
Physica Medica 112 (2023) 102642

A
1
(

Contents lists available at ScienceDirect

Physica Medica

journal homepage: www.elsevier.com/locate/ejmp

Original paper

Exploring contrast generalisation in deep learning-based brain MRI-to-CT
synthesis
Lotte Nijskens a,b, Cornelis A.T. van den Berg a,b, Joost J.C. Verhoeff b, Matteo Maspero a,b,∗

a Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Science, University Medical Center Utrecht, Heidelberglaan
100, Utrecht, 3584CX, The Netherlands
b Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands

A R T I C L E I N F O

Keywords:
Medical imaging
Radiotherapy
Artificial intelligence
Machine learning
Regression
Magnetic resonance imaging
Computed tomography
Generalisation
Domain shift

A B S T R A C T

Background: Synthetic computed tomography (sCT) has been proposed and increasingly clinically adopted to
enable magnetic resonance imaging (MRI)-based radiotherapy. Deep learning (DL) has recently demonstrated
the ability to generate accurate sCT from fixed MRI acquisitions. However, MRI protocols may change over
time or differ between centres resulting in low-quality sCT due to poor model generalisation.
Purpose: investigating domain randomisation (DR) to increase the generalisation of a DL model for brain sCT
generation.
Methods: CT and corresponding T1-weighted MRI with/without contrast, T2-weighted, and FLAIR MRI from
95 patients undergoing RT were collected, considering FLAIR the unseen sequence where to investigate
generalisation.

A ‘‘Baseline’’ generative adversarial network was trained with/without the FLAIR sequence to test how a
model performs without DR. Image similarity and accuracy of sCT-based dose plans were assessed against CT
to select the best-performing DR approach against the Baseline.
Results: The Baseline model had the poorest performance on FLAIR, with mean absolute error (MAE) =
106 ± 20.7 HU (mean ±𝜎). Performance on FLAIR significantly improved for the DR model with MAE =
99.0 ± 14.9 HU, but still inferior to the performance of the Baseline+FLAIR model (MAE = 72.6 ± 10.1 HU).
Similarly, an improvement in 𝛾-pass rate was obtained for DR vs Baseline.
Conclusion: DR improved image similarity and dose accuracy on the unseen sequence compared to training
only on acquired MRI. DR makes the model more robust, reducing the need for re-training when applying a
model on sequences unseen and unavailable for retraining.
1. Introduction

Radiation therapy (RT) plays a crucial role in cancer treatment,
benefiting approximately half of all cancer patients [1]. Computed
tomography (CT) is the primary imaging modality for RT planning
as it provides accurate electron density information required for dose
calculations [2]. Magnetic resonance imaging (MRI), on the other hand,
offers superior soft tissue contrast compared to CT and has been pro-
posed as the preferred modality for delineating tumors and surrounding
organs at risk (OARs) [3]. MRI has proven valuable in reducing vari-
ability in tumor and OAR delineations across various disease sites, such
as breast [4], prostate, and head-and-neck cancers [5]. Moreover, for
certain brain cancer patients, MRI plays a crucial role in identifying
tumor boundaries that may not be clearly visible on CT [6,7].
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While CT provides the necessary information for dose calculations,
MRI lacks the inherent electron density characteristics required in
RT [8]. As a result, CT and MRI images are often acquired and fused
for RT planning [9], potentially introducing uncertainties due to mis-
registrations [10,11]. MRI-only RT offers several advantages [12,13],
including reduced patient exposure to ionising radiation, particularly
beneficial in scenarios requiring re-planning [14] or for pediatric pop-
ulations [15]. Additionally, MRI-only RT improves patient comfort by
reducing the number of scans required and simplifies the workflow,
leading to reduced workload [16–18] and costs [16,17,19]. With the
introduction of MRI-guided RT [20,21], the interest in MRI-only RT
has grown significantly [22,23]. Commercial products are available to
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facilitate MRI-only in the prostate, brain, and head and neck, making
MRI-only a clinical reality [24].

The main obstacle in implementing MRI-only RT is the lack of a
direct relationship between the nuclear magnetic properties of tissues
and their electron density characteristics for dose calculations. Numer-
ous approaches have been proposed to represent MRI as a CT equivalent
to overcome this, resulting in synthetic CT (sCT) images [24–26].

Recently, deep learning (DL)-based methods became of particular
interest as their inference requires limited time (seconds to minutes)
for sCT generation, unlike classical image processing-based methods
(ten minutes to hours) [27,28]. This time aspect is essential in MRI-
guided RT, requiring sCT generation within a few minutes to allow
daily re-planning [22,25].

However, DL models have limitations in generalising to new do-
mains [29,30]. DL models assume a shared statistical distribution and
feature space between the training and test data, necessitating re-
training if the test data lies outside the distribution [31]. In the case
of sCT generation, new domains can include different MRI sequences,
images acquired in different hospitals with varying acquisition param-
eters, scans acquired after a scanner upgrade or with a different model,
or even images of different anatomies.

Most existing DL models for sCT generation have been trained
and tested on specific anatomical sites using a limited set of MRI
sequences and fixed imaging parameters [24]. These models often
overlook the variability in MRI acquisition protocols used in clinical
practice or the potential protocol changes over time. Robust and gen-
eral models capable of producing sCT images from previously unseen
MRI sequences would greatly facilitate the widespread clinical im-
plementation of MRI-only RT [32,33]. However, achieving this level
of generalisation remains a challenge for deep learning techniques
[34,35].

Recent studies have investigated the generalisation of DL models to
multiple MRI sequences in the context of MRI-only RT
[36,37]. These studies attempted to improve inference performance
by retraining the network on the additional sequences. However,
poor generalisation was observed when the models were evaluated on
sequences not included in the training data [36,37].

Recently, a promising technique called domain randomisation was
proposed to improve a segmentation network’s ability to generalise
to unseen MRI sequences [38,39]. The method relies on the hypoth-
esis that increasing variability in synthetic training data forces the
model to provide accurate output for all domains [40], e.g., in MRI
sequences and is motivated by experiments showing that data aug-
mentation beyond realism improves generalisation [41]. In this work,
we explore domain randomisation to develop DL-based models for
MRI-to-sCT generation that can generalise to MRI scans acquired with
unseen sequences in brain MRI-only RT. Inspired by previous work
by Billot et al. [38,39], we propose a domain randomisation method
that generates synthetic images with random contrasts to enhance
contrast generalisation. The underlying hypothesis is that training a
DL model for MRI-to-sCT generation on input data with synthetic,
rather than necessarily realistic, image contrasts compels the network
to learn contrast-agnostic features [40,41]. To our knowledge, domain
randomisation has not been applied yet to MRI-only RT.

