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Abstract
Background: Respiratory-resolved four-dimensional magnetic resonance
imaging (4D-MRI) provides essential motion information for accurate radiation
treatments of mobile tumors. However, obtaining high-quality 4D-MRI suffers
from long acquisition and reconstruction times.
Purpose: To develop a deep learning architecture to quickly acquire and
reconstruct high-quality 4D-MRI, enabling accurate motion quantification for
MRI-guided radiotherapy (MRIgRT).
Methods: A small convolutional neural network called MODEST is proposed
to reconstruct 4D-MRI by performing a spatial and temporal decomposition,
omitting the need for 4D convolutions to use all the spatio-temporal informa-
tion present in 4D-MRI. This network is trained on undersampled 4D-MRI after
respiratory binning to reconstruct high-quality 4D-MRI obtained by compressed
sensing reconstruction. The network is trained, validated, and tested on 4D-
MRI of 28 lung cancer patients acquired with a T1-weighted golden-angle
radial stack-of -stars (GA-SOS) sequence. The 4D-MRI of 18, 5, and 5 patients
were used for training, validation, and testing. Network performances are evalu-
ated on image quality measured by the structural similarity index (SSIM) and
motion consistency by comparing the position of the lung-liver interface on
undersampled 4D-MRI before and after respiratory binning.The network is com-
pared to conventional architectures such as a U-Net, which has 30 times more
trainable parameters.
Results: MODEST can reconstruct high-quality 4D-MRI with higher image
quality than a U-Net, despite a thirty-fold reduction in trainable parameters.
High-quality 4D-MRI can be obtained using MODEST in approximately 2.5 min,
including acquisition, processing, and reconstruction.
Conclusion: High-quality accelerated 4D-MRI can be obtained using MODEST,
which is particularly interesting for MRIgRT.
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1 INTRODUCTION

Respiratory motion poses a significant challenge in
abdominal and thoracic imaging, causing large dis-
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placements in the liver,1 lung,2 kidney,3 and pancreas,4

introducing disruptive image artifacts that may pre-
clude an accurate diagnosis.5,6 In radiation therapy,
respiratory-induced motion can lead to sub-optimal
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treatment because it may influence the shape and
position of tumors.7,8 Consequently, the target may
receive a different dose than planned while deliver-
ing hazardous radiation to nearby healthy tissue and
organs-at-risk.9 In the past, respiratory-resolved imag-
ing has been proposed to improve treatments, using
imaging with high spatial resolution and accurate motion
information to enable the definition of treatment margins
that encompass the tumor displacement.10,11 In par-
ticular, four-dimensional respiratory-resolved computed
tomography (4D-CT) is the standard imaging modality
in current clinical practice and is part of radiation treat-
ment planning.12 However, 4D-CT can be affected by
artifacts that negatively influence the treatment outcome
and local control.13,14

Recently, magnetic resonance imaging (MRI) has
been proposed as an alternative to CT for radiotherapy
guidance, leveraging the superior soft-tissue contrast
that facilitates accurate target identification and dose
deposition. With the clinical introduction of MRI-guided
radiotherapy (MRIgRT),15,16 MRI acquired prior to treat-
ment can be used to adapt the treatment plan to the daily
anatomy,while fast MRI during treatment can be used to
track the tumor position.17–22

In MRIgRT, respiratory-resolved four-dimensional
magnetic resonance imaging (4D-MRI) is used in the
treatment planning phase to adapt the radiation treat-
ment based on the quantified tumor motion.23 The
4D-MRI must be high-quality and quickly available to
ensure treatment efficiency and patient comfort, that
is, acquired and reconstructed within 5 min.24 However,
obtaining high-quality 4D-MRI remains challenging due
to the limited acquisition speed of MRI.

A straightforward way to accelerate MRI is by
undersampling the acquisition, violating the Shannon-
Nyquist data sufficiency criterion,25 and introducing
image artifacts that may preclude accurate motion
quantification.24 Several techniques have been
proposed to reconstruct high-quality MRI from under-
sampled acquisitions, such as parallel imaging,26,27

simultaneous multi-slice acquisitions,28–30 or com-
pressed sensing.31 Some algorithms have been
specifically developed to reconstruct high-quality
respiratory-resolved 4D-MRI by taking advantage
of all spatio-temporal information in the images, such
as XD-GRASP32 or HDTV-MoCo.33 However, these
reconstruction algorithms have a large computational
cost and can take from 15 min up to 8 h,23,33 which
is insufficient in clinical practice as long treatment
times are detrimental to patient comfort and treatment
efficiency.

