
Computers in Biology and Medicine 163 (2023) 107146

Available online 15 June 2023
0010-4825/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Automated identification of patient subgroups: A case-study on mortality of 
COVID-19 patients admitted to the ICU 

I. Vagliano a,b,*, M.Y. Kingma a, D.A. Dongelmans b,c,d, D.W. de Lange d,e, N.F. de Keizer a,b,d, 
M.C. Schut a,b,f, On behalf of thethe Dutch COVID-19 ICU Research Consortium 
a Dept. of Medical Informatics, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands 
b Amsterdam Public Health (APH), Postbus 7057, 1007 MB, Amsterdam, the Netherlands 
c Dept. of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands 
d National Intensive Care Evaluation (NICE) Foundation, Postbus 23640, 1100 EC, Amsterdam, the Netherlands 
e Dept. of Intensive Care, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands 
f Dept. of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Subgroup discovery 
Machine learning 
COVID-19 
In-hospital mortality 
Intensive care 
Data registry 

A B S T R A C T   

Background: – Subgroup discovery (SGD) is the automated splitting of the data into complex subgroups. Various 
SGD methods have been applied to the medical domain, but none have been extensively evaluated. We assess the 
numerical and clinical quality of SGD methods. 
Method: – We applied the improved Subgroup Set Discovery (SSD++), Patient Rule Induction Method (PRIM) 
and APRIORI – Subgroup Discovery (APRIORI-SD) algorithms to obtain patient subgroups on observational data 
of 14,548 COVID-19 patients admitted to 73 Dutch intensive care units. Hospital mortality was the clinical 
outcome. Numerical significance of the subgroups was assessed with information-theoretic measures. Clinical 
significance of the subgroups was assessed by comparing variable importance on population and subgroup levels 
and by expert evaluation. 
Results: – The tested algorithms varied widely in the total number of discovered subgroups (5-62), the number of 
selected variables, and the predictive value of the subgroups. Qualitative assessment showed that the found 
subgroups make clinical sense. SSD++ found most subgroups (n = 62), which added predictive value and 
generally showed high potential for clinical use. APRIORI-SD and PRIM found fewer subgroups (n = 5 and 6), 
which did not add predictive value and were clinically less relevant. 
Conclusion: – Automated SGD methods find clinical subgroups that are relevant when assessed quantitatively 
(yield added predictive value) and qualitatively (intensivists consider the subgroups significant). Different 
methods yield different subgroups with varying degrees of predictive performance and clinical quality. External 
validation is needed to generalize the results to other populations and future research should explore which 
algorithm performs best in other settings.   

1. Introduction 

In clinical research, subgroup analyses involve splitting all patients 
into subgroups, often as a means to make heterogeneous populations 
more homogeneous, or to answer specific questions about particular 
patient groups, types of intervention or types of study [1]. Such analyses 
can have drawbacks, namely (1) groups are defined manually by the 
researcher resulting in potentially suboptimal groups, and (2) groups 
can be simple, i.e., based on single variable (e.g., sex) and/or single 

thresholds (e.g., men versus women or under versus above 67 years). 
These drawbacks can be resolved by subgroup discovery (SGD) methods 
that aim to discover patterns in the form of rules induced from labelled 
data [2]. In the context of clinical subgroup analysis, SGD means the 
automated splitting of the data into complex subgroups, i.e., based on 
multiple variables and/or multiple thresholds. 

Various SGD methods exist, e.g., APRIORI – Subgroup Discovery 
(APRIORI-SD), CN2 – Subgroup discovery (CN2-SD), Diverse Subgroup 
Set Discovery (DSSD) and Patient Rule Induction Method (PRIM) [3], as 
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well as the improved Subgroup Set Discovery (SSD++) [4]. These al
gorithms discover subgroups that are represented as combinations of 
constraints on the variables (e.g., age >= 25 and BMI <19), which can 
also be interpreted as clinical rules. Typically, SGD methods differ from 
each other in the type of subgroup searching and selection (i.e., 
exhaustive: looks at all possible subgroups given the patient population, 
which requires large amounts of computation; or heuristic: finds sub
groups faster and more efficient, but sacrifices optimality, accuracy, 
precision or completeness for speed, i.e., lower run time) and which 
quality measures are used for searching, e.g., unusualness, coverage, 
redundancy, and novelty, also known as weighted relative accuracy 
(WRAcc). These same quality measures are also used to assess the nu
merical significance of found subgroups. The clinical significance of 
subgroups can also be assessed by determining whether the subgroups 
are clinically relevant. To do this, on the one hand, we can consider 
variable importance (i.e., affect the overall risk prediction. On the other 
hand, clinicians could assess the subgroups (i.e., the rules describing the 
subgroups) to determine clinical relevance. 