We investigate two approaches to domain randomisation: (1) train-
ing on images with synthetically generated random contrast derived
from segmented MRIs, and (2) training on random linear combinations
of multiple MRI sequences. The effects of domain randomisation are
compared to training solely on a mixture of acquired sequences. Our
goal is to explore the extent to which a DL model can become contrast-
agnostic and capable of generating sCT images that enable clinically
acceptable dose calculations for RT planning.

By conducting this study, we aim to contribute to developing robust
DL models for MRI-to-sCT generation that can generalise to unseen MRI
sequences. Such models can potentially advance the implementation
of MRI-only RT and improve treatment planning accuracy in clinical
2

practice. w
2. Materials and methods

2.1. Data collection and imaging protocols

Data from 95 patients were selected undergoing treatment at the
UMC Utrecht RT department from a large retrospective, anonymised
database collected under the local Medical Ethical Committee’s ap-
proval (study number: 20/519, approved on August 11, 2020). The
main selection criterion was the availability of a treatment plan for
brain RT conducted between January 2020 and July 2021, with cor-
responding CT and MRI (T1-weighted with and without contrast en-
hancement, T2-weighted and FLAIR images). Patients were excluded if
not all sequences were available, no suitable CT was available, the time
between MRI and CT acquisition exceeded 1.5 months, the patient’s
age was <18 years, or the MRI was a follow-up exam. If multiple CT
acquisitions were available, the most recent one was chosen, and the
MRI dataset acquired closest in time to the CT was selected.

Patients were randomly divided over the training (n = 60), val-
dation (n = 10) and test set (n = 25). The female/male ratio for
he 95 included patients was 51/44 with a mean patient age of 59.9
13.0 years (range: 24.3–86.8). In total, 66 patients were acquired
n 1.5 T, and 29 on 3.0 T. The mean interval between CT and MRI
cquisition was six days (range: min–max = 1–26). Dose prescriptions
anged from 14 to 60 Gy over 1–33 fractions of 2.0–3.0 Gy.

Planning CTs were acquired at the radiotherapy department using
Brilliance Big Bore system (Philips Healthcare, USA). The acquisition
ccurred in the supine treatment position, aided by head support
nd a personalised immobilisation mask. CT acquisition was without
ontrast agents, with a tube potential of 120 kV, a tube current of
34–360 mA (range = min–max), and 1000–1712 ms exposure. The
n-plane resolution was 0.57–1.17 mm2, with a slice thickness of

1–2 mm.
MRI data were acquired with a 1.5 or 3.0 𝑇 Ingenia MR-RT system

Philips Healthcare, the Netherlands). Available sequences (Table 1)
ere: 3D T1-weighted turbo field echo (TFE) images with and with-

out Gadolinium contrast (T1w and T1wGd), 2D T2-weighted turbo
spin-echo (TSE) images with Gadolinium contrast (T2w) and 3D T2-

eighted FLAIR TSE images (FLAIR).

.2. Image processing

If not otherwise specified, image processing and performance eval-
ation was performed in Matlab R2019a (The MathWorks, Inc., USA).
Pre-processing Each MRI was rigidly registered to the correspond-

ng CT with Elastix (version 4.700) [42,43], using multi-resolution
egistration (with a resolution of 4, 2, 1, and 0.5 times the reconstructed
oxel size) with an adaptive stochastic gradient descent optimiser and
utual information similarity metric. The parameters from [44] were

dopted. The registered MRI will be referred to as MRIreg. MRIreg and
CT were resampled to isotropic 1.0 × 1.0 × 1.0 mm3 resolution using
linear interpolation.

Most images contained a discrepancy between CT and MRI FOVs,
caused by angled MRI acquisition (Fig. 1). A body mask was computed
on the non-registered MRI to ensure congruent FOVs between CT and
MRIreg. The mask was generated using a threshold with an empirically
determined value of 20 (or 15 for T2w images), followed by morpholog-
ical filling and dilation with a disk-shaped structuring element of radius
20 voxels. The binary mask was registered to the CT by applying the
transform computed for MRIreg, resampled, and applied to the MRIreg-

T pair for training. The MRIreg and CT FOVs were cropped to the
xtent of the registered mask with additional ten voxel margins on each
ide or until the original image boundary. MRIreg were normalised by
lipping to the per-patient 99th percentile over the masked volume.
raining CTs were clipped to range [−1024, 1500] HU, but the range

as kept untouched for evaluation purposes.
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Table 1
Overview of acquisition parameters per sequence for the 95 included patients.

Parameter 3D T1w 3D T1w 2D T2w 3D T2w
TFE TFE Gd TSE FLAIR TSE

𝐵0 [T] 1.5 (66) 1.5 (66) 1.5 (66) 1.5 (66)
3.0 (29) 3.0 (29) 3.0 (29) 3.0 (29)

Contrast No Yes Yes No
Read-out AP AP AP AP

Flip angle [◦] 8 8 90 90
TR [ms] 7.6–8.7 7.6–8.7 3119–5996 4800
TE [ms] 3.5–4.1 3.5–4.1 80–100 303–363

FOVa [mm3] 230, 160 230, 160 230, 140–160 230, 160
Acq voxela [mm3] 1.0, 0.5–1.0 1.0, 0.5–1.0 0.6–0.7, 4.0–5.0 1.1–1.2, 0.6
Rec voxela [mm3] 0.4–1.0, 0.5–1.0 0.5–1.0, 0.5–1.0 0.4–0.5, 4.0–5.0 1.0, 0.6

Rec matrixa 240–512, 162–323 240–480, 162–323 480–512, 31–43 240, 269–270
BW [Hz/px] 190–217 190–217 143–206 851–1075
Acq time [s] 136–271 121–271 117–137 331–475

Acq time: acquisition time; Acq voxel/Rec voxel: acquisition/reconstruction voxel size; AP: anterior-posterior; 𝐵0: main magnetic field strength; BW: bandwidth; FOV: field-of-view;
Rec matrix: reconstruction matrix; TE: echo time; TFE: turbo field echo; TR: repetition time; TSE: turbo spin echo.
aDirections: anterior-posterior, right-left and craniocaudal.
Fig. 1. Example of the pre-processing outcomes. The original T1w (top row), T1wGd (second row), T2w (third row), and FLAIR (bottom row) brain MRI for a single male patient
in the training dataset are shown (left) with corresponding normalised MRIreg, CTtrain and ground truth CTcrop (left to right).
For CT, the masking and range clipping steps were only applied to
the training images (hereafter: CTtrain). CTtrain and normalised MRIreg

were saved as 3D volumes in NifTI format, linearly rescaled to [−1,
1]. Fig. 1 shows an example of a normalised brain MRIreg with the
corresponding normalised CTtrain, ground truth CTcrop and original,
unregistered MRI for each sequence for a single patient.