Recently, convolutional neural networks (CNNs) have
been proposed as a data-driven alternative to clas-
sic iterative algorithms to reconstruct undersampled
MRI quickly.34–38 With CNNs, the time-consuming model
training can be performed offline before treatment.Then,
the trained model can be used for fast, online inference,
achieving reconstruction quality on par or better than

compressed sensing within tens of milliseconds for 2D
imaging.39

Training such models requires large amounts of GPU
memory to optimize the model parameters. As GPU
memory is limited, training CNN-based reconstruction
models is feasible for 2D and 3D MRI but challenging
for 4D-MRI as these models require prohibitively costly
four-dimensional convolutions to take advantage of the
spatio-temporal information and obtain high image and
motion quality.Several approaches have been proposed
to avoid using 4D convolutions, for example, by per-
forming slice-by-slice reconstruction or carefully using
multiple views of the spatio-temporal data.40–43 How-
ever, training such models to obtain high-quality 4D-MRI
remains challenging due to the computational cost or
requirement for large datasets.

We propose an unrolled model to reconstruct 4D-
MRI using low-dimensional subnetworks (MODEST),
which exploits the spatio-temporal nature of 4D-MRI by
separating the reconstruction problem into spatial and
temporal components. Two independent subnetworks
with few trainable parameters have been designed to
learn these components without using 4D convolu-
tional kernels. This allows the model to access the
complete spatio-temporal information in 4D-MRI while
maintaining low computational cost.

This work investigates the application of the proposed
spatio-temporal decomposed network to accelerate the
acquisition and reconstruction of undersampled 4D
respiratory-resolved lung MRI, which is of particu-
lar interest for MRI-guided radiation treatments. The
model is evaluated on reconstructed image quality and
consistency of the respiratory motion compared to com-
pressed sensing reconstructions.Moreover,MODEST is
compared to standard deep learning architectures such
as a U-Net.Finally,we estimate the minimum acquisition
length for high-quality 4D-MRI with MODEST.

2 METHODS

We considered two networks to reconstruct 4D-MRI:
a baseline residual U-Net, and our newly proposed
architecture. After patient data was collected and pre-
processed, the model hyperparameters were optimized.
Then, the U-Net and MODEST were trained. To investi-
gate the impact of the model architecture rather than the
number of trainable parameters, the optimized parame-
ters of the U-Net were pruned to match MODEST. The
three models (MODEST, the baseline U-Net,and pruned
U-Net) were evaluated using undersampled 4D-MRI
before and after respiratory binning.

2.1 Patient data collection and
preparation

Twenty-eight patients undergoing radiotherapy for lung
cancer between February 2019 and February 2020
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at the radiotherapy department were retrospectively
included under the approval of the local medical eth-
ical committee with protocol number 20–519/C. The
male/female ratio was 16/12, and the mean age was
66 ± 13 years (range = 20–81). Patients affected by
squamous cell carcinoma (11), adenoma & adenocarci-
noma (7), small cell/large cell carcinoma (4), neoplasm
(1), thymoma (1), and a mix of other rare tumors (4)
were included.

Free-breathing 3D golden-angle radial stack-of -
stars (GA-SOS) T1-weighted spoiled gradient echo
MRI (TR/TE=3.2/1.3 ms, FA=8◦, bandwidth=866Hz/px,
resolution=2.13 × 2.13 × 3.5 mm3, FOV=440 × 440 ×
270 mm3, feet-head slices) of the thorax were acquired
for 7 min on a 1.5T MRI (MR-RT Philips Healthcare,Best,
the Netherlands) during gadolinium injection (Gadovist,
0.1 mlkg−1). The acquisition was fat-suppressed using
spectral attenuated inversion recovery (SPAIR).

Patients were scanned in the supine position using a
16-channel anterior and 12-channel posterior phased-
array coil. In total, 1312 radial spokes per slice were
acquired, corresponding to approximately four times
oversampling compared to a fully-sampled volume,
which requires 206 ⋅ 𝜋∕2 ≈ 324 spokes. However, as the
contrast agent was injected, the relative magnitude of
the self -navigation signal changed over time.To account
for the contrast pickup phase, we discarded the first 200
spokes of every scan to prevent contrast mixing.