Multiple SGD methods have been applied to the medical domain 
[5–11], as well as specifically to the intensive care [12,13] but, to the 
best of our knowledge, not to COVID-19 patients. Furthermore, none of 
these studies extensively evaluated different SGD methods and the 
discovered subgroups. These studies provide either quality measures [5, 
7,11,12], predictive power of the discovered subgroups [6,13], or sim
ply applied SGD methods to their problem and only qualitatively 
assessed the results of applying the method in terms of meaningful 
insight on their data and problem [8–10]. In contrast, our study assesses 
SGD methods and the discovered subgroups in terms of both quality 
measures and predictive power as well as it provides clinical validation. 

This study proposes a new approach to systematically assess the 
numerical and clinical quality of automated patient subgroup discovery 
methods. Such an assessment is informative for clinicians that consider 
using SGD to perform complex subgroup analysis as to which SGD 
method is best applicable. SGD can pave the way to personalized med
icine, and our approach can ease the implementation of SGD in clinical 
decision support systems. As a second contribution, we provide a case 
study on the prediction of hospital mortality in a registry cohort of ICU- 
admitted COVID-19 patients. We identified the subgroups that make 
clinical sense and there is much potential in using these subgroups in an 
automated way, for example for flagging, or as clinical decision rules. 

The paper is organized as follow: Section 2 introduces the patient 
population, the SGD methods used, and their evaluation; Section 3 
presents the discovered SGD groups and the evaluation results; Section 4 
discusses our results; Section 5 concludes the paper. 

2. Related work 

Various subgroup discovery methods, e.g. Refs. [5–11], have been 
applied to the medical domain. Recent studies use subgroup discovery to 
identify subgroups of cancer patients [14,15], identify predictive factors 
for diabetic ketoacidosis [16], or discover subgroups of patients un
dergoing transcatheter aortic valve implantation with high model pre
diction error and their distribution over the centres [17]. Gamberger 
et al. [11] demonstrated the applicability of SGD analysis for in brain 
ischaemia. Abu-Hanna et al. [12] compared the established algorithms 
Classification and Regression Trees and PRIM in an SGD task on a large 
real-world high-dimensional ICU database. Nannings et al. [13] applied 
the PRIM to identify very elderly ICU patients at high risk of mortality 
and compared the results with those of a conventional logistic regression 
model. SGD has been used to find disease markers from gene expression 
data [18]. Techniques other than SGD are also used for identifying pa
tient subgroups, including clustering [19–22], latent profile analyses 
[23], or a combination of clustering and subgroups discovery [24]. 
Subgroup discovery was also used to assess personalized treatment ef
fects in order to identify patient subgroups that react exceptionally bad 
or well to treatment [25]. Multi-omics Clustering Variational 

Autoencoders (MCluster-VAEs) was used to extract representations on 
multi-omics data to discover cancer subtypes [26]. Risk profiles for 
negative and positive COVID-19 hospitalized patients were identified 
through partition around medoids clustering [27]. However, none of 
these studies did extensively consider the evaluation of different SGD 
methods and the discovered subgroups. We considered the subgroups 
defined by the discovered rules and we compared these with individual 
variables (estimated coefficients of a linear regression) to assess their 
predictive performance and redundancy. 

3. Material and methods 

3.1. Data 

This study used prospectively collected data on all patients admitted 
between February 21st, 2020 and May 24th, 2022 with confirmed 
COVID-19 to a Dutch ICU extracted from the Dutch National Intensive 
Care Evaluation (NICE) registry. The NICE dataset contains, amongst 
other items, demographic data, minimum and maximum values of lab
oratory and monitor data in the first 24 hours of ICU stays, diagnoses 
(reason for admission as well as comorbidities), information on ICU 
admissions, i.e., hospital length of stay before ICU admission and 
referring specialism, ICU as well as hospital length of stay, and ICU as 
well as in-hospital mortality data [28]. Data is collected in a standard
ized manner according to strict definitions and stringent checks ensure 
high data quality [29]. The outcome variable was in-hospital mortality. 