Post-processing For post-processing, all generated sCTs were lin-
early rescaled to a [−1024, 1500] HU range, conforming to the range
of CT .
3

train
2.3. Performance evaluation

The quality of the generated sCTs was evaluated in terms of image
similarity between acquired CT and generated sCT and dose accu-
racy. Statistical comparisons were performed with Wilcoxon signed-
rank tests, with p-values <0.05 regarded as statistically significant.
Moreover, training and inference times are reported.

2.3.1. Image similarity
The accuracy of the assigned HU values was analysed with a voxel-

wise comparison between CTcrop (ground truth) and sCT. A body con-
tour mask was applied to CT and sCT before calculating the metrics
crop
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and comparing on the intersection of the two masks. The masks were
created by thresholding the (s)CT above −200 HU, then morphologi-
cally closing and filling the combined mask to include the nasal cavities.
The mean absolute error (MAE) was computed per patient. Peak signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM)
were additional metrics. The range and mean ± standard deviation
(𝜇 ± 𝜎) over all patients in the validation or test set were calculated
for each metric.

2.3.2. Dose accuracy
The clinically optimised dose plan was re-calculated for the final

models on (s)CT. Generated sCTs were registered and resampled to the
original, non-cropped CT, allowing only translations. Multi-resolution
registration was performed (with a factor 4, 2, 1, and 0.5 to the
voxel size) with an adaptive stochastic gradient descent optimiser and
mutual information. In case the registration quality was considered
poor by an observer or failed, three resolutions were used instead of
four (resolution 1: 4, 4, 2; resolution 2: 2, 2, 1; resolution 3: 1, 1, 0.5).

A segmentation of the body contour of the non-cropped CT was
taken from the clinical treatment plan, and the voxels outside the
original MRI FOV and inside this body contour were set to 0 HU. The
difference in FOV between sCT and acquired CT was thus water-filled
in both images. The water-filled sCT and acquired CT are referred to as
sCTwf and CTwf.

Plans were volumetric modulated arc therapy (VMAT) photon plans
with a single arc with a beam energy of 6.0 MV. They were calculated
with a Monte Carlo algorithm on a 3 mm3 grid with 3% uncertainty.
Plan re-calculation was performed on (s)CTwf using GPUMCD [45].

Dose accuracy was assessed through the calculation of the dose
ifference (DD) relative to the prescribed dose (Dpresc) in the high-dose
egion (D >90% of Dpresc) [24]:

𝐷 = 100 ∗
𝐷𝐶𝑇 −𝐷𝑠𝐶𝑇

𝐷𝑝𝑟𝑒𝑠𝑐
%, (1)

ith D the dose (in Gy) in the (s)CTwf-based dose plan. Korsholm
t al. [46] proposed a criterion for the clinical acceptability of DD:
he DD compared to a CT-based dose plan should be <2% for 95% of
he patients. In this work, a more conservative criterion was adopted.
ndividual sCTs were considered acceptable if the DD was <1%.

Dose-volume histograms (DVH) were analysed for differences in
median and Dmax between sCT- and CT-based plans for the follow-

ng OARs: brainstem, optic chiasm, lenses, cochleae, and pituitary
land. Additionally, a 3D-𝛾 global analysis was conducted [47]. For
he computation of 𝛾-pass rates, a 10% dose threshold was used, with
%,3 mm, 2%,2 mm, and 1%,1 mm criteria. Heilemann et al. [48]
emonstrated the ability to detect clinically unacceptable VMAT plans
sing a 90% 𝛾-pass rate threshold for the 2%,2 mm criterion. Never-
heless, the absence of clinically significant dose differences was not
uaranteed [48]. Considering that evaluation of 𝛾-pass rates is adopted
or quality assurance of delivered plans, where uncertainty is higher,
e adopted stricter thresholds in this work: 95% and 99% for the
%,2 mm, and 3%,3 mm criteria. The primary metric was the 95% dose
hreshold on 𝛾 2%,2 mm.

.4. Network architecture

The cGAN model pix2pix was implemented to allow paired train-
ng, as proposed by Isola et al. [49]. Initial investigations showed that
D models outperformed 2D ones [50]. Therefore, only 3D models are
eported in this work.

An implementation of the original pix2pix model [49] called
anslate [51] in PyTorch version 1.10 was used for 3D models.
ccording to the server availability, all models were trained on a GPU
esla P100 PCIe 16 GB or V100 PCIe 32 GB (NVIDIA Corp., USA).

A 3D U-Net generator architecture that allows variable patch sizes
s input was adopted, along with a 70 × 70 PatchGAN discrimina-
or [49]. The 𝐿1-based loss function proposed in [49] was imple-
4

ented.
.5. Model optimisation

Hyperparameter optimisation was performed with a grid search
trategy on a subset of the training set consisting of ten patients from
he training set with only T1w images without contrast. The hyperpa-
ameters leading to the lowest average MAE in the validation set were
dopted. SSIM and PSNR were calculated as additional metrics. The
yperparameter grid search space is detailed in Supplementary Material
.A.

One patient was retrospectively excluded from the validation set
fter observing the T2w MRI and CT registration failure. Validation of
ll models except those trained in the hyperparameter tuning stage was
hus done on a nine-patient validation set.

As a final optimisation step, the ratio between T1w images
ith/without contrast and T2w images in the training set was balanced,
nd the batch size was fine-tuned (Supplementary Material I.B.). This
tep involved training a subset of fifteen patients from the training set.
fter balancing, the final training dataset (n = 60) contained 60 T2w,
0 T1w, and 30 T1wGd images.

After optimisation, all models were trained with Xavier initialisa-
ion, Adam optimiser, patch size = 128 × 128 × 128 voxels, batch size

1, 𝜆 = 5000, number of downsampling steps = 5, and a constant
learning rate of 0.001. A sliding window was used for patch combina-
tion with a patch overlap of 0.5, as also found in [27] and Gaussian
blend mode. The Adam optimiser [52] was implemented with 𝛽1 = 0.5
and 𝛽2 = 0.999 as momentum parameters and no weight decay.

Early stopping was applied to avoid overfitting, using the MAE as a
decision criterion. The MAE was calculated for the sequences included
for training in the body contours for the patients in the validation set.
A combined MAE was computed as the average of the seen sequences.
The first iteration for which this combined MAE did not improve for
the following three iterations was selected, evaluating every 50,000
iterations. Supplementary Material I.C. illustrates the early stopping
method.