For every patient, 4D-MRI was created based on
a self -navigation signal by sorting k-space into ten
respiratory-correlated bins for a final matrix size
of Vx, Vy, nslice, nphase = 206 × 206 × 77 × 10. The self -
navigation signal was obtained by performing a 1D
Fourier transform of the center of k-space (i.e.,k0) along
the slice direction and principal component analysis on
the concatenated navigators.32,44 Then, radial spokes
were sorted into respiratory bins using a hybrid binning
algorithm45 based on the phase and relative ampli-
tude of the motion surrogate. For training purposes,
undersampled 4D-MRI was obtained by undersampling
the respiratory bins, that is, “phase undersampling”,
ensuring motion consistency between the target recon-
struction and undersampled MRI. The fully-sampled
4D-MRI contained n spokes per bin for every patient.
Phase-undersampled 4D-MRI was created by retain-
ing the first n∕k spokes per bin, where k ∈ ℕ is the
acceleration factor, for undersampling factors R4D =
1, 2, and 4. This corresponded to a true undersam-
pling factor RNyquist of approximately 3.7, 7.4, and 14.8
per respiratory phase, respectively. After sorting, k-
space was density-compensated using a Ram-Lak filter,
interpolated onto a twice-oversampled Cartesian grid
using a 3 × 3 Kaiser-Bessel kernel, and transformed to
image-space using a non-uniform fast Fourier trans-
form (NUFFT)46,47 with a weighted coil combination.Coil
sensitivity maps were estimated using ESPiRIT.48 The
patients were randomly split into a train (18), validation

(5), and test (5). The training target was generated by
performing an XD-GRASP reconstruction of the fully-
sampled 4D-MRI using temporal total variation, using a
regularization weight 𝜆 = 0.03.32,49

To match the effect of a shorter acquisition time, we
have also created undersampled 4D-MRI by removing
spokes prior to respiratory binning and discarding the
final j sampled spokes, with j ∈ {100, 200,… , 1000}, that
is, “free-breathing undersampling”. These reconstruc-
tions were used to estimate the maximum achievable
undersampling factor in a clinical setting, comparing the
motion consistency of the free-breathing undersampled
4D-MRI to the fully-sampled reconstruction.We selected
the maximum value of j where the zero-filled reconstruc-
tion has a mean end-point error (EPE) < 1 mm and the
mean SSIM of MODEST was > 0.85.

2.2 Model architectures

We propose MODEST, which uses two subnetworks to
learn the spatial and temporal features1. We trained
a network to reconstruct 4D-MRI on a per slice basis
rather than per volume to reduce memory usage, which
allowed using 2D convolutions. The model input con-
sisted of the zero-filled undersampled 4D-MRI and
deformation vector fields (DVFs) computed on zero-
filled, undersampled 4D-MRI, registering the exhale
phase to every other respiratory phase. The DVFs were
obtained using a deep learning model.50 They were
added as additional input as we hypothesize that adding
DVFs improves the reconstruction performance as they
provide additional spatial information when consider-
ing the respiratory phase dimension. To reconstruct a
Vx × Vy × nphase volume, the subnetwork learning the
spatial component Ξ̂ was implemented using k × k ×
1 convolution kernels, while the network learning the
temporal component Ψ̂ was implemented using 1 × 1 ×
nphase convolutions. Both subnetworks used five con-
volutional layers and a cardioid non-linear activation
function.51 The model hyperparameters and architec-
ture were optimized using Bayesian optimization.Details
for this optimization are provided in Document S1. An
estimate of the 4D-MRI is then obtained as f (Ξ̂, Ψ̂),
using some combination function f , which was chosen
as the point-wise multiplication operator. We imple-
mented the model to perform an unrolled optimization
using three iterations. Data consistency was enforced
between the reconstructed image and the sampled k-
space after every iteration except the final iteration by
computing

xt+1 = xt − 𝜂−1
(

(
xt
)
− y

)
+ Mt

(
xt
)
, (1)

where t is the iteration, xt is the image at iteration t,
y is the measured, undersampled radial k-space,  is

