogenesis and metastasis by binding to TNFR2 [131]. In addition, several studies have
shown that neutrophils can exert immunosuppressive functions, terming them polymor-
phonuclear myeloid-derived suppressor cells (PMN-MDSCs). Whether these PMN-MDSCs
are a distinct neutrophil subset remains a topic of debate, which will be discussed in more
detail later in this review.

On top of the pathogen/tumor cell killing effect of granules described above, sev-
eral granule contents are associated with pro-tumorigenic effects. The serine proteases
present in the azurophilic granules, such as neutrophil elastase and cathepsin G (Figure 1),
are described as promoting tumor proliferation and/or invasion (Figure 5) [132–134]. By
remodeling basal membranes and extracellular matrices, the specific granule protein neu-
trophil collagenase, also known as matrix metalloproteinase-8 (MMP-8), and the gelatinase
granule proteins MMP9/gelatinase B and ADAM9 promote neutrophil infiltration and
angiogenesis (Figure 5) [135–137]. Additionally, NET production via neutrophils has been
reported to promote the migration and extravasation of tumor cells. NETs have demon-
strated their ability to capture disseminated colorectal cancer cells, subsequently triggering
the production of pro-inflammatory cytokines, including CXCL8, IL-6 and TNF-α. This
cytokine storm led to augmented neutrophil recruitment and increased NET formation, es-
tablishing a detrimental cycle that connects NETs with the inflammatory microenvironment
in liver metastasis in colorectal cancer [138]. In addition to tumor cell entrapment, NETs
contain various components, including cytokines and chemokines, which can promote
tumor growth and progression by attracting immune cells, promoting angiogenesis and
creating a favorable microenvironment for tumor cell survival and proliferation [139].

8.1. Additional Neutrophil Subsets in Tumor Tissue

Recent single-cell RNA-sequencing studies have added more complexity to TANs by
identifying additional sub-groups of neutrophils in the tumor tissues of treatment-naïve
patients with non-small-cell lung cancer and tumor-bearing mice [26]. Five human neu-
trophil populations were identified (hN1-5), in contrast to seven distinct mouse neutrophil
populations (mN1-6, where mN1 is subdivided into N1a and N1b) [26,126]. Canonical
neutrophil markers like MMP8, MMP9, ARG1, S100A8 and S100A9 could be detected in
both mN1 and hN1. Based on SPRING/nearest-neighbor analyses of the neutrophil subsets,
the majority of other subpopulations were found to originate from these mN1 and hN1
neutrophils. Among the other subsets were the tumor-specific mN5 and hN5 neutrophils,
which showed the mRNA expression of cytokines, including CCL3, CSF1, IRAK2 and MIF.
The mN2 and hN2 neutrophils formed a rare subpopulation, which was characterized by
the expression of type I interferon response genes (e.g., MX1, IFIT1, IRF7). In addition,
mouse neutrophil populations 4–6 (mN4-6) were highly tumor-enriched and showed the
expression of Siglecf, previously linked to several pro-tumorigenic functions, including
angiogenesis; extracellular matrix remodeling; the suppression of T cell responses; and
tumor cell proliferation and growth [140].
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8.2. Myeloid-Derived Suppressor Cells

PMN-MDSCs are immature suppressive neutrophils that expand under pathological
conditions, e.g., inflammation and cancer, and share similarities with neutrophils, including
their origin [141]. Whether they are distinct from pro-tumorigenic TANs and/or the
immature LDN fraction found in the blood remains a topic of debate, especially since their
terminology is used interchangeably.