2.6. Domain randomisation

Domain randomisation was applied by training on generating ran-
dom contrast (RC) images starting from label maps or generating linear
combinations (LC) of the acquired MRI. Both approaches have been
investigated and are described in the following.

2.6.1. Random contrast
The domain randomisation strategy comprising RC images (Sec-

tion 2.6) requires segmenting patients’ MRIs. Automatic segmenta-
tions were generated from the T1w images, complemented by some
structures labelled using CTtrain.

Segmentation of cerebral structures was performed on T1w images
using an open-source DL network called FastSurfer [53]. OARs were
added by segmentation of T1w MRI with a previously in-house devel-
oped DL algorithm that is clinically adopted (unpublished and devel-
oped for clinical use as in [54]), based on the DeepMedic model [55].
The GTV was obtained from the clinical segmentation. Cerebrospinal
fluid (CSF) was labelled using a combination of FastSurfer labels and
clinical segmentations. Also, CTtrain was segmented by thresholding to
obtain labels for bone and soft tissue. The resulting label maps were
stored as an additional dataset. More details on image segmentation,
a lookup table with included labels, and an example of created label
maps are reported in Supplementary Material II.

Label maps were converted to RC images for network training, as
proposed by Billot et al. [39] using TorchIO library [56]. Specifically,
after randomly selecting a segmentation from the training data, each
label was assigned a Gaussian function with the mean and standard
deviation chosen randomly from a uniform distribution with ranges of

[10, 240] and [1, 25], respectively. These ranges were based on the
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Fig. 2. Examples of random contrast (RC; top row) and linear combination (LC; bottom
row) images generated from label maps. Each image is a slice from an example patch
as input to the network during training.

sensitivity analysis in [39]. All voxels within a label were assigned an
intensity value sampled from this Gaussian distribution.

Then, images were blurred to increase spatial coherence between
neighbouring voxels. The standard deviation of the Gaussian was ran-
domly sampled from a uniform distribution: 𝜎𝑏𝑙𝑢𝑟 ∼ 𝑈 (0, 0.3), like
in [38]. Random gamma augmentation was applied after rescaling
image intensity to a positive range to increase variability in the training
data further. Following [39], the exponent 𝛾 = 𝑒𝛽 was randomly
sampled from a normal distribution: 𝛽 ∼ 𝑁(𝜇𝛽 , 𝜎𝛽 ) with 𝜇𝛽 = 0 and
𝜎𝛽 = 0.4. The RC image was rescaled to [−1, 1]; see Fig. 2(top) for an
example of RC image patches.

2.6.2. Linear combination
Linear combination was considered to investigate a more straight-

forward method to perform domain randomisation than RC that would
not require brain segmentations, facilitating the application of domain
randomisation.

Linear combination (LC) images were generated from T1w(Gd) and
T2w MRI. To enable linear combination, an additional training dataset
was created in which the pre-processed T2w and T1wGd images were
registered to the corresponding T1w image with the same registration
parameters as in Section 2.2 A random choice was made during net-
work training between combining the patient’s T2w image with their
T1w or T1wGd image, using equal probabilities. The T1w(Gd) and T2w
images were then combined as follows:

𝐼𝑚𝐿𝐶 = 𝑝1 ∗ 𝐼𝑚𝑇 1 + 𝑝2 ∗ 𝐼𝑚𝑇 2, (2)

with 𝑝1 and 𝑝2 as the coefficients for voxel-wise addition of the T1w(Gd)
(𝐼𝑚𝑇 1) and T2w (𝐼𝑚𝑇 2) image, respectively. These were randomly
sampled from a uniform distribution: 𝑝1,2 ∼ 𝑈 (−1, 1). The chosen range
allows addition and subtraction in the linear combination and contrast
inversions. Finally, images were rescaled to the range [−1, 1]. Fig. 2
(bottom) shows several examples of LC patches.

2.7. Experiment: random contrast vs linear combinations

An experiment was conducted to identify the most effective domain
randomisation technique between RC and LC, comparing the two mod-
els in terms of image similarity on the validation set. Each model was
trained with both the two domain randomisation approaches.

A model trained on a mix of acquired MRI and RC images derived
from segmentations was adopted for this experiment to represent the
RC method, after initial investigations showed that it outperformed
a model trained on RC images only [50]. For model training, the
entire training dataset was used. Hence, this RC model was trained on
60 segmentations, 30 T1w, 30 T1wGd, and 60 T2w images from the
training set (n = 60 individual patients).
5

For the domain randomisation method comprising LC images, initial
investigations indicated that a model trained with a 50% chance of ap-
plying a linear combination to the acquired MRI outperformed a model
trained with a 100% chance of using a linear combination [50]. The LC
model was thus trained with a 50% chance of linear combination. The
dataset from which LC images were generated consisted of acquired
T1w (n = 60) images and T1wGd (n = 60) and T2w (n = 60) images
that had been registered to their T1w counterpart, as mentioned in
Section 2.6.2 For the LC model, this LC-specific dataset and the original
training dataset of 30 T1w images, 30 T1wGd images and 60 T2w
images (Section 2.5) were used. A random choice was made at each
iteration whether to apply a linear combination. The original dataset
was sampled if an LC image should not be used.

The RC and the LC model were trained with the hyperparameters
described in Section 2.5. Early stopping was based on the MAE obtained
for sCT generated from T1w(Gd) and T2w images in the validation set
for both models.

The RC and LC models were statistically compared using image
similarity metrics calculated per sequence (T1w(Gd), T2w and FLAIR)
on the validation set using MAE as the leading metric for model
choice. The best-performing model was adopted as the final Domain
Randomisation model.

2.8. Domain randomisation on an unseen sequence

In a final comparison, the chosen Domain Randomisation model
that will result from the experiment described in 2.7 was compared to
two models trained without domain randomisation: a Baseline model
and a Baseline+FLAIR model. In this way, we can compare the impact
of adding the unseen FLAIR sequence against domain randomisation
compared to the baselines.

2.8.1. Baseline model
The Baseline model was trained on a mix of T1w, T1wGd, and

T2w images to assess the models’ ability to generalise to an unseen
sequence (FLAIR) without domain randomisation. For model training,
the entire training dataset was used: 30 T1w, 30 T1wGd, and 60 T2w
images, applying the hyperparameters described in Section 2.5. The
early stopping iteration was determined based on the MAE on T1w,
T1wGd, and T2w images of patients in the validation set.