1 Code available at https://gitlab.com/computational-imaging-lab/modest
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5334 FAST 4D-MRI WITH SPATIOTEMPORAL NETWORKS

F IGURE 1 Illustration of the proposed MODEST model. The unrolled model reconstructs undersampled 4D-MRI into high-quality 4D-MRI.
The undersampled, zero-filled 4D-MRI and DVFs derived from the undersampled 4D-MRI are concatenated and enter a decomposed
spatio-temporal convolution block with 104,260 parameters. The spatio-temporal convolution block performs low-dimensional convolution over
the spatial domain (blue) and the temporal domain (orange), recombining into a 4D-MRI using a combination function f . After every iteration of
the unrolled model, data consistency is enforced on the reconstructed radial k-space using the sampled radial k-space using Equation (1).
DVFs, deformation vector fields; 4D-MRI, four-dimensional magnetic resonance imaging.

the multi-coil non-uniform Fourier transform operator, 𝜂
is a learned parameter, and Mt is the deep learning
model for iteration t of the unrolled model. The model
architecture is illustrated in Figure 1 and had 312,782
trainable parameters. To investigate the impact of data
consistency and adding DVFs as model input, we have
trained four variants of MODEST: a variant that only
uses the zero-filled 4D-MRI, a variant that uses 4D-MRI
and DVFs, a variant that uses 4D-MRI and data con-
sistency, and a variant that uses 4D-MRI, DVFs, and
data consistency.

MODEST was compared to a baseline residual
U-Net52,53 that reconstructs 4D-MRI from the under-
sampled images, where every residual unit consisted
of a 3D convolution layer, followed by a PReLU non-
linear activation, instance normalization, and a residual
connection. The residual U-Net consisted of four res-
olution levels and five residual units per resolution
level. Depending on the resolution level, the residual
unit’s convolution layers learned 32, 64, 128, and 256
filters. The residual U-Net had 11,793,289 trainable
parameters. The model architecture and hyperparam-
eters were found after a Bayesian hyperparameter
search. Details for this optimization are provided in
Document S1.

2.2.1 Training and evaluation

Both the residual U-Net and MODEST were imple-
mented using PyTorch 1.10. The data consistency
operator was implemented using TorchKbNUFFT
1.3.0.54 The U-Net and MODEST with optimized
hyperparameters and architectures were trained on
phase-undersampled MRI to reconstruct XD-GRASP
4D-MRI from zero-filled undersampled 4D-MRI. Both
models were trained using 20 000 randomly-sampled
batches of zero-filled 4D-MRI with undersampling fac-
tors R4D = 1,2,and 4 to minimize the⟂ +SSIM-loss.55 In
total, 18 patients ⋅ 77 slices ⋅ 3 undersampling factors =
4185 samples were used for training, and 1155 sam-
ples were used for testing and validation, respectively.
MODEST was trained using a batch size of seven with
the AdamW optimizer using a learning rate of 10−3 and
10−4 weight decay. The baseline residual U-Net was
trained using a batch size of three using the AdamW
optimizer using a learning rate of 10−3 and 10−4 weight
decay. To investigate the impact of the model architec-
ture rather than the number of trainable parameters, we
performed iterative pruning of the trained U-Net model
(Pruned U-Net), matching the number of parameters of
MODEST.56
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The model reconstructions were evaluated on image
quality, sharpness, motion quality, and processing time.
The image quality was measured by the average SSIM
and the normalized root-mean-square error (NRMSE)
over the respiratory phases between the model
reconstruction and the XD-GRASP reconstruction.
The NRMSE was computed as NRMSE(Iest, Itarget) =√

1∕M
∑

(Iest − Itarget)2∕|Itarget|, where M is the number

of voxels and |Itarget| is the mean absolute value of Itarget
within the anatomy.57 The motion estimation quality was
quantified in two ways:

1. DVFs based on XD-GRASP reconstructions and the
deep learning reconstructions were estimated using
a neural network trained on undersampled MRI,50

registering the first respiratory phase (exhale) to
every other respiratory phase. The motion error was
then quantified as the mean EPE.

