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� Dual-channel quantitative EEG metrics are useful to distinguish between sleep-wake states of preterm neonates in the first postnatal hours.
� Combining different qEEG metrics helps develop a sleep-wake state classifier robust against rapid maturational changes in the preterm period.
� The complexity features showed the best sleep staging capability and greatest robustness among several quantitative EEG metrics.
a r t i c l e i n f o

Article history:
Accepted 30 November 2022
Available online 7 December 2022

Keywords:
Preterm
Early postnatal period
Preterm sleep
Automated sleep staging
Quantitative EEG
Complexity analysis
a b s t r a c t

Objective: To investigate the feasibility of automated sleep staging based on quantitative analysis of dual-
channel electroencephalography (EEG) for extremely and very preterm infants during their first postnatal
days.
Methods: We enrolled 17 preterm neonates born between 25 and 30 weeks of gestational age. Three-
hour behavioral sleep observations and simultaneous dual-channel EEG monitoring were conducted
for each infant within their first 72 hours after birth. Four kinds of representative and complementary
quantitative EEG (qEEG) metrics (i.e., bursting, synchrony, spectral power, and complexity) were calcu-
lated and compared between active sleep, quiet sleep, and wakefulness. All analyses were performed
in offline mode.
Results: In separate comparison analyses, significant differences between sleep-wake states were found
for bursting, spectral power and complexity features. The automated sleep-wake state classifier based on
the combination of all qEEG features achieved a macro-averaged area under the curve of receiver oper-
ating characteristic of 74.8%. The complexity features contributed the most to sleep-wake state classifi-
cation.
Conclusions: It is feasible to distinguish between sleep-wake states within the first 72 postnatal hours for
extremely and very preterm infants using qEEG metrics.
Significance: Our findings offer the possibility of starting personalized care dependent on preterm infants’
sleep-wake states directly after birth, potentially yielding long-run benefits for their developmental
outcomes.
� 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Preterm birth, especially very early prematurity (<30 weeks of
gestational age, wks GA), exposes the newborn brain to an extra-
uterine environment at a time when critical developmental pro-
cesses emerge (Humberg et al., 2020; Pierrat et al., 2021; Tau
and Peterson, 2010; Volpe, 2019). Evidence has shown that neona-
tal sleep-wake organization has long-term impacts on later life
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(Anders et al., 1985; Bennet et al., 2018). For establishing a healthy
sleep pattern, it is important to personalize care plans according to
the infant’s sleep/wake cycle, and to integrate caregiving activities
that promote sleep into the routine clinical care in the neonatal
intensive care unit (NICU) (Als and McAnulty, 2011; Altimier and
Phillips, 2016). Hence, an appropriate sleep assessment tool is
urgently needed to help caregivers to identify the infant’s sleep-
wake states in the NICU.

There are primarily three distinct sleep-wake states during the
preterm period: active sleep (AS), quiet sleep (QS), and wakeful-
ness (W) (Brazelton and Nugent, 1995; Georgoulas et al., 2021;
Prechtl, 1974). Between the three states, transitional periods or
undifferentiated states, such as drowsiness and intermediate sleep
(IS), are also commonly seen in premature infants. Traditionally,
the assessment of preterm sleep-wake states in the NICU is per-
formed by sleep specialists based on direct behavioral observation
and/or visual evaluation of multiple-parametric polysomnography
(PSG) recordings, among which electroencephalography (EEG) sig-
nals play a pivotal role (Grigg-Damberger et al., 2007; Werth et al.,
2017). However, the visual sleep scoring techniques suffer from
several drawbacks, such as the tedious nature of manual labeling
work, proneness to subjective bias, prohibitive cost, and extensive
training and experience requirements. It is, therefore, necessary to
develop a new approach for automated sleep staging in preterm
infants admitted to the NICU.