After determining when to apply early stopping on the validation
set, the model was inferred on the test set (n = 25). Image similarity
metrics and dose accuracy were calculated for sCT generated from pa-
tients’ T1w, T1wGd, T2w, and FLAIR images in the test set. The image
similarity metrics and metrics for dose evaluation were statistically
compared between the four sequences. To discuss the dose accuracy on
an individual patient level, we limit ourselves to the results obtained
for the unseen FLAIR sequence.

2.8.2. Baseline+FLAIR vs Baseline
The Baseline+FLAIR model was trained to obtain a measure for the

best achievable performance for FLAIR input images. This model was
trained on the whole training set of 60 patients used for training the
Baseline model, with the addition of FLAIR images. Hence, altogether
the training dataset consisted of a mix of T1w (n = 30), T1wGd (n
= 30), T2w images (n = 60), and FLAIR images (n = 60) from 60
individual patients. The hyperparameters described in Section 2.5 were
adopted. For the Baseline+FLAIR model, the iteration for early stopping
was determined based on the MAE on T1w, T1wGd, T2w, and FLAIR
images of patients in the validation set.

After early stopping, the Baseline+FLAIR model was inferred on the
test set (n = 25). Image similarity metrics and dose accuracy were
calculated for sCT generated from each of the four sequences (T1w,
T1wGd, T2w, and FLAIR). For each sequence, the image similarity met-
rics and metrics for dose evaluation were statistically compared with
those obtained for the Baseline model. Also, statistical comparisons
were made between the sequences.
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Table 2
MAE obtained for sCT generated by the RC and LC models per MRI sequence. Metrics were calculated on the validation set (n = 9) within the intersection of the body contour
of the sCT and CT. Mean values and standard deviations (𝜇 ± 1𝜎) and range ([min - max]) are reported. Wilcoxon-signed rank tests were used for statistical comparisons. Values
of p < 0.05 were regarded as statistically significant.
Metric Model Sequence

T1w T1wGd T2w FLAIR

MAE [HU] RC 71.5 ± 12.1 [59.7 – 100] 69.6 ± 12.2 [56.6 – 98.6] 76.3 ± 10.9 [60.2 – 95.6] 105 ± 20.5 [74.1 – 142]
LC 72.3 ± 12.4 [57.3 – 100] 71.0 ± 12.2 [58.2 – 99.8] 77.8 ± 11.4 [63.0 – 100] 110 ± 23.9 [72.9 – 155]

p-value 0.3 0.2 0.2 0.04
2.8.3. Domain randomisation vs baselines
For the final comparison, the Domain Randomisation model was

inferred on the test set (n = 25 patients). As for the Baseline and
aseline+FLAIR model, image similarity metrics and dose accuracy
ere calculated for sCT generated from patients’ T1w, T1wGd, T2w and
LAIR images. Per sequence, the image similarity and dose evaluation
etrics were statistically compared to those obtained for the Baseline

nd Baseline+FLAIR model. Additionally, statistical comparisons were
ade between the sequences.

. Results

For all the models inference time on the test set was approximately
s per sequence and patient.

.1. Experiment: random contrast vs linear combinations

Early stopping was applied after 450,000 iterations for the RC model
nd 200,000 iterations for the LC model. For all sequences, the MAE
btained on the validation set was lower for the RC model than for
he LC model (Table 2). Only the difference in FLAIR images was
tatistically significant: an MAE of 105 ± 20.5 HU was obtained for

the RC model, compared to an MAE of 110 ± 23.9 HU for the LC
model. Differences in SSIM and PSNR were not statistically significant
(Supplementary Material III.A.).

Overall, using RC images was deemed the most beneficial do-
main randomisation strategy. Consequently, the RC model was adopted
as the Domain Randomisation model for final comparison with the
Baseline and Baseline+FLAIR models.

3.2. Domain randomisation on an unseen sequence

3.2.1. Baseline model
The training time for the Baseline model was 32.0 h, applying early

stopping at iteration 300,000.
Among the four sequences, the performance of the Baseline model

on the test set (n = 25) was best on T1w and T1wGd images (Fig. 3
), with the difference between these two sequences not statistically
significant for the three metrics. The p-values resulting from statistical
tests of performance metrics (image similarity and dosimetric accuracy)
between sequences are presented in Supplementary Material III.B. for
each of the models. The mean MAE was 64.2 ± 7.3 HU or 63.8 ± 9.1
HU for T1w and T1wGd images, respectively. The worst performance
was found for FLAIR images, with a considerable difference with per-
formance on T1w(Gd) images: the mean MAE was 106 ± 20.7 HU.
Testing on T2w images resulted in a mean MAE of 69.6 ± 8.5 HU. The
difference in performance on FLAIR and T2w images compared to the
performance on the other three sequences was statistically significant.
Violin plots for SSIM and PSNR are shown in Supplementary Material
III.C. Results for SSIM and PSNR were in line with the MAE for the
Baseline model.

For the Baseline model, 3D 𝛾-pass rates in the low dose region
(>10% of the prescribed dose) with 1%,1 mm criterion were >95%
(Table 3) for every patient and each sequence. The pass rate obtained
for FLAIR images (99.0 ± 1.1%) was significantly lower than that
computed for all other sequences. The 𝛾-pass rates with 3%,3 mm and
6

2%,2 mm criteria were >99% for every patient and sequence. The
obtained 𝛾-pass rates with 3%,3 mm and 2%,2 mm criteria are shown
in Supplementary Material III.D. for each of the models.

For the Baseline model, a DD in the high-dose region (>90% of the
prescription dose) of −0.1 ± 0.2% was obtained for treatment plans
based on sCT generated from T1w, T1wGd and T2w images, and a DD
of 0.4 ± 0.5% was found for FLAIR images (Table 3). The DD was
significantly larger for FLAIR than the three other sequences. Other
differences in DD between sequences were not statistically significant.

The DD in treatment plans from FLAIR-based sCT was ≤1.5% and
>1% for three patients (PT2, PT13, and PT18). Specifically, a discrep-
ancy between sCT and CT HU values was found for PT2 near the
high-dose region: the skull near the frontal lobe was too thinly on sCT,
causing HU values to be lower than in the CT. Discontinuities were
visible in the skull of this post-surgical patient in the problematic area,
although no part of the skull had been resected. For PT13, the high-dose
region was located in the dorsal part of the cerebrum, where differences
in skull thickness occurred between the FLAIR-based sCT generated by
the Baseline model and the acquired CT, this time with higher HU
values in the sCT than in the acquired CT. Notable dose differences
were observed for PT18 near the nasal cavities, close to one of the
isocentres of irradiation. The sCT generated by the Baseline model
from this patient’s FLAIR image revealed more prominent differences
between HU values of sCT and acquired CT than the sCT generated for
the other sequences.