2. The position of the hepatic dome in the reconstruc-
tion was compared to the hepatic dome position
in the ground-truth XD-GRASP reconstruction. The
hepatic dome position was manually extracted by
computing the median intensity along the AP direc-
tion and thresholding the gradient image.58 Then,
the liver position was estimated for every dynamic
as the mean of the binary thresholded image along
the left right direction within a manually delineated
region, ensuring a similar delineation volume among
the patients in the test set. The hepatic dome posi-
tion was normalized by subtracting the position of the
hepatic dome in the free-breathing zero-filled acquisi-
tion.Finally, the error was determined as the absolute
error between the hepatic dome of XD-GRASP
reconstructions and MODEST.

The image sharpness was evaluated over all the 4D-
MRI phases by computing the variance of one 3D
respiratory phase after convolution with a 3D Lapla-
cian kernel.59 The final sharpness was estimated as
the mean variance over all respiratory phases. Sharper
images have a higher variance.

The metrics’ statistical significance (p < 0.05) was
established using a paired t-test, comparing MODEST
to the U-Net and parameter-pruned U-Net.

3 RESULTS

Based on the model architecture and hyperparameter
search, we found that adding non-Cartesian data con-
sistency and motion information increased the recon-
struction quality, as shown in Figure 2. Using data con-
sistency increased the validation SSIM from 0.88 ± 0.04
to 0.90 ± 0.04 (p = 10−6), while adding DVFs did not
significantly improve the SSIM compared to image-only
reconstruction or in addition to using data consistency.

However, using DVFs decreased the mean EPE from
1.23 ± 0.28 mm to 1.18 ± 0.27 mm (p = 0.0008) and the
NRMSE from 0.086 ± 0.02 to 0.084 ± 0.18 (p = 0.0009),
indicating increased motion consistency. Therefore, we
opted to use data consistency and DVFs for MODEST.

3.1 4D-MRI reconstruction

Phase-undersampled zero-filled reconstructions were
created using a NUFFT in approximately 5 s, while the
XD-GRASP reconstruction took about 1 h. MODEST
took 15 s to process the zero-filled reconstructions on an
NVIDIA V100 GPU, while the U-Net took approximately
30 s to reconstruct the 4D-MRI. The parameter-pruned
U-Net took about 25 s to perform a reconstruction.

In the example of phase-undersampled 4D-MRI at
R4D = 1 in the test set (Figure 3), MODEST produced
reconstructions with an SSIM of 0.92 over the entire
4D volume, considering XD-GRASP as reference. This
has significantly higher quality than the zero-filled recon-
struction, which already shows undersampling artifacts
and an SSIM of 0.82 (p = 0.0017). Despite having over
thirty times fewer trainable parameters, MODEST also
produces higher image quality for the considered sub-
ject than the U-Net. Compensating for the increase in
parameters of the U-Net, the pruned U-Net reconstructs
4D-MRI with low image and low motion consistency,
as identified by the hepatic dome position. At R4D = 4,
MODEST and U-Net showed comparable performance.
However, the reconstructions by the U-Net seemed to
suffer more from temporal blurring, as observable in the
error maps of Figure 3. Videos of phase-undersampled
reconstructions are provided for R4D = 1, 2, and 4 in
Videos SV1,SV2,and SV3, respectively. In these videos,
it can be observed that MODEST and U-Net display
similar image quality. However, in Video SV3, it can
be seen that the U-Net reconstruction suffers from
significantly reduced respiratory amplitude at the ante-
rior chest wall, while MODEST shows better motion
consistency.

The U-Net and MODEST outperformed the zero-filled
reconstruction based on the SSIM and EPE metrics
(p = 10−9), as visible in the quantitative evaluation in
Figure 4. However, no statistically significant difference
was found between the U-Net and proposed archi-
tecture, except for the SSIM at R4D = 1. Both models
outperformed the parameter pruned U-Net for the SSIM
metric (p = 10−8). For the NRMSE metric, MODEST
outperformed the U-Net, parameter pruned U-Net, and
zero-filled reconstruction (p = 10−7). MODEST showed
sharper reconstructions for all under-sampling factors
than the U-Net (p = 10−7).

Using MODEST led to reconstructions with increased
motion consistency, as found by the increased corre-
spondence of the hepatic dome position, as presented
in Figure 5. At R4D = 4, the proposed architecture
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F IGURE 2 Impact of data consistency and DVFs. Four models were compared on the SSIM, registration error, and NRMSE in the
foreground for the reconstructed 4D-MRI. The models used only the 4D-MRI, 4D-MRI and data consistency, 4D-MRI and DVFs, or all
information to reconstruct the data. A star indicates a statistically significant result p < 0.05. DVFs, deformation vector fields; 4D-MRI,
four-dimensional magnetic resonance imaging; NRMSE, normalized root-mean-square error, SSIM, structural similarity index.