In mice, PMN-MDSCs are defined as CD11b+Ly6G+Ly6Clow cells, while in humans,
they are defined as CD14−CD11b+CD15+(CD66b+) cells, similar to neutrophils [142,143].
Human PMN-MDSCs can be separated via gradient centrifugation with 1.077 g/mL den-
sity gradient media, e.g., Histopaque, from normal neutrophils in a similar manner to
LDN neutrophils (see Section 3. Circulating Neutrophils) [144]. Additionally, lectin-type
oxidized LDL receptor 1 (LOX-1) has been identified as a marker to differentiate between
human PMN-MDSCs and neutrophils. PMN-MDSCs, unlike neutrophils, exhibit height-
ened immunosuppressive properties by stimulating the production of Tregs through the
secretion of IFN-γ and IL-10 (Figure 5) [145]. Additionally, they induce a suppressive
M2 phenotype in macrophages (Figure 5) [146]. Moreover, PMN-MDSCs impede lym-
phocyte homing, potentially via the expression of the metalloprotease ADAM 17 (TACE)
on the MDSC surface [147]. They also generate reactive oxygen and nitrogen species
and secrete suppressive factors such as indoleamine 2.3-dioxygenase (IDO), IL-10, TGF-β
and arginase-1. Notably, PMN-MDSCs deplete the microenvironment of the metabolite
L-arginine, which serves as a substrate for arginase-1 and inducible nitric oxide synthase
(iNOS). Consequently, T cell proliferation and activation are hindered, and the expression of
the TCR-ζ chain is decreased [148]. The suppressive capabilities of circulating PMN-MDSC
have been linked to unfavorable clinical outcomes across various cancer types [149,150].
Notably, the expression of arginase-1 can be increased by Th2 cytokines, including IL-4,
IL-10 and IL-13 [151]. Conversely, the expression of iNOS in MDSC is primarily governed
by Th1 cytokines like IFN-γ, TNF-β and TNF-α. Furthermore, Jiang et al. demonstrated the
IL-6-modulated, MDSC-mediated suppression of cytokine secretion in T cells via STAT3
signaling in a breast cancer model, which could be blocked by anti-IL-6 [152]. Additionally,
Park et al. demonstrated that the combination of CSF2 and stem cell factor (SCF) is the
most potent enhancer for expanding and differentiating functional MDSCs from human
cord blood [153]. It is noteworthy that CSF2 is produced by tumor cells and is regarded as
a double-edged sword, as excessive or insufficient levels of CSF2 have been reported to
promote tumor progression [154].

9. Effect of TME-Secreted Cytokines on Neutrophils and PMN-MDSCs

Various cellular components within the TME, such as cancer cells, stromal cells (includ-
ing cancer-associated fibroblasts/CAFs) and immune cells secrete a wide array of cytokines
and chemokines. These cytokines and chemokines have the ability to diffuse through
the surrounding tissues, serving as potential signals to circulating or tissue-patrolling
neutrophils or more immature neutrophils in the bone marrow (e.g., PMN-MDSCs and
LDN), ultimately attracting them to the tumor microenvironment.

9.1. Effect of Cytokines on Neutrophil and PMN-MDSC Migration

The upregulation of chemokines within the TME represents the initial step in neu-
trophil recruitment, which is mainly regulated by chemokines like CXCL1, CXCL2, CXCL8
and their corresponding receptors, CXCR1 and CXCR2 [155–158]. In contrast, the mi-
gration of PMN-MDSCs is influenced by the chemokine receptor CCR2 and its ligands,
including CCL2 and other chemokines such as CXCL5, CXCL12 and CCL3. The specific
chemokines involved depend on the particular TME or inflammatory conditions (reviewed
by Hao et al.) [159]. Interestingly, several studies have indicated a modulatory effect of
tumor-produced factors on neutrophil and PMN-MDSC recruitment. For instance, Wu et al.
reported that the IL-17/CXCR2 axis in tumor cells facilitated breast cancer progression
by enhancing neutrophil recruitment [160]. Interestingly, the mRNA expression of the
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IL-17/CXCR2 axis players CXCR2, IL17 and IL17R increased in Cl66, a doxorubicin- and
paclitaxel-resistant murine breast cancer cell line. In addition, it was reported that breast
cancer cells secrete IL-1β, resulting in IL-17 production via γδ T cells [150]. Increased IL-17
levels led to the systemic upregulation of CSF3, which subsequently caused neutrophil
expansion and the alteration of neutrophils in the TME with a PMN-MDSC phenotype
showing high iNOS expression. In line with this study, it was reported that activated inflam-
matory DCs induced γδT17 cells to secrete CXCL8, TNF-α and CSF2 with a concomitant
accumulation of PMN-MDSC with high arginase-1 and ROS production in the tumor [161].
Furthermore, IL-17 is reported to increase the tumor cell expression of CXCL5, thereby
enhancing PMN-MDSC infiltration in hepatocellular carcinoma (HCC) [162].