Boxplots presenting the results of the DVH analysis are shown in
Supplementary Material III.D for all three models. In general, minor
differences in Dmax and Dmedian were observed for OARs in DVH anal-
ysis for each sequence for the Baseline model. On average, differences
were below 0.5% for every sequence and DVH point. Individually, most
patients had differences in DVH points ≤1%. Exceptions for FLAIR-
based sCT were the pituitary gland (PT14), optic chiasm (PT1), and
lens (PT12), with differences ≤2%. PT12 patient had an RT plan with
a vast irradiated area, matching the patient’s large tumour volume. For
this patient, for sCT derived from every MRI sequence, notable dose
differences were observed around the body contour on the right half.

3.2.2. Baseline+FLAIR vs Baseline
Training the Baseline+FLAIR model took 46.2 h with the application

of early stopping at 450,000 iterations. The MAE obtained on T1w(Gd)
(T1w: 65.5 ± 7.7 HU; T1wGd: 64.6 ± 9.3 HU), and T2w (71.2 ± 8.8
HU) images was slightly worse for the Baseline+FLAIR model than the
Baseline model (Fig. 3). This difference was statistically significant for
T2w and T1w, but not for T1wGd images.

The most notable change in MAE was found on FLAIR images,
favouring the Baseline+FLAIR model. Adding FLAIR images to the
training data reduced the MAE from 106 ± 20.7 HU to 72.6 ± 10.1
HU (p < 0.5). Results for SSIM and PSNR were generally in line with
the MAE.

For the Baseline+FLAIR model, 𝛾1%1mm-pass rates were >97% for
each patient and MRI sequence (Table 3). As for the Baseline model,
pass rates 𝛾3%3mm, and 𝛾2%2mm were all >99%. For FLAIR images, the
Baseline+FLAIR model outperformed the Baseline model in terms of
𝛾1%1mm-pass rate: 99.4 ± 0.8% (Baseline+FLAIR model) vs 99.0 ± 1.1%
(Baseline model).
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Fig. 3. Violin and box-and-whisker plots for the MAE in the intersection of the body contour of sCT compared to ground truth CT on the test set (n = 25) for sCT generated
by the Baseline (blue), Baseline+FLAIR (orange) and Domain Randomisation model (green). Results are presented per sequence: T1w (top left), T1wGd (top right), T2w (bottom
left) and FLAIR (bottom right). The black box indicates the interquartile range and median (white circle) with whiskers indicating the range, outliers excluded. The width of the
violin indicates the distribution of the data points. The mean values and standard deviations are shown. Statistically significant differences are indicated by * (p < 0.05) or ** (p
< 0.001). Wilcoxon-signed rank tests were used for statistical testing. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Table 3
Dose evaluation (𝛾1%,1𝑚𝑚 and DD) for sCT generated by the Baseline, Baseline+ FLAIR and Domain Randomisation models per MRI sequence. Dose accuracy was assessed through
plan re-calculation on sCTwf compared to CTwf. Mean values and standard deviations (𝜇 ± 1𝜎) and range ([min - max]) are reported.

Metric Model Sequence

T1w T1wGd T2w FLAIR

𝛾1%,1𝑚𝑚 [%]a

Baseline 99.4 ± 0.8
[97.1 – 100]

99.4 ± 0.8
[96.9 – 100]

99.4 ± 0.7
[97.3 – 100]

99.0 ± 1.1
[95.4 – 99.9]

Baseline
+ FLAIR

99.5 ± 0.7
[97.4 – 100]

99.5 ± 0.7
[97.2 – 100]

99.4 ± 0.7
[97.4 – 100]

99.4 ± 0.8
[97.2 – 100]

Domain
Randomisation

99.4 ± 0.8
[97.0 – 100]

99.4 ± 0.8
[96.9 – 100]

99.3 ± 0.8
[97.2 – 100]

99.2 ± 0.9
[96.6 – 99.9]

DD [%]b
Baseline −0.1 ± 0.2

[−0.5 – 0.1]
−0.1 ± 0.2
[−0.5 – 0.1]

−0.1 ± 0.2
[−0.4 – 0.8]

0.4 ± 0.6
[−1.0 – 1.5]

Baseline
+ FLAIR

−0.02 ± 0.2
[−0.4 – 0.4]

−0.01 ± 0.2
[−0.7 – 0.5]

0.01 ± 0.3
[−0.4 – 1.1]

0.01 ± 0.4
[−1.4 – 0.7]

Domain
Randomisation

−0.1 ± 0.2
[0.5 – 0.2]

−0.2 ± 0.2
[0.5 – 0.1]

−0.1 ± 0.3
[−0.5 – 0.9]

0.3 ± 0.5
[−0.4 – 1.4]

aCalculated in the D > 10% prescribed dose.
bCalculated in the D > 90% prescribed dose.
Likewise, the other two pass rates were significantly higher for
the Baseline+FLAIR model. Surprisingly, despite the higher MAE ob-
tained in T1w images for the Baseline+FLAIR model versus the Base-
line model, a significantly higher 𝛾1%1mm-pass rate was obtained for
the Baseline+FLAIR model (99.5 ± 0.7% vs 99.4 ± 0.8%). All other
differences in pass rates between the two models were not significant.

The absolute DD values obtained per sequence for the Baseline
+FLAIR model were smaller than those obtained for the Baseline model
(p < 0.05), with DD < 1.5% for every patient and seen sequence. For
FLAIR images, the number of patients with a DD > 1% was reduced to
one (PT2) compared to three for the Baseline model. Similar to what
was found for the Baseline model, for PT2, discrepancies between sCT
and CT HU values were present near the high-dose region around the
surgical intervention.

As for the Baseline model, differences in Dmax and Dmedian were
minor for all DVH points evaluated and all sequences, with average
differences <0.5% and DVH point difference <1%, except for the
cochlea of PT12 (≤1.5%) probably due to body contour mismatches
on the right side.
7

3.2.3. Domain randomisation vs baselines
The training time for the Domain Randomisation model was 66.4 h

(450,000 iterations).
For the seen sequences, the MAE obtained for the Domain Randomi-

sation model was higher (T1w: 67.6 ± 7.4 HU; T1wGd: 66.5 ± 9.2
HU; T2w: 71.5 ± 7.9 HU) than that obtained for the Baseline and
Baseline+FLAIR models (Fig. 3). All differences between the Domain
Randomisation model and the Baseline model for these three sequences
were statistically significant. Likewise, the differences between the Do-
main Randomisation and the Baseline+FLAIR model were statistically
significant for T1w and T1wGd images but not for T2w images. Results
for SSIM and PSNR were generally consistent with the MAE.