F IGURE 3 Example reconstructions. 4D-MRI was acquired of a female, 81 years old, affected by adenoma (T2N3M1). Reconstructions of
phase-undersampled 4D-MRI inhaling by zero-filling, MODEST, the U-Net, and the parameter-pruned U-Net are shown for several
undersampling factors and are compared to the XD-GRASP reconstruction. The top row shows the magnitude reconstructions and the SSIM,
while the bottom row shows the NRMSE map and the mean NRMSE value for the 4D reconstruction. In Figure 4, a quantitative evaluation for
the entire test set is shown 4D-MRI, four-dimensional magnetic resonance imaging; NRMSE, normalized root-mean-square error; SSIM,
structural similarity index.
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F IGURE 4 Quantitative comparison. All
reconstruction methods are evaluated on the
test set compared to the XD-GRASP
reconstruction based on image similarity,
measured by the SSIM and NRMSE, and
motion similarity, measured by the EPE. All
deep learning models perform significantly
better than the zero-filled reconstruction, but
MODEST outperforms the U-Net models
based on image sharpness and NRMSE. A
star indicates the t-test resulted in statistically
significant differences with p < 0.05. EPE,
end-point error; NRMSE, normalized
root-mean-square error; SSIM, structural
similarity index.

F IGURE 5 Hepatic dome analysis. MODEST closely follows the XD-GRASP reconstruction, especially at inhale. At high undersampling
factors, MODEST is able to reconstruct motion-consistent 4D-MRI as measured by the hepatic dome, while the other reconstruction methods
show significant errors. 4D-MRI, four-dimensional magnetic resonance imaging.

accurately tracked the hepatic dome position within
1.56 ± 1.98 mm compared to the XD-GRASP recon-
struction versus 4.73 ± 2.48 for the U-Net. We observed
that MODEST performed worse at exhale than inhale.
However, the mean hepatic dome error was approxi-
mately 1.2 mm, significantly smaller than the voxel size
of 3.5 mm in the feet-head direction.

Retaining fewer spokes for the free-breathing under-
sampled 4D-MRI decreased model performance due to
an increased undersampling factor and increased intra-
bin variability of the motion, as presented in Figure 6.
The sharpness of the U-Net reconstruction decreased
due to temporal blurring as the undersampling factor
increased. In contrast, the sharpness of MODEST
reconstruction is more stable. Based on the criterion
that the shortest acquisition needed to have an EPE
< 1 mm for the zero-filled reconstruction and an SSIM
> 0.85 for the MODEST reconstruction, using the first
500 spokes is the shortest free-breathing acquisition

that allowed reconstructing high-quality 4D-MRI using
MODEST, corresponding to an acquisition time of
approximately 2 min.

An example reconstruction for this acquisition is
shown in Figure 7. Here, it can be seen that MOD-
EST can reconstruct 4D-MRI with high quality with
a mean SSIM of 0.92 and a mean NRMSE of
0.137 for this patient, which is of higher quality
than the U-Net and pruned U-Net reconstruction.
This model also shows good motion correspon-
dence, as indicated by the alignment of the hepatic
dome position. The quantitative results for the test
set are presented in Table 1, showing that MOD-
EST can achieve superior reconstructions compared
to the U-Net and pruned U-Net, with an NRMSE of
0.383 ± 0.11 versus 0.824 ± 0.16 and 0.920 ± 0.11,
respectively. A video of free-breathing undersam-
pled reconstructions is provided in Supplementary
Videos V4.
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F IGURE 6 Impact of free-breathing undersampling. The impact of free-breathing undersampling was evaluated by continually removing n
spokes from the acquisition and compared to the fully-sampled XD-GRASP reconstruction using the SSIM, EPE, and NRMSE metrics. As the
increased significantly beyond removing 600 spokes, the minimum acquisition length was determined as 500 spokes. The approximate
acquisition time is shown on top. EPE, end-point error; NRMSE, normalized root-mean-square error; SSIM, structural similarity index.