Additionally, CCL20 produced by breast cancer cells has been reported to modulate
PMN-MDSC to promote cancer cell stemness through the CXCL2-CXCR2 pathway [163].
Moreover, tumor-secreted cytokines like CXCL8, PDGF, MIP1 and CSF3 increase the mobi-
lization of neutrophils from the bone marrow and spleen, leading to an elevated neutrophil-
to-lymphocyte ratio in both human [156,164–166] and mouse [22,167] studies. The levels of
these cytokines in the circulation tend to rise as the tumor progresses.

9.2. Effect of Cytokines on Neutrophil and PMN-MDSC Polarization

Several studies have indicated the modulatory roles of cytokines in the phenotypes
of neutrophils and PMN-MDSCs. For instance, type I interferons like IFN-β have been
shown to increase the tumor cytotoxicity of neutrophils; increase NET, ICAM1 and TNF-α
expression; and polarize TANs toward an anti-tumor N1 phenotype in vivo [124]. Cheng
et al. reported that CAFs in hepatocellular carcinoma (HCC) attracted neutrophils through
the CXCL12/CXCR4 pathway and sustained their survival and activation via IL-6-induced
JAK-STAT3 signaling [168]. Neutrophils primed by HCC-CAFs exhibited increased CD66b
and PDL1 expression and decreased CD62L expression. These primed neutrophils sup-
pressed T cell immunity through the STAT3-PDL1 pathway, which could be reversed by
the STAT3 inhibitor S31. Moreover, TGF-β produced in the TME has been reported to drive
the transition of anti-tumor N1 TAN into suppressive PMN-MDSC [22] or suppressive N2
TAN [119]. Furthermore, TGF-β production via triple-negative breast cancer and colorectal
cancer cells was reported to recruit neutrophils [169,170], demonstrating that TGF-β is
involved in both neutrophil migration and polarization. Furthermore, the TME frequently
exhibits elevated levels of S100A9, which facilitates the chemotaxis of MDSCs and promotes
their suppressive functions. This is achieved through the engagement of TLR4 and RAGE
in MDSCs, thereby activating pivotal factors such as ROS, arginase-1, iNOS and IL-10 [171].

9.3. Effect of Cytokines on Neutrophil Recruitment into the Premetastatic Niche

Chemokines play a pivotal role in recruiting neutrophils and PMN-MDSC, not only
into primary tumor sites but also pre-metastatic niches and metastatic sites. In a mouse
model of breast cancer, tumor-associated mesenchymal stromal cells released CXCL1,
CXCL2 and CXCL5, leading to increased neutrophil recruitment at primary tumor sites [157].
Furthermore, CXCL5 and CXCL7 released from tumor-activated platelets were identified
as essential factors for neutrophil recruitment to the pre-metastatic niche, facilitating subse-
quent tumor cell seeding in mouse lungs [172]. Furthermore, the tumor-derived protease
cathepsin C played a significant role in promoting breast-to-lung metastasis through its
involvement in neutrophil recruitment and the formation of NETs [173]. Cathepsin C
facilitated this process by enzymatically activating neutrophil membrane-bound proteinase
3 (PR3), leading to IL-1β processing and subsequent NFκB activation in neutrophils. Con-
sequently, IL-6 and CCL3 were upregulated, thereby facilitating neutrophil recruitment.
Additionally, GPR35+ MDSC colonization to the lung was promoted in a lung metastasis
model of breast cancer via the tumor secretion of CXCL17 and CSF3 [111]. PMN-MDSC
recruitment into the premetastatic niche was reported to rely on hypoxic cell-derived CCL2,
which is often produced by hypoxic tumor cells [174].
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9.4. Effect of Cytokines on NET Formation