After variable selection (see Section 3.3), the used data consisted of 
about 60 variables. A total of 14,548 confirmed COVID-19 patients were 
included, of which 4000 patients (27.5%) died during their hospital 
stay. Survivors were significantly younger (59.5 vs 68.4 years old, p <
0.001), more often females (33.3% vs 27.3%, p < 0.001) and with 
slightly higher body mass index (29.8 vs 28.9, p < 0.001) than non- 
survivors. Table 1 and Table S3 show the descriptive summary statis
tics of the patient population. 

3.2. Patient inclusion 

Patients were considered to have COVID-19 when the RT-PCR of 
their respiratory secretions was positive for SARS-CoV-2. Surgery pa
tients were excluded as they are typically admitted patients with COVID- 
19 rather than patients admitted because of COVID-19. 

3.3. Analyses 

Preprocessing – included the handling of missing data and variable 
selection. Missing values were imputed by using the multiple imputation 
by chained equations (MICE) [30]. Variables with only one unique value 
(or almost, >= 99% frequency) were excluded. 

Patient subgroups – were obtained by application of selected heuristic 
(SSD++ [4], PRIM [31]) and exhaustive (APRIORI-SD [32]) algo
rithms1. The algorithms were selected to form a diverse mix of algo
rithms based on association rules (APRIORI-SD), decision trees (PRIM) 
and inductive inference (SSD++). Per algorithm, we interpreted the 
subgroups independently of each other: a patient can belong to one or 
more subgroups, by definition of adherence to the subgroup’s condi
tions: if the conditions fit the patient, it belongs to the subgroup. 

Model optimization – the three subgroup algorithms use parameters to 
control the learning process, called hyperparameters. These parameters 
need to be set such that the algorithm performs optimal. We did this 
optimization as follows. For APRIORI-SD, we performed a grid search for 
the number of subgroups (5, 10, 25, 50, 75, 100) and the maximum selector 

1 APRIORI-SD can also be considered heuristic depending on whether the 
characterization of its search is based on the rule generation or on the rule post- 
processing. 
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depth (5-10). For PRIM, we performed a grid search for α (the degree of 
patience when looking for a sub-optimal solution) and β (the minimum 
size of the boxes found) with values 0.03, 0.04, 0.05, 0.06, 0.08, 0.1. For 
SSD++, we performed a grid search for the maximum selector depth (5- 
10) and beam, i.e., the pre-defined number of best partial solutions taken 
as candidates (25, 50, 100). 

Numerical significance – of the obtained subgroups was evaluated by 
means of (1a) information-theoretic quality in terms of coverage, sup
port, rule length, significance, novelty (WRAcc), confidence and 
redundancy (see Table S2 and [33] for their definition as well as Ap
pendix A for an example of these measures), and (1b) formal evaluation 
of the benefit of subgroups for prediction. For the latter, we inspected 
whether it pays to increase the complexity of a prediction model by 
including subgroup indicator variables in order to improve prediction of 
the outcome. To this end, a logistic regression model was created with a 
backward stepwise variable selection model based on the Akaike in
formation criterion (AIC) with the patient variables plus the indicators 
of the discovered subgroups [34]. The subgroup indicator variables 
evaluate to TRUE if and only if a patient belongs to the particular sub
group. We then inspected whether subgroup indicators were selected by 
the selection process. Also, we statistically tested, at the p = 0.05 level, 
whether to reject the hypothesis that the subgroups are redundant with a 
log likelihood ratio (ANOVA) test. For each individual subgroup indi
cator, we compared a logistic regression model with only the patient 
variables with a model that also included the subgroup indicator. 
Additionally, we did an ANOVA test comparing models with patient 
variables without subgroups to models with patient variables and all 
subgroup indicators. 

Clinical significance – of the subgroups was evaluated by means of 
(2a) comparative analysis of the rule descriptions and a regression 
model, and (2b) expert opinion. For 2a, we informally compared the 
description of the obtained subgroups with the coefficients of a linear 
regression (LinR) model fit on hospital mortality (dichotomous outcome 

Table 1 
Descriptive statistics of the population, stratified by hospital mortality.    