The MAE obtained for the Domain Randomisation model on FLAIR
images (99.0 ± 14.9 HU) was 7 HU lower than that obtained for the
Baseline model (p < 0.05), a difference which is larger than the increase
in MAE obtained for the other sequences (T1w: +3 HU, T1wGd: +3
HU; T2w: +2 HU). Despite this decrease in MAE on FLAIR images
obtained through the addition of RC images during network training,

the MAE obtained for the Domain Randomisation model was 26 HU
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Fig. 4. Results generated by the Domain Randomisation model, for a subject with average performance for T1w, T1wGd, T2w and FLAIR input images (top to bottom). The image
shows from left to right: the original MRI, ground truth CT, sCT generated by the Domain Randomisation model, and the difference between the acquired CT and sCT. Typical
problematic areas are the nasal cavities and the borders of the skull (bright in the image, with the difference between CT and sCT on the right). For FLAIR specifically, the back of
the neck (arrow) is problematic, and the skull is too thick on sCT, represented by the blue colour in the image with the difference between CT and sCT (right). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
higher than that achievable when adding FLAIR images to the training
dataset (Baseline+FLAIR model; p < 0.05).

Fig. 4 shows results for an example case generated by the Domain
Randomisation model. Typical problematic areas for all sequences are
the skull border and the nasal cavities. Similar difficult areas are ob-
served for the Baseline and Baseline+FLAIR model. For FLAIR images,
the Domain Randomisation model produced sCTs in which the skull
is thicker than the acquired CT, showing a bright blue colour in the
difference image (Fig. 4, right). Additionally, the musculature in the
back of the neck is typically a problematic area for FLAIR images
(arrow). Similar observations are made for the Baseline model. For
the Baseline+FLAIR model, the overestimated skull thickness and neck
musculature inaccuracies are less prominent.

Overall, a visual inspection of the results generated by the Domain
Randomisation model from FLAIR images reveals that the model might
be more robust than the Baseline model. Fig. 5 shows three example pa-
tients for whom the Baseline model produced artefacts in the sCT (green
rectangles). Such artefacts were not observed in the FLAIR-based sCTs
produced by the Baseline+FLAIR and Domain Randomisation models.
The bottom row shows images of a patient with an oedematous area in
the frontal lobe. The area is hypointense on the FLAIR image, leading
to an intensity similar to air in the sCT generated by the Baseline
model, which translates to a high positive value in the image with the
difference between CT and sCT. Results for the Domain Randomisation
and Baseline+FLAIR model are less problematic.

Fig. 5 also shows that the Domain Randomisation model better
depicts the neck muscles than the baselines. Nevertheless, the smallest
differences between CT and sCT in this area are observed in the sCT
generated by the Baseline+FLAIR model. The lower differences be-
tween sCT and CT in muscle tissue compared to Baseline for the Domain
Randomisation model were observed for all patients in the test set. A
problem in FLAIR-based sCTs that remains unresolved after applying
domain randomisation is the mapping of the skull. Like the Baseline
8

model, the Domain Randomisation model systematically produced sCTs
with the skull mapped thicker than on the acquired CT, which is not
observed for the Baseline+FLAIR model.

The 𝛾1%1mm for the Domain Randomisation model were >96% for
each patient and each MRI sequence (Table 3). For the 𝛾3%3mm, 𝛾2%2mm,
pass rates were all >99%, as for the other two models. Differences in
𝛾-pass rates between the Baseline and Domain Randomisation model
were insignificant for the seen sequences. However, for FLAIR images,
the Domain Randomisation model outperformed the Baseline model for
𝛾1%1mm: 99.2 ± 0.9% vs 99.0 ± 1.1% (p < 0.05).

Compared to the Baseline+FLAIR model for FLAIR images, the
Domain Randomisation model resulted in significantly lower 𝛾1%1mm
(99.2 ± 0.9% vs 99.4 ± 0.8%). Additionally, higher 𝛾1%1mm and 𝛾3%3mm-
pass rates were obtained for the Baseline+FLAIR model than for the
Domain Randomisation model for T1w images (p < 0.05).

Differences in DD between the Domain Randomisation model and
the Baseline model were not significant. Comparing the DD obtained
for the Domain Randomisation and Baseline+FLAIR models resulted
in p-values <0.05 for every sequence, with the DD obtained for the
Baseline+FLAIR model smaller in absolute terms.

For the Domain Randomisation model, the DD in treatment plans
from FLAIR-based sCT was <1.5% and >1% only for three patients
(PT13, PT16 and PT18). For PT13 and PT18, we observed differences
in the same regions already reported for the Baseline model. For PT16,
dose differences in the high-dose region were substantial along the
inner border of the skull, in line with the general observation that the
MAE along the skull border was comparatively high for sCT generated
from FLAIR images.

In general, boxplots for differences in DVH points for OARs reveal
slight differences in Dmax and Dmedian for all DVH points and sequences,
with average differences <0.5% as for the other two models. On an
individual basis, most patients had differences in DVH points ≤1% for
every OAR, except for cochlea of PT6 (<1.5%) and pituitary gland and
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Fig. 5. Results from FLAIR images generated by the three models for four different patients. Images from left to right: original FLAIR MRI, ground truth CT, sCT, and the difference
between the acquired CT and sCT for the Baseline model, Baseline+FLAIR model and Domain Randomisation model, respectively. The areas marked with a green rectangle highlight
artefacts in sCT produced by the Baseline model that are not present in the sCT generated by the Baseline+FLAIR and Domain Randomisation models. The bottom row shows an
example patient with oedema in the frontal lobe. This area is hypointense on the FLAIR image, leading to problems in the sCT generated by the Baseline model. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
lens of PT12 (<2.5%), which is comparable to the differences observed
also for the baselines.

4. Discussion

In this work, we investigated the influence of domain randomisation
for MRI-to-sCT generation, considering whether the generalisation to
contrasts unseen during training can be increased.

We considered a cGAN model that after optimisation achieved
image similarity to CT on par with models presented in the literature
(Supplementary Material IV), where the reported range for T1w images
is 45.4 HU±8.5 HU [57] to 131 ± 14.3 HU [58] and 44.6 ± 7.5 HU [57]
to 89.3 ± 10.3 HU [59] for T1wGd images. The accuracy of dose plans
generated from sCT was high for all models and sequences. Considering
𝛾3%3mm and 𝛾2%2mm-pass rates for clinical acceptability, dose plans were
acceptable for all patients and sequences, even for FLAIR-based sCT
generated by a model trained only on a mix of T1w(Gd) and T2w
images (Baseline model). Altogether, the number of patients included in
our training set (n = 60) is significantly larger than the median number
in other studies (n = 33). We believe that our models’ performance for
the seen sequences is sufficient to explore generalisation, considering
the following limitations.