Tumor cells, CAFs and immune cells have been reported to induce the formation of
NETs via neutrophils through various mechanisms. In the TME, cytokines such as CXCL8,
IL-1β and TNF-α have been demonstrated to stimulate the production of ROS, leading
to the release of NETs [138,175,176]. This creates a positive feedback loop, amplifying the
inflammatory response. Additionally, IL-17 has been reported to induce NET formation
in pancreatic cancer, which mediates resistance to immune checkpoint blockade [177].
NET formation via PMN-MDSC has not been intensively studied, but studies suggest
that different mechanisms are involved compared with NET formation in neutrophils.
For instance, complement C5a was reported to induce the formation of NETs via PMN-
MDSC in order to promote metastasis in a mouse lung metastasis model [178]. Finally,
the TME has additional influences on neutrophils that are beyond the scope of this review,
including extracellular matrix remodeling, hypoxia, metabolic factors and extracellular
vesicles, which are thoroughly reviewed elsewhere [179].

10. Exploitation of Neutrophil Functions to Combat Disease

With increasing knowledge about neutrophil plasticity and function, there is growing
interest in exploring new therapeutic interventions to harness neutrophils’ innate capabil-
ities to target and eliminate pathogens and cancer cells. Such potential strategies could
target neutrophil recruitment and polarity; modulate neutrophil activation; or reduce
excessive inflammation. As the field of immunotherapy is continuously evolving, sev-
eral innovative therapeutic approaches have been developed or are being developed and
could be used to leverage the anti-tumorigenic potential of neutrophils and block excessive
neutrophil-mediated inflammation in autoimmune diseases.

10.1. Cytokine Therapeutics

In conditions of exacerbated cytokine production, e.g., inflammatory and autoimmune
disease, the inhibition of cytokine functions caused by monoclonal antibodies or receptor
blockers has been successfully used in the clinic. For example, patients with rheumatoid
arthritis and Crohn’s disease are effectively treated with various TNF-blocking monoclonal
antibodies, while a human IL-12/IL-23 monoclonal antibody is used to treat psoriasis
patients, both resulting in reduced neutrophil infiltration into affected tissues [129,180].
Cytokines can also be therapeutically administered, as is the case for, e.g., CSF3 in con-
genital neutropenia patients and IFN-α for hepatitis B [181,182]. However, cytokines are
pleiotropic, resulting in unwanted systemic effects, and have a narrow therapeutic range
because of, among other things, a short blood half-life and unfavorable tissue distribution,
making cytokine therapy challenging [183]. The cytokine engineering field has progressed
tremendously over the last few years because of the development of novel techniques
and a better understanding of cytokine biology, making it possible to alter cytokines so
that they, e.g., can bind specific receptors with a higher affinity, leading to reduced dosing
and fewer off-target effects caused by binding to other receptors, as is performed for the
IL-2 “superkine” (MDNA11), currently being tested in clinical trials [184]. Furthermore,
the half-life of cytokines can be extended by employing polyethylene glycol (PEG), a pro-
cess that increases the molecular weight of the protein. This modification reduces renal
clearance, protecting cytokines from degradation due to proteolytic enzymes and reducing
their interaction with plasma constituents, thereby diminishing immunogenicity [185].
Another strategy often used to circumvent the limitations of cytokine drugs is the creation
of synthetic cytokines (synthekines) using computational tools, overcoming things like
pleiotropy, redundancy, poor pharmacokinetics and toxicity [186]. Multiple engineered
cytokines are currently in clinical trials, as reviewed by Deckers et al. [187].

10.2. Immunocytokines

Genetically fusing a cytokine to another protein can help reshape the cytokine’s
biodistribution profile, overcome poor pharmacokinetic properties and help promote
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tumor localization. This application is especially interesting in cancer, where a cytokine
can be fused to a therapeutic antibody, specifically recognizing a tumor-associated antigen.
These fusion constructs, called immunocytokines, hold promise as potential treatments
and are currently undergoing evaluation in clinical trials [187]. For example, the CD38–
IFNα2b immunocytokine TAK-573 is being tested in a phase I/II clinical trial for refractory
multiple myeloma. Despite their potential, some immunocytokines have a lot of side
effects because of the off-target binding of the cytokine to its receptor, resulting in the
so-called “sink effect”, requiring high doses of the drug. Several engineering strategies
are being developed to make the cytokine only active when it is near the tumor, one of
which is Orionis Biosciences’ Activity-on-Target cytokines (AcTakines). These AcTakines
are engineered to have a reduced receptor affinity, hampering cytokine activity until the
immunocytokine accumulates near a target cell [188].