Quantitative EEG (qEEG) analysis has exhibited promising
potential for developing a fully automated neonatal sleep staging
system (Dereymaeker, Pillay, Vervisch, De Vos, et al., 2017). Using
mathematical and statistical algorithms, the qEEG analysis extracts
numerical parameters from raw EEG signals (Tong and Thankor,
2009). The qEEG parameters can be utilized not only to depict
key clinical features of preterm EEG, such as discontinuity, but also
to uncover hidden attributes from EEG signals, such as spectral
properties (Hrachovy and Mizrahi, 2015; Watanabe et al., 1999).
Compared to complicated black-box models, a qEEG-based auto-
mated sleep classification model is explainable and can assist clin-
icians in making informed decisions in the NICU (Petch et al.,
2021).

So far, however, the role of qEEG in sleep staging is less well-
studied in premature infants born before 30 wks GA (i.e.,
extremely-to-very preterm infants) despite the improved survival
rates of this population. Several recent studies have attempted
to, at least partially, cover this age group (De Wel et al., 2017;
Dereymaeker, Pillay, Vervisch, Van Huffel, et al., 2017; Koolen
et al., 2017). Still, these findings might have been affected by using
non-validated visual sleep labeling methods for this population
(Bik et al., 2022). Moreover, these studies focused only on QS and
non-QS state classification regardless of the important role of AS
in early brain development (Del Rio-Bermudez and Blumberg,
2018; Knoop et al., 2021).

Furthermore, extremely and very preterm infants are particu-
larly susceptible to brain impairment during the first postnatal
days (Benders et al., 2015; Rice and Jr, 2000). Given the different
roles of alternating sleeping and waking states in early brain devel-
opment (Knoop et al., 2021), it is necessary to start providing
appropriate caregiving activities contingent on the infant’s state
as early as possible. However, it remains unknown whether the
qEEG measures would still be a valuable tool for determining dif-
ferent sleep-wake states in newly born preterm infants. Existing
preterm sleep-qEEG research has focused on multichannel EEG
montages that are difficult to apply to preterm newborns due to
their tiny heads and vulnerable skin (De Wel et al., 2017;
Dereymaeker, Pillay, Vervisch, Van Huffel, et al., 2017; Koolen
et al., 2017; Paul et al., 2003). In contrast, dual-channel
amplitude-integrated EEG (aEEG) with access to raw EEG traces
is a simplified technique readily available in many NICUs world-
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wide for bedside monitoring of preterm cerebral function (Tao
and Mathur, 2010). Due to its less invasive nature, the (a)EEG mon-
itoring can be initiated shortly after birth, providing a unique win-
dow of opportunity to identify the preterm newborn’s earliest
sleep-wake states.

In this light, the current study targets the least studied preterm
age group (<30 wks GA) and aims to evaluate the ability of qEEG
characteristics in distinguishing between sleep-wake states during
their first days after birth. Sleep annotation was performed by
using a recently published behavioral sleep scoring system from
our group, which is, to our knowledge, the first system validated
for extremely and very preterm infants (de Groot et al., 2022). To
provide easily interpretable results, we extracted several represen-
tative qEEG measures, including bursting, synchrony, spectral
power, and complexity, from dual-channel EEG signals and pro-
vided a statistical description of how each separate qEEG feature
is distributed across the states of AS, QS, and W. We also aim to
identify which specific qEEG parameters are more powerful in dis-
criminating between sleep-wake states.
2. Methods

2.1. Patients

The current study enrolled 17 infants born extremely or very
preterm (10 males; mean wks GA = 27.69, standard deviation
(SD) = 1.16, range 25.14 – 29.43 wks GA) and admitted to the NICU
of the Wilhelmina Children’s Hospital (Utrecht, The Netherlands).
All enrolled infants received continuous dual-channel EEG moni-
toring combined with three-hour visual sleep observation during
their first three days after birth. Exclusion criteria were: congenital
malformations, seizures, overt brain injury on cerebral ultrasound
(e.g., intraventricular hemorrhage grade III-IV), and mother’s use of
recreational drugs during pregnancy. The study protocol (No. 21–
066-C) was reviewed by the Medical Research Ethics Committee
(MREC / METC) of the University Medical Center Utrecht, who con-
firmed that the Medical Research Involving Human Subjects Act
(WMO) does not apply to this study. Written informed consent
was obtained from parents before enrollment. All data were anon-
ymized prior to analysis.
2.2. Visual sleep observation