F IGURE 7 Example free-breathing undersampled reconstructions. 4D-MRI was acquired of a female, 71 years old, affected by squamous
cell carcinoma (T2N1M0). Reconstructed 4D-MRI by MODEST, a U-Net, and the parameter-pruned U-Net are shown using an acquisition of 500
spokes (approx. 2 min) and are compared to the target XD-GRASP reconstruction. The top row shows the magnitude reconstructions and the
SSIM, while the bottom row shows the NRMSE map and the mean NRMSE value for the 4D reconstruction. 4D-MRI, four-dimensional magnetic
resonance imaging; NRMSE, normalized root-mean-square error; SSIM, structural similarity index.

4 DISCUSSION

In this work, we have proposed an architecture called
MODEST for efficient 4D-MRI reconstruction by
splitting the model into spatial and temporal com-
ponents. We designed a model that exploits all
spatio-temporal information of 4D-MRI using only low-

dimensional convolution layers. High-quality 4D-MRI
was obtained using this model from highly undersam-
pled acquisitions in only 25 s and outperforms an opti-
mized residual U-Net, despite having 3% of its trainable
parameters. We have shown that the model can accu-
rately reconstruct 4D-MRI from shortened acquisitions
for up to 2 min while maintaining high image quality
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TABLE 1 Quantitative evaluation of the test set for free-breathing undersampled 4D-MRI using 500 spokes. Best result per metric marked
in boldface, results with a star for MODEST indicate a statistically significant improvement compared U-Net (p < 0.05).

SSIM (↑) NRMSE (↓) Sharpness (↑) EPE (↓)

Zero-filled 0.689 ± 0.019 0.673 ± 0.07 0.104 ± 0.006 0.813 ± 0.39

U-Net 0.871 ± 0.032 0.824 ± 0.16 0.030 ± 0.005 0.326 ± 0.20

MODEST 0.877 ± 0.025 0.383 ± 0.11∗ 0.043 ± 0.007∗ 0.313 ± 0.20

Pruned U-Net 0.801 ± 0.036 0.920 ± 0.11 0.036 ± 0.006 0.512 ± 0.24

Abbreviations: EPE, end-point error; 4D-MRI, four-dimensional magnetic resonance imaging; NRMSE, normalized root-mean-square error; SSIM, structural
similarity index.

(SSIM of 0.877 ± 0.025) and motion-consistency with
the fully-sampled 4D-MRI. These properties have some
advantages over other models: models with few train-
able parameters are less likely to overfit than larger
models and have the potential to generalize better
on unseen data due to less parameter variance.60

Moreover, small models typically require fewer training
samples converge,61 which is particularly interesting for
MRI, as large datasets are difficult to acquire.

Our hyper-parameter optimization and model archi-
tecture search found that performing data consistency
improved image quality, and adding motion information
increased the reconstructed image quality. These find-
ings are in line with previously published literature.62

However, only adding the DVFs without adding data
consistency can be detrimental to the image recon-
struction quality. At R4D < 4, adding DVFs to the images
resulted in a lower SSIM, as indicated in Figure 2.
However, at R4D = 4 and in combination with data con-
sistency, increased SSIM, lower EPE,and lower NRMSE
was observed by adding DVFs. This could indicate
that adding motion information at higher undersampling
helps image reconstruction but provides less bene-
fit at lower undersampling factors. This latter aspect
could be due to the better conditioning of the inverse
problem at higher sampling factors and due to imper-
fections in the motion estimation model. Currently, we
only present the DVFs to the model as generated by
a pre-trained network,50 which could limit the model
performance. Based on previous literature, we fore-
see that performance may be improved by jointly
learning the image reconstruction and DVFs during
training,33,63 improving image registration and image
reconstruction performance.

Also, it would be interesting to investigate whether
combining the spatial and temporal features by a
learnable operator, for example, convolution or self -
attention,64 would impact, possibly improving the model
performance and leading to even shorter MRI acqui-
sitions. Alternatively, one could optimize the imaging
protocol whenever possible by refining the image con-
trast and reducing scan time by decreasing the number
of slices while maintaining the large field of view by
slice interpolation.