A supervised framework was adopted, requiring a set of well-
registered MRI-CT pairs. Poor registration between the CT and MRI
in the training dataset is detrimental for models’ performance [60].
We recurred to sole rigid registration, resulting in misregistration for
the body contours, sinuses, and vertebrae for all the sequences. In the
future, non-rigid registrations could be explored to improve the overall
model performance or recurring to unpaired training [61].

Hyperparameter tuning was performed using only T1w images,
which may not be optimal when mixing other sequences or applying
domain randomisation. However, after performing a quick check of
the hyperparameters on the RC model, we found that 2–3 HU could
decrease MAE through optimisation, which was deemed minimal. Also,
the adopted study design without hyperparameter optimisation allows
for isolating the effect of domain randomisation.
9

A critical note should be made about our dose evaluation. Differ-
ences in the FOV of the acquired MRI and planning CT led to equal
differences between the sCT and planning CT. Water-filling was used
to avoid dose differences arising from different FOVs. However, this
means that the dose accuracy of the sCT could be overestimated for
beams passing through the water-filled area. In this sense, the sCT
developed in this work should not be considered for clinical use but
can be valuable to shed light on model generalisation.

Overall, we found the performance of a model trained on a mix of
T1w(Gd) and T2w images (Baseline) was inferior on FLAIR images com-
pared to performance on the other sequences. We found that domain
randomisation generates sCT from FLAIR images with significantly
improved image similarity and dose accuracy compared to the Baseline
model.

In an additional experiment [50], we found that the benefit of
adding RC images to the training data was larger when only T1w
acquired MRI were used for network training than a model trained on
T1w(Gd) or T1w(Gd) and RC when both T1w(Gd) and T2w images
were used (Domain Randomisation model vs Baseline model). Still,
having at disposal the unseen sequence was not matched by the domain
randomisation method. This means that the MRI sequence that will be
clinically used for MRI-only RT should be preferred whenever available.
In case such a sequence is not available, domain randomisation can be
considered as a method to increase model robustness. It seems that,
currently, domain randomisation does not lead to a strong contrast-
agnostic method, which contrasts with what was claimed in the original
work by Billot et al. [39]. Compared to the original work (segmen-
tation), we applied domain randomisation to a different and more
challenging task (image synthesis). Also, Billot et al. [39] did not com-
pare with a statistical test the performance on FLAIR to the performance
on other sequences, which complicates judging to what extent their
model is contrast-agnostic. Moreover, we speculate that our methods
relied on generating RC images from labels, which may result in a loss
of within-label structure that may be detrimental to the network consid-
ering the image synthesis task. Also, the adopted segmentations were
not perfectly aligned with the corresponding ground truth (acquired
CT), unlike in [38,39], which might have reduced the effect of the RC
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images on network performance in our work. A solution may recur to
obtaining through manual segmentation; we considered this procedure
too expensive and out of scope for this research. Still, with the chosen
study design, we could investigate the impact of domain randomisation.
Future studies could clarify whether more accurate or elaborate label
maps are more suitable as the basis for RC images, especially if the final
goal of domain randomisation is obtaining a contrast-agnostic model.

A second domain randomisation method, based on linear combina-
tions of acquired T1w(Gd) and T2w images, was proposed and tested
for the first time. An advantage of this method over RC images is that
it requires minimal effort and is easily applicable if multiple sequences
are available per patient. However, the contrast produced by this
method is less variable than RC, which could explain why this method
is not as effective as RC images. Theory and earlier studies suggest that
variability beyond what the network will encounter in reality can be
beneficial [40,41,62], in line with findings in [39], where synthetic
images mimicking specific MRI sequences proved counterproductive.
Future work could explore more elaborate domain randomisation meth-
ods, i.e., extending LC to non-linear combinations or increasing the
number of acquired MRI sequences used for combination. Furthermore,
the variability in the RC images could be further improved, e.g., using
random elastic deformations or simulation of bias field artefacts as
in [38,39]. Another approach could explore using GANs or other
DL models to generate synthetic training data, as suggested in,
e.g., [63,64].

A relevant question is whether the proposed domain randomisation
approach could already be employed clinically to bridge smaller do-
main gaps than an entirely new sequence, like same-sequence data from
a different hospital or changes in the acquisition protocol that might
occur over time. Further evaluations on new datasets are needed to
investigate whether this is the case.

This work provides the first attempt towards sCT generation from
different MRI contrasts for MRI-only RT planning. A clear improvement
was found in image similarity for sCT generated from an unseen
sequence by Domain Randomisation models compared to baselines.
Interestingly, in terms of dose accuracy, our baselines already achieved
good results for most patients for the unseen sequence simply by
training on a mix of other sequences. The Domain Randomisation
model improved the 𝛾-pass rate for the unseen sequence. In contrast,
ifferences with the Baseline model in dose metrics were not statis-
ically significant for the seen sequences, leading us to believe that
he small decrease in image similarity obtained for the seen sequences
s clinically acceptable. Moreover, the Domain Randomisation model
educed artefacts observed in FLAIR-based sCT comparable to the one
bserved from the Baseline model. The results indicate that domain
andomisation can improve generalisation to unseen sequences for sCT
eneration. Before clinically implementing the methods described in
his work, dose accuracy must be evaluated on MRI acquired with a
arger FOV in a clinical setting. Additionally, it is preferable to obtain
CTs with the same voxel size as the acquired data, avoiding the need
or resampling. Therefore, further investigations are still required.

The results obtained in this work indicate that domain randomisa-
ion might help avoid the need for network re-training if the model is
o be used on a sequence unseen during network training. This could be
elpful if exceptions need to be made in imaging protocols for specific
atients, e.g., due to possible allergic reactions to contrast agents
r claustrophobia. On the other hand, each centre should determine
hether the performance improvement found in this work is substan-

ial enough to justify the effort associated with implementing domain
andomisation, i.e., the need for segmentations, in case alternative
equences are not already available.

. Conclusion

We investigated the ability of a DL model to generate sCT on
nseen sequences accurate for MRI-only radiotherapy. We considered
10
two methods for domain randomisation, showing that adding random
contrast images generated from label maps to the training data is more
effective than applying random linear combinations of acquired MRI.

Generally, a satisfactory dose accuracy was obtained when train-
ing on a mix of acquired sequences, even for the unseen sequence.
The adopted domain randomisation method improved dose accuracy
and image similarity on this unseen sequence, but could not overper-
form having at disposal the unseen sequence during training. Domain
randomisation can increase model robustness to unseen sequences,
reducing the need for model re-training.
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