For each patient, three consecutive hours of bedside sleep
observation were carried out between 9 am and 7 pm at the NICU
within the first three days after birth. Sleep-wake states were man-
ually annotated by two independent observers (AB and EG) using
an in-house behavioral sleep scoring system developed and vali-
dated for extremely and very preterm infants, called BeSSPI (de
Groot et al., 2022). The inter-rater reliability was assessed by Fleiss’
Kappa, yielding a j value of 0.79. Four behavioral states, AS, IS, QS
and W, were assigned to discrete one-minute epochs based on
behavioral measurements, including eyes, vocalizations, facial
and body movements, and vital physiologic parameters, including
heart and respiratory rate. The vital signs were measured using a
mobile bedside patient monitor (IntelliVue MP70, Philips Health-
care, Best, The Netherlands). A smoothing procedure was applied
to the observational sleep annotations to increase scoring accuracy
by accounting for temporal context information. Details of the
sleep observation method can be found in de Groot et al. (2022).
The sleep observation could be interrupted by several caretaking
events and these interruption epochs were treated as missing val-
ues. In the BeSSPI, the state of IS is defined as a temporary transi-
tional period either between sleep states (i.e., AS and QS), or
between sleep and wake (e.g., AS andW). As a heterogeneous state,
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it blends characteristics of different behavioral states together and
lacks typical EEG features (Tsuchida et al., 2013). To avoid bias, the
IS states were thus excluded from subsequent statistical analysis.

2.3. Dual-channel (a)EEG monitoring

Dual-channel (a)EEG monitoring during sleep observation was
performed using the BrainZ monitor (Natus Medical Inc., Seattle,
WA). Raw EEG signals were recorded at a sampling rate of
256 Hz. Four needle electrodes were placed subcutaneously over
the frontal and parietal lobes (F3, F4, P3, P4) according to the Inter-
national 10–20 system (Jasper, 1958; Shellhaas et al., 2011). In
addition, a center electrode was used as reference. A dual-
channel bipolar montage derived from the four active electrodes
(left: F3-P3, right: F4-P4) was used for subsequent quantitative
EEG analysis.

2.4. Quantitative EEG metrics

Four types of qEEG metrics were extracted from raw EEG data:
1) bursting, 2) synchrony, 3) spectral power, and 4) complexity.
These metrics were selected because of their great potential to cap-
ture neonatal sleep cycling and their close associations with
neonatal brain functional development (De Wel et al., 2021;
O’Toole and Boylan, 2019). Moreover, different types of qEEG fea-
tures can provide complementary information and combining
them might help improve automated sleep classification
performance.

Intermittent bursting activity, also known as spontaneous activ-
ity transients (SATs), is a dominant EEG feature in early stages of
preterm infancy (Vanhatalo and Kaila, 2006). We detected SATs
using an automated detection algorithm as presented in Palmu
et al. (2010). Three indices of bursting features were calculated:
1) number of SATs per minute (SAT rate), 2) interval duration of
the inter-SAT interval (ISI), and 3) percentage of inter-SAT duration
per minute (ISP). These features measure the degree of discontinu-
ity of EEG activity. Lower SAT rate, higher ISP, and longer ISI are
correlated with a larger amount of discontinuity in EEG tracing
(Louis et al., 2016).

The degree of interhemispheric synchrony is estimated by acti-
vation synchrony index (ASI), which quantifies the temporal coin-
cidence of bursting activity in left and right hemispheres (Koolen
et al., 2014; Räsänen et al., 2013). A higher ASI value indicates pro-
fusion of coincidences, while a lack of coincidences results in a
lower ASI value.

Spectral power analysis was used to quantify spectral charac-
teristics of EEG. Absolute and relative spectral power of four differ-
ent frequency bands were computed: delta (d): 0.5–3 Hz, theta (h):
3–8 Hz, alpha (a): 8–15 Hz, beta (b): 15–30 Hz (O’Toole et al.,
2016; Tokariev et al., 2012). Absolute power describes the average
power of a specific frequency band and relative power is expressed
as the ratio of the absolute power to total power of all four bands.