This work used XD-GRASP reconstructed 4D-MRI as
a ground truth since it demonstrated sufficient accu-
racy for radiotherapy applications.23,24,65 However, this
algorithm’s regularization over the respiratory phases
can introduce errors by overly smoothing the res-
piratory motion. This could introduce differences in
motion amplitude compared to the measured data, and
this uncertainty might limit the reconstructed motion
quality by deep learning models. Using iterative joint
image and motion reconstruction as ground truth
could be a viable way to improve image quality33

and remove residual artifacts in the ground truth.
When comparing to XD-GRASP we considered a
GPU implementation using commodity hardware, which
might not be optimal. Technological developments have
accelerate the XD-GRASP algorithm with specialized
“Processing-in-memory”hardware,66 curtailing the com-
putational bottleneck for XD-GRASP which enables
a speed-up factor of 11, or 90 s of processing
time. However, while this is a promising approach,
these speed-ups have only been achieved in sim-
ulation and such hardware has not been clinically
demonstrated.

The models presented in this manuscript have been
trained on data obtained from 18 patients, which is
a limited training set size and could limit the perfor-
mance of the presented models. Large training sets
can offer several advantages, such as better perfor-
mance and improved generalization capabilities.Several
steps can be taken to increase the size of our train-
ing set. First, more patient data could be acquired, but
this process is slow and costly, resulting in limited extra
data. Second, digital phantoms could be used to gener-
ate 4D-MRI from numerical anatomy.67 However, these
samples might not be accurate compared to 4D-MRI
acquired in-vivo. Future work will investigate the impact
of different data augmentation approaches and dataset
size.

MODEST is not the only architecture able to recon-
struct 3D+t MRI.Freedman et al.proposed the so-called
Dracula framework,40 consisting of a U-Net reconstruct-
ing zero-filled radial 4D-MRI to a high-quality 4D-MRI
dataset and a mid-position image. Dracula produced
4D-MRI similar to HDTV-MoCo-based 4D-MRI in 28
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s. However, this model was only investigated with a
5-min acquisition. Moreover, the network consisted
of approximately 90,000,000 trainable parameters
and took 11 days of training. Given the number of
trainable parameters and their related GPU memory
consumption, extending the model from a slice-by-slice
reconstruction to a four-dimensional reconstruction
is challenging. Küstner et al. proposed CINENet: a
complex-valued unrolled U-Net that performs 4D
spatio-temporal convolutions to reconstruct cardiac
phase-resolved 4D-MRI.41 They achieve the 4D con-
volutions by interspersing 3D convolutions with 1D
convolutions. CINENet used an approach somewhat
similar to ours by decomposing the 4D convolution
into lower-dimensional convolution kernels, but we sep-
arated the spatial and temporal domains, whereas
in CINENet they are interspersed. It is currently
unclear whether interspersing or separating the
spatial and temporal features would result in bet-
ter performance, and it may be the object of future
investigations.

MODEST has been specifically constructed to take
advantage of the spatio-temporal information in 4D-
MRI to obtain high-quality reconstructions. Interestingly,
spatial and temporal information from MRI is relevant
in other applications, such as cardiac imaging39,41 or
dynamic contrast-enhanced MRI.68,69 Future work could
investigate the application of MODEST, retraining the
currently used model for these applications.

The availability of fast, accurate, and high-quality 4D-
MRI is of particular interest for MRIgRT, where 4D-MRI
is used for treatment adaptation of mobile tumors. With
fast acquisition and reconstruction of 4D-MRI, treatment
efficiency and patient comfort can be improved,eliminat-
ing the acquisition of a 4D-CT for motion quantification.
By treating such patients on a hybrid MRI-Linac, motion
can quickly be quantified without repositioning the
patient.Moreover, high-quality 4D-MRI can also be used
for high-quality time-resolved imaging65,70 and could
be helpful for real-time intra-fraction radiation treatment
adaptation.22

5 CONCLUSION

We proposed a deep learning architecture called MOD-
EST that efficiently reconstructs high-quality 4D-MRI
by decomposing the reconstruction into spatial and
temporal components. This approach yielded superior
performance than conventional models such as U-Nets,
despite having only 3% of the trainable parameters.
We found that high-quality 4D-MRI can be obtained
with an MR acquisition of 2 min and 15 s of model
inference, shortening the time for MRI-guided radia-
tion treatments while improving treatment quality and
incorporating accurate motion quantification.
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