Overall Survirors Non- 
surviros 

Missing 

n  14548 10548 4000  
Age, mean (SD)  62.0 

(12.3) 
59.5 
(12.5) 

68.4 
(9.1) 

0 

Body mass index, 
mean (SD)  

29.5 
(5.7) 

29.8 
(5.7) 

28.9 
(5.5) 

303 

Gender, n (%) Female 4603 
(31.6) 

3513 
(33.3) 

1090 
(27.3) 

0 

Origin of 
admission, n 
(%) 

General ward 
of the same 
hospital 

9707 
(67.0) 

7089 
(67.5) 

2618 
(65.7) 

57 

Emergency 
room of the 
same hospital 

4088 
(28.2) 

2897 
(27.6) 

1191 
(29.9)  

CCU/IC of 
another 
hospital 

359 
(2.5) 

262 (2.5) 97 (2.4)  

CCU/IC of 
the same 
hospital 

82 (0.6) 48 (0.5) 34 (0.9)  

Emergency 
room of 
another 
hospital 

80 (0.6) 65 (0.6) 15 (0.4)  

Home 75 (0.5) 62 (0.6) 13 (0.3)  
General ward 
of another 
hospital 

59 (0.4) 48 (0.5) 11 (0.3)  

Special/ 
Medium care 
of the same 
hospital 

27 (0.2) 21 (0.2) 6 (0.2)  

Other 8 (0.1) 7 (0.1) 1 (0.0)  
CCU/IC other 
location of 
same 
hospital, 
transport by 
ambulance 

4 (0.0) 3 (0.0) 1 (0.0)  

Recovery of 
the same 
hospital 

1 (0.0) 1 (0.0)   

Special/ 
Medium care 
of another 
hospital 

1 (0.0) 1 (0.0)   

Hospital length of 
stay before the 
ICU admission, 
mean (SD)  

2.6 
(3.4) 

2.5 (3.2) 2.9 
(4.0) 

6 

Wave of infection, 
n (%) 

1 (from 2020- 
02-01 to 
2020-05-15) 

2258 
(15.5) 

1560 
(14.8) 

698 
(17.4) 

0 

Patients in 
between 
waves 1 and 2 

389 
(2.7) 

288 (2.7) 101 
(2.5)  

2 (from 2020- 
10-01 to 
2020-11-30) 

1754 
(12.1) 

1183 
(11.2) 

571 
(14.3)  

3 (from 2020- 
12-01 to 
2021-01-31) 

1932 
(13.3) 

1329 
(12.6) 

603 
(15.1)  

4 (2021-02- 
01 to 2021- 
06-30) 

4121 
(28.3) 

3152 
(29.9) 

969 
(24.2)  

5 (from 2021- 
07-01 to 
2021-09-30) 

867 
(6.0) 

698 (6.6) 169 
(4.2)  

6 (from 2021- 
10-01 to 
2022-05-24) 

3227 
(22.2) 

2338 
(22.2) 

889 
(22.2)  

Comorbidities 
Acute renal 

failure, n (%)  
1051 
(7.2) 

489 (4.6) 562 
(14.1) 

0  

Table 1 (continued )   

Overall Survirors Non- 
surviros 

Missing 

Chronic 
cardiovascular 
insufficiency, n 
(%)  

229 
(1.6) 

112 (1.1) 117 
(2.9) 

0 

Chronic renal 
insufficiency, n 
(%)  

654 
(4.5) 

304 (2.9) 350 
(8.8) 

0 

Chronic 
Obstructive 
Pulmonary 
Disease, n (%)  

1364 
(9.4) 

840 (8.0) 524 
(13.1) 

0 

Chronic 
respiratory 
insufficiency, n 
(%)  

649 
(4.5) 

399 (3.8) 250 
(6.2) 

0 

Diabetes, n (%)  3242 
(22.3) 

2166 
(20.5) 

1076 
(26.9) 

0 

Haematological 
malignancy, n 
(%)  

308 
(2.1) 

151 (1.4) 157 
(3.9) 

0 

Immunological 
insufficiency, n 
(%)  

1504 
(10.3) 

872 (8.3) 632 
(15.8) 

0 

Number of 
chronic 
comorbidities, 
mean (SD) 

0 10,781 
(74.1) 

8308 
(78.8) 

2473 
(61.8) 

0 

1 2885 
(19.8) 

1825 
(17.3) 

1060 
(26.5)  

2 805 
(5.5) 

388 (3.7) 417 
(10.4)  

3 73 (0.5) 26 (0.2) 47 (1.2)  
4 4 (0.0) 1 (0.0) 3 (0.1)  

SD stands for standard deviation, CCU for Coronary Care Unit, and IC for 
intensive care. 
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was made continuous to provide more model flexibility). For the LinR 
model, we did backward stepwise variable selection, which was based 
on the Akaike information criterion (AIC). For 2b, we put forward the 
found subgroups (i.e., the rules describing the subgroups) to two 
intensivists (DD, DdL) with over 20 years of clinical expertise and asked 
them to evaluate, independent of each other, the rules as fit or unfit for 
the specific purpose of use by intensivists for triage on ICU admission of 
COVID-19 patients. If a rule was considered unfit, an explanation was 
asked for the evaluation. The form used for evaluation is available in 
Appendix B. 