Multiscale entropy (MSE), as a complementary measure of spec-
tral power, characterizes the dynamic complexity of EEG signals by
quantifying sample entropy over multiple temporal scales (Costa
et al., 2002, 2005). The range of the time scale factor s is set as
1–20. The MSE curve was generated by plotting the sample
entropy as a function of the scale factor. Four features were
extracted from the MSE curve: 1) the area under the curve, 2)
the maximum value of the curve, 3) the average slope of fine scales
(s: 1–5), and 4) the average slope of coarse scales (s: 6–20). The
complexity index was defined as the area under the MSE curve.
An increased complexity index suggests more unpredictable
dynamics of the EEG time sequence, while a reduced value repre-
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sents more repetitive EEG patterns (Courtiol et al., 2016; De Wel
et al., 2017; Kosciessa et al., 2020).

Bursting analyses were performed using an in-house developed
software SignalBase (version 10.6.4.0; University Medical Center
Utrecht, Utrecht, The Netherlands). The rest of the qEEG analyses
were conducted with in-house developed Matlab scripts (Math-
Works Inc., Natick, MA, USA). To improve data quality, artifact cor-
rection and band-pass filtering (0.5–10 Hz for bursting features,
0.5–30 Hz for the other features) procedures were performed
before feature extraction. The qEEG features were extracted from
a short-duration window of 60 seconds and summarized across
channels using the median value.
2.5. Statistical analysis

2.5.1. Quantitative EEG feature distribution across sleep-wake states
For each qEEG feature a generalized linear mixed model

(GLMM) with Wald Chi-square test was employed to detect statis-
tically significant differences among different sleep-wake states.
Because each patient occupies multiple epochs of sleep observa-
tion, the dependencies in the data were taken into account. Specif-
ically, the qEEG feature was treated as dependent variable, sleep-
wake state as a fixed effect, and patient identifier as a random
effect in each GLMM. Considering that some of the features were
not normally distributed, the distribution information of each
qEEG feature was considered in the GLMM analysis. We used the
Akaike information criterion (AIC) to choose an appropriate distri-
bution to best fit each feature from normal, gamma, and log-
normal distributions. Post-hoc multiple comparison procedures
were conducted to identify differences of the qEEG features
between each pair of the sleep states. The P-values were obtained
by T-tests or Z-tests, as applicable.

Given the week-by-week developmental changes occurring
during the newborn period (O’Toole et al., 2019; Stevenson et al.,
2020), we further examined if differences exist between extremely
preterm (EP, < 28 wks GA) and very preterm (VP, 28–30 wks GA)
subgroups. The interaction effect of age � sleep-wake state was
also examined by using GLMM analysis with post-hoc testing, in
which age was added as a fixed-effect factor. For all statistical anal-
yses, the significance threshold was set at P < 0.05. Holm’s proce-
dure was used to adjust for multiple comparisons in post-hoc
analyses. The GLMM analyses were performed using R (version
4.0.5) within R studio (version 1.4.1106).
2.5.2. Automated sleep-wake state classification
Furthermore, we evaluated the role of the qEEG features in

automated sleep-wake state classification. A multinomial logistic
regression (MLR) model was built to automatically classify sleep-
wake states into AS, QS, or W, using all of the qEEG features as pre-
dictors. The classification performance was measured by metrics of
accuracy and macro-averaged area under the receiver operating
characteristic curve (AUC of ROC) through a stratified 10-fold
cross-validation procedure repeated 20 times. The statistical sig-
nificance of each performance metric was assessed with a permu-
tation test by shuffling the class labels 1000 times. To further test
the effect of age, we also modeled a MLR classifier for EP and VP
infants, respectively. The MLR classification analysis was imple-
mented by using scikit-learn (version 0.23.2) within Python 3.8.5.

As the focus of the current study was not on designing a bedside
or online implementation architecture, the whole analysis proce-
dure (including all quantitative EEG analyses and statistical analy-
sis) was executed offline on a personal computer with Intel Xeon
W-2133 (3.60 GHz) processors.
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3. Results

3.1. Demographics and sleep characteristics

Demographic, behavioral, and clinical characteristics of all
patients are detailed in Table 1 and Supplementary Table S1. A
total of 2803 minutes of annotated sleep-wake data were collected,
of which 1435 minutes were labeled as AS (51.2 %), 311 minutes as
IS (11.1 %), 961 minutes as QS (34.3 %), and 96 minutes as W
(3.4 %).
3.2. Quantitative EEG features during different sleep states

As shown in Table 2, all qEEG features, except for ASI, differed
significantly between sleep-wake states. Results of the post-hoc
Table 1
Patient characteristics (n = 17).