10.3. Immunotherapy

In addition to the cytokine part of immunocytokines, the antibody itself can also affect
neutrophils by initiating neutrophil-mediated tumor cell killing via ADCC. All antibodies
used for immunotherapy purposes are of the IgG isotype, which can bind various Fc
gamma receptors on immune cells. Human neutrophils express the activating Fc-gamma
receptors FcγRI (CD64), FcγRIIa (CD32a) and FcγRIIIa (CD16a) [189,190]. In addition, they
also express the inhibitory receptor FcγRIIb (CD32b) and the GPI-linked and, therefore,
signaling dead, receptor FcγRIIIb (CD16b), of which the latter is by far the highest expressed
FcγR in neutrophils [189,190]. Therefore, IgG antibodies are not very efficient in engaging
neutrophils in tumor cell killing by themselves. However, a recent in vivo study showed
the effective, neutrophil-mediated killing of B16 melanoma cells when combining an IgG
antibody targeting gp75 (a protein expressed on B16 melanoma cells), an CD40 antagonist
and TNF [191]. The findings indicated that a combination of all three components was
necessary for successful tumor cell killing. This suggests that a multimodal approach
combining immunotherapy with cytokine therapy could hold great potential for engaging
neutrophils in tumor cell killing and could contribute to the development of novel strategies
for cancer treatment.

In contrast to IgG antibodies, IgA antibodies strictly bind the activating FcαR (CD89),
making them very efficient in activating neutrophils and inducing ADCC [189]. However,
IgA antibodies have a short half-life because of fast clearance via the asialoglycoprotein and
mannose receptors, recognizing the extensive glycosylation of IgA antibodies [192–194].
In addition, IgA antibodies lack a binding site for the neonatal Fc receptor (FcRn), which
recycles IgG antibodies, thereby contributing to the short half-life compared with IgG
antibodies [195]. The antibody engineering of IgA has been described and resulted in an
IgA3.0 molecule with an increased stability and half-life, overcoming some major hurdles
of IgA immunotherapy [196,197]. In addition to being effective in activating neutrophils
from healthy donors and mice, preliminary data suggest that suppressive neutrophils are
as capable as normal neutrophils in killing tumor cells with IgA antibodies, making them
ideal candidates to induce all neutrophil subsets to kill cancer.

11. Conclusions and Perspectives

The identification of different neutrophil subsets and the dual role of neutrophils in
cancer have shifted the field of neutrophil biology tremendously. Gaining a comprehen-
sive understanding of neutrophil functions in tissues in various tissue states (steady state,
inflammation, cancer), as well as their plasticity and their role in the TME, is essential for
harnessing their anti-tumorigenic potential effectively. The identification of cytokines that
polarize neutrophils toward an anti-tumorigenic phenotype, e.g., IFN-β or IL-12, as well as
cytokines that promote a pro-tumorigenic phenotype, e.g., TGF-β, has been essential for
understanding the effect of the TME on neutrophil plasticity and opened up possibilities
for cytokine therapy. The field of bioengineering has made remarkable advancements,
leading to the study and in vivo or clinical trial testing of synthekines, immunocytokines
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and IgA antibodies as potential anti-cancer therapies. To facilitate the transition from
pro-tumorigenic neutrophils to anti-tumorigenic neutrophils that effectively combat cancer
cells, immunocytokines containing IFN-β or IL-12, known to induce the transition to N1
neutrophils (Figure 5), should be investigated. Moreover, attracting additional “naïve” neu-
trophils that are not pro-tumorigenic to the tumor site using immunocytokines containing
CSF3, IL-1α, IL-1β or TNF-α holds immense potential in enhancing (IgA) immunotherapy
and optimizing the anti-tumorigenic capabilities of neutrophils.
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