3.4. Statistical analysis 

All the analyses were performed using Python v3.6 and R version 
3.5.1 x64 with publicly available software packages. Notably, our 
implementation of APRIORI-SD is based on pysubgroup (https://pysubg 
roup.readthedocs.io) [35], PRIM is based on a publicly-available python 
implementation of PRIM (https://github.com/martinsps/PRIM), and 
SSD++ is based on the SSDpp-numeric (https://github.com/HMPr 
oenca/SSDpp-numeric). For the reporting of this study, we followed 
the TRIPOD statement (https://www.equator-network.org/reporting 
-guidelines/tripod-statement/). 

4. Results 

4.1. Subgroups 

Table S4 describes the subgroups that were discovered with each of 
the SGD methods, and information-theoretic quality metrics are pro
vided for each subgroup. The discovered subgroups vary largely be
tween the three methods. Firstly, they differ in terms of the number of 
subgroups (APRIORI-SD: 5, PRIM: 6, SSD++: 62). Secondly, the sub
groups themselves also differ. In PRIM and APRIORI-SD, subgroups 
mostly concern a small number of variables (age, haematological ma
lignancy, chronic cardiovascular insufficiency and chronic respiratory 
insufficiency, cardiopulmonary resuscitation, for APRIORI-SD; age, 
number of chronic comorbidities, lowest bicarbonate, referring 
specialism, origin of admission, gender, wave of infection, highest serum 
urea, lowest thrombocytes, lowest creatinine, lowest systolic blood 
pressure, for PRIM). SSD++ has discovered most subgroups with highest 
variation in terms of variables per subgroup and total number of 
variables. 

4.2. Evaluation – information-theoretic quality 

Table 2 shows the results of each method in terms of information- 
theoretic quality metrics. We observe large differences between the 
methods for coverage (average highest for APRIORI-SD, overall for 
SSD++) and significance (highest for APRIORI-SD, meaning that its 
groups have higher interest). The findings on the discovered subgroups 
(Table S4) are included in the metrics with the measured number of 
subgroups and their average length (i.e., number of variables). 

4.3. Evaluation – predictive value 

Table 3 shows the predictive performance of the discovered sub
groups in terms of (a) whether a subgroup was selected in the variable 
selection with stepwise regression (with and without clinical variables), 
and (b) log likelihood ratio tests. These results show that the majority of 
the subgroups survived backward selection (but only about half for 
PRIM and APRIORI-SD when using subgroups together with clinical 
variables), which is indicative of additional predictive value over the 
patient variables. The log likelihood ratio tests also show significant 
added predictive value of the subgroups discovered by PRIM and 
SSD++, however not for APRIORI-SD. 

4.4. Evaluation – clinical significance 

Fig. 1 summarizes the clinical significance of the discovered sub
groups. For each method, the agreement shows the number of subgroups 
(with respect to the number of discovered subgroups) on which the 
clinicians agreed on whether the group was clinically relevant or not. 
The fit outlines the number of subgroups which were considered clini
cally relevant with respect to the number of subgroups for which there 
was agreement. The average fit averages the number of subgroups 
judged clinically relevant by each clinician and shows it with respect to 
the number of discovered subgroups. For one subgroup identified by 
SDD++, one clinician was undecided and it was counted as not clinically 
relevant (unfit). Overall, the intensivists found the majority of sub
groups (n = 66, 91%) fitting for triage on ICU admission of COVID-19 
patients. APRIORI-SD resulted in 5 out of 5 fitting subgroups for both 
intensivists; SSD++ in the same 58 out of 62 for both intensivists; from 
the subgroups discovered with PRIM, only one subgroup was considered 
fit by both intensivists. For APRIORI-SD and SSD++, the agreement was 
high (5 and 59 same ratings, respectively); ratings on PRIM were less 
homogenous, there was agreement on only two subgroups. 