Characteristics All EP VP

Gender [M/F] 10/7 5/5 5/2
GA [weeks] 27.7 (1.16) 26.9 (0.81) 28.8 (0.56)
PMA at observation [weeks] 28.1 (1.20) 27.3 (0.83) 29.2 (0.55)
Birth weight [grams] 1130 (203) 1055 (156) 1239 (213)
Apgar score median
1 min 6 (5, 8) 6 (4, 8) 7 (6, 8)
5 min 8 (7, 9) 8 (6, 8) 8 (8, 10)
10 min 9 (8, 9) 9 (8, 9) 9 (9, 10)

Observed sleep/wake states
[minutes]
AS 1435

(51.2 %)
895
(54.3 %)

540
(46.8 %)

IS 311 (11.1 %) 176
(10.7 %)

135
(11.7 %)

QS 961 (34.3 %) 531
(32.2 %)

430
(37.3 %)

W 96 (3.4 %) 47 (2.9 %) 49 (4.2 %)

Means were reported with their standard deviation in parentheses. Median Apgar
scores were presented with interquartile range (quartile 1, quartile 3) in paren-
theses. Minutes of each observed sleep-wake state were presented with percent-
ages relative to total observation time in parentheses. M = male; F = female;
GA = gestational age; EP = extremely preterm; VP = very preterm; PMA = postmen-

Table 2
Quantitative EEG measures across different sleep-wake states.

Feature type Feature Sleep states

AS QS

Bursting SAT [n/minute] 6.41 (1.80) 6.06 (1.64
ISI [seconds] 3.83 (4.37) 5.08 (4.76
ISP [%] 47.24 (21.76) 57.14 (18

Synchrony ASI 6.82 (4.83) 4.76 (3.09
Spectral power SP_ABS_d 1087.41 (810.60) 932.47 (5

SP_ABS_h 71.46 (62.99) 63.70 (50
SP_ABS_a 14.52 (11.02) 12.35 (8.4
SP_ABS_b 6.20 (8.18) 4.22 (7.59
SP_REL_d [%] 0.91 (0.06) 0.92 (0.05
SP_REL_h [%] 0.08 (0.06) 0.07 (0.05
SP_REL_a [%] 0.02 (0.01) 0.01 (0.01
SP_REL_b [%] 0.01 (0.01) 0.00 (0.01

Complexity MSE_AUC 8.62 (2.71) 6.84 (2.38
MSE_MAX 0.64 (0.19) 0.52 (0.17
MSE_SLOPE_F 0.06 (0.02) 0.05 (0.02
MSE_SLOPE_C 0.02 (0.01) 0.02 (0.01

* P < 0.05, ** P < 0.01, *** P < 0.001.
Means were reported with their standard deviation in parentheses. For each qEEG feature
statistically significant differences among different sleep-wake states. The P-value tests th
each qEEG feature. The significance threshold was set at P < 0.05. EEG = electroenceph
QS = quiet sleep; W = wake; SAT = spontaneous activity transients; ISI = inter-SAT inter
index; SP_ABS = absolute spectral power; SP_REL = relative spectral power; d = delta freq
band; MSE = multiscale entropy; MSE_AUC = area under the MSE curve; MSE_MAX =max
scales (scale 1–5); MSE_SLOPE_C = average slope of the MSE curve in coarse scales (sca
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pairwise comparison analyses were presented in Supplementary
Table S2.

Significant differences between AS and QS were found for all the
three bursting features (cf. Fig. 1). Rate of SAT was higher in AS
than in QS (P < 0.001), while ISI and ISP were lower in AS than in
QS (both P < 0.001). Rate of SAT was significantly higher in AS than
in W (P = 0.011) (cf. Fig. 1A). ISI and ISP were significantly higher in
QS than in W (P = 0.020, P < 0.001, respectively) (cf. Fig. 1B and