When asked for an overall evaluation of the subgroups, both inten
sivists mentioned it was interesting for SDD++ to discover subgroups 
not only with a very high probability of dying, but also subgroups with 
very low mortality probabilities. However, given that the SDD++

groups were relatively small, it was suggested that performance metrics 
would be provided of the groups (we computed the performance metrics 
per group, but these were not shown to clinicians during their evalua
tion). Rules in the form of “not equal to”, which were common in PRIM, 
were considered unintuitive. The APRIORI-SD subgroups were not 
considered very distinctive since the length of stay is long, but the 
mortality is around 0.5. Concerning the used variables, the origin of 
admission, i.e., the location just before the ICU admission (home, 
emergency room, ward, other hospital, etc.), was considered vague and 
not so clinically meaningful. Also, the variable indicating the infection 
wave was considered not useable in practice since new patients cannot 
belong to past infection waves. 

5. Discussion 

In this study, we performed quantitative and qualitative analyses of 
patient subgroups that were discovered automatically and have the form 
of rules (conditions) on the patient features. 

Table 2 
Information-theoretic evaluation of SGD models.  

Method Coverage Support Significance Accuracy (WRAcc) Confidence Redundancy Number of SG Length of SG 

Average Overall Average Overall Average Average Maximum Average (%) 

APRIORI-SD 0.20 0.21 0.10 0.10 608.43 0.0434 0.05 0.49 20.00 5 1.80 
PRIM 0.12 0.43 0.05 0.18 233.00 0.0192 0.04 0.45 0.00 6 3.83 
SSD++ 0.03 0.75 0.01 0.21 147.95 − 0.0005 0.02 0.25 3.23 62 6.10 

SG stands for subgroups. The number of subgroups for APRIORI-SD was pre-set as it is one of the model parameters. The best result for each measure is highlighted in 
bold. 
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Findings – For the quantitative analyses, we observed that the tested 
algorithms yield different results in terms of (i) the total number of 
discovered subgroups (ranging between 5 and 62), (ii) the number of 
selected variables (overall and per subgroup), and (iii) the predictive 
value of the subgroups. Concerning the qualitative assessment (by 
means of evaluation of the clinical relevance of the subgroups by 
intensivists), we make three overall observations. Firstly, the subgroups 
make clinical sense. However, secondly, including the (past) infection 
waves does not make sense for the purpose of (future) triage. Lastly, 
although many (62) groups were discovered with the SSD++ algorithm, 
there is much potential use for these subgroups – either in an automated 
way, for example for flagging, or as clinical decision rules. As for the 
clinical utility of the subgroups, APRIORI-SD and PRIM are considered 
less effective because the subgroups do not have added predictive value 
and the subgroups are deemed clinically less relevant. Especially 
APRIORI-SD subgroups were not good: the mortality in each group (i.e. 
the number of non-survivors divided by the number of patients in the 
group) was about 0.5 (many patients, especially the non-survivor 
belonged to multiple subgroups) whereas SGD is supposed to find 
distinctive groups (either with high or low outcome probabilities), 
which means the algorithm proved not effective. Finally, SDD++

resulted best from both clinical and numerical (predictive power and 
redundancy), although it was second best in terms of information 
theoretic measures after APRIORI-SD. 

Strengths – The conducted analysis was very extensive by evaluating 
many quantitative measures (in general on algorithmic performance) as 
well as qualitative aspects of found subgroups (by means of expert 

Table 3 
Stepwise AIC backward regression model with subgroups (a) and ANOVA of 
LinR models with and without subgroups (b).  

Method Group (a) selected by stepwise AIC (b) ANOVA 
(versus no 
groups) 

p-value 

Only 
groups 

Groups and 
clinical 
variables 

Pr(>F) 

APRIORI- 
SD 

all   0.0754  
1 yes yes 0.5638  
2 yes yes 0.3119  
3 yes yes 0.3360  
4 yes no N/A  
5 yes no N/A  

PRIM all   0.0158 <0.05 
1 yes no N/A  
2 yes no N/A  
3 yes yes 0.3383  
4 yes no N/A  
5 yes yes 0.0286 <0.05 
6 yes yes 0.0673  

SSD++ all   1.17E-130 <0.001 
1 yes yes 3.89E-04 <0.001 
2 yes no N/A  
3 yes yes 1.85E-03 <0.01 
4 yes yes 1.27E-06 <0.001 
5 yes yes 3.94E-06 <0.001 
6 yes yes 7.69E-06 <0.001 
7 yes yes 4.90E-07 <0.001 
8 yes yes 3.94E-04 <0.001 
9 yes yes 4.91E-02 <0.05 
10 yes yes 3.62E-04 <0.001 
11 yes yes 1.91E-06 <0.001 
12 yes yes 2.88E-06 <0.001 
13 yes yes 2.37E-01  
14 yes yes 1.48E-05 <0.001 
15 yes no N/A  
16 yes yes 1.20E-06 <0.001 
17 yes yes 2.97E-05 <0.001 
18 no no N/A  
19 yes yes 9.80E-05 <0.001 
20 yes yes 4.19E-06 <0.001 
21 yes yes 1.63E-04 <0.001 
22 yes yes 7.48E-07 <0.001 
23 yes yes 2.37E-07 <0.001 
24 yes yes 1.75E-04 <0.001 
25 yes yes 9.07E-07 <0.001 
26 yes yes 3.81E-05 <0.001 
27 yes yes 1.84E-07 <0.001 
28 yes yes 9.61E-05 <0.001 
29 yes yes 2.49E-03 <0.001 
30 yes yes 3.61E-06 <0.001 
31 yes yes 4.32E-05 <0.001 
32 yes yes 1.86E-07 <0.001 
33 yes yes 5.63E-05 <0.001 
34 yes yes 1.72E-03 <0.01 
35 yes yes 4.63E-04 <0.001 
36 yes yes 1.68E-02 <0.05 
37 yes yes 2.87E-04 <0.001 
38 yes yes 9.08E-09 <0.001 
39 yes yes 6.10E-03 <0.01 
40 yes yes 1.18E-02 <0.05 
41 yes yes 1.92E-07 <0.001 
42 yes yes 5.80E-06 <0.001 
43 yes yes 7.33E-06 <0.001 
44 yes yes 6.12E-06 <0.001 
45 yes yes 4.99E-05 <0.001 
46 yes yes 8.92E-04 <0.001 
47 yes yes 1.29E-05 <0.001 
48 yes yes 6.34E-05 <0.001 
49 yes yes 7.37E-07 <0.001 
50 yes yes 1.27E-08 <0.001 
51 yes yes 3.06E-04 <0.001 
52 yes no N/A  
53 yes yes 6.12E-06 <0.001 
54 yes yes 3.51E-07 <0.001  

Table 3 (continued ) 

Method Group (a) selected by stepwise AIC (b) ANOVA 
(versus no 
groups) 

p-value 

Only 
groups 

Groups and 
clinical 
variables 

Pr(>F) 

55 yes yes 2.67E-06 <0.001 
56 yes yes 6.23E-06 <0.001 
57 yes yes 3.20E-02 <0.05 
58 yes yes 3.31E-05 <0.001 
59 yes no N/A  
60 yes yes 3.65E-04 <0.001 
61 yes yes 1.95E-03 <0.01 
62 yes yes 7.47E-05 <0.001 

The p-value is omitted when it corresponds to a non-statistically-significant 
result. 

Fig. 1. Expert evaluation on clinical relevance of the obtained subgroups.  
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consultation with questionnaires). Furthermore, the predictive perfor
mance of the subgroups was assessed extensively (by evaluating the 
subgroups as patient features, log likelihood tests, and stepwise feature 
selection) and separately from the internal validation during model 
development. Such an extensive and systematic approach as we under
took facilitates the use of algorithms in clinical practice. The analysed 
use case of ICU triage of COVID-19 patients included real world data. In 
this study, this case was rather illustrational and an example in support 
of the study’s aim how to analyse and use SGD algorithms. However, 
since we used real world data, a follow-up clinical study for ICU COVID- 
19 triage with found subgroups can be readily undertaken (although it 
may depend on the virus variant, vaccination status and vaccine). 

Limitations – Three main factors limit generalizing the results of this 
study. Firstly, the use of a single country dataset is limiting, mainly as to 
which subgroups were found for the specific prediction task. Secondly, 
the subgroups were evaluated by (only) two intensivists (albeit from 
different institutions). Establishing broader common ground on the 
subgroups (possibly revised after external validation) may require a 
larger evaluation panel. Finally, we evaluated three SGD algorithms that 
we considered representative as explained above, but the sheer number 
of algorithms could warrant a more extensive analysis including more 
algorithms, and possibly related algorithms like association rules and 
clustering/phenotyping. 

Implications – We showed that SGD methods can potentially be used 
in clinical practice. Our in-depth evaluation, which included clinical 
validation of the discovered subgroups, showed that SGD allows clini
cians to identify clinically relevant subgroups for COVID-19 patients. 
SGD methods can be implemented in clinical decision support systems 
and our methodology can be used to validate SGD methods, also in 
another setting and for other outcomes. Subgroups can be interpreted as 
rules, which can be implemented in a clinical decision support system to 
identify high-risk patients. For instance, a newly admitted patient can be 
mapped to a subgroup by which the derived prognosis can be taken into 
account in treatment decision and can also be discussed with the patient 
and the family. 

There are several ways to use the found subgroups in clinical prac
tice. Such use may range from an automated algorithm for flagging 
patients who may have low survival probabilities, to use of the rules 
describing the subgroups in triage protocols. For direct clinical appli
cation of the found subgroups, one may need to consider that the 
threshold levels as used in subgroups are often extreme values (e.g., A-a 
gradient >450) and these may not occur often enough to justify inclu
sion in clinical practice. Concerning use for triage, the involved inten
sivists mentioned that thinking in subgroups or rules is the other way 
around from their usual way of thinking. For example, the intensivists 
think which patients do have a mortality of 80–100%, to which the 
answer is 80+ year old COVID-19 patients with >2 comorbidities, while 
subgroups are defined also on low risk of mortality. Noteworthy, some 
subgroups do not seem to represent ICU patients that are considered 
typical given by the variables that were used in the rules. However, 
typical patients vary during a pandemic. ICU patients in the first wave 
might have been a medium care or general ward patients in subsequent 
waves. Furthermore, age, creatinine and renal replacement therapy are 
known predictors of high mortality, but combining these variables with 
other variables to assess mortality remains difficult. Subgroup analyses 
can generate patient groups that are not considered as an important 
subgroup in clinical practice but yet help in rethinking the influence of 
variable on the outcome and generate new hypotheses. 

Our study has implications for researchers and practitioners. We 
demonstrated how to assess the numerical and clinical quality of SGD 
methods to help clinicians to perform complex subgroup analysis as 
which SGD method is best applicable. SGD can pave the way to 
personalized medicine as our approach can ease the implementation of 
SGD in clinical decision support systems. The fact that APRIORI-SD was 
best in our case study according to information theoretic measures but 
was not for the other evaluations shows that our deeper evaluation 

results in a better choice of the best SGD method. 

6. Conclusion 

Automated patient subgroup discovery methods find clinical sub
groups that are relevant both when assessed quantitatively (yield added 
predictive value) and qualitatively (intensivists consider the subgroups 
significant). Different methods yield different subgroups with varying 
degrees of predictive performance and clinical quality. 

As future work, we propose to conduct further external validation 
studies to address the limitation that only one dataset was used. To 
establish broader common ground on the clinical relevance and validity 
of the subgroups by a larger evaluation panel, the qualitative analysis 
should be assessed in a broader Delphi study. Finally, several specific 
findings about the subgroups (e.g., non-typical ICU patients and 
particular variable interactions) need further follow-up. Future research 
is needed to explore which algorithm gives most benefit in other 
settings. 
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[18] D. Gamberger, N. Lavrač, F. Železný, J. Tolar, Induction of comprehensible models 
for gene expression datasets by subgroup discovery methodology, J. Biomed. Inf. 
37 (4) (2004) 269–284, https://doi.org/10.1016/j.jbi.2004.07.007. 

[19] C.H. Olson, S. Dey, V. Kumar, K.A. Monsen, B.L. Westra, Clustering of elderly 
patient subgroups to identify medication-related readmission risks, Int. J. Med. Inf. 
85 (1) (2016) 43–52, https://doi.org/10.1016/j.ijmedinf.2015.10.004. 

[20] H.C. Chen, W. Zou, T.P. Lu, J.J. Chen, A composite model for subgroup 
identification and prediction via bicluster analysis, PLoS One 9 (10) (2014), 
e111318, https://doi.org/10.1371/journal.pone.0111318. 

[21] L. Bondeelle, S. Chevret, S. Cassonnet, S. Harel, B. Denis, et al., Profiles and 
outcomes in patients with COVID-19 admitted to wards of a French 
oncohematological hospital: a clustering approach, PLoS One 16 (5) (2021), 
e0250569, https://doi.org/10.1371/journal.pone.0250569. 

[22] N. Bruse, E.J. Kooistra, A. Jansen, R.B.E. van Amstel, N.F. de Keizer, J.N. Kennedy, 
C. Seymour, L.A. van Vught, P. Pickkers, M. Kox, Clinical sepsis phenotypes in 
critically ill COVID-19 patients, Crit. Care 26 (1) (2022 Aug 9) 244, https://doi. 
org/10.1186/s13054-022-04118-6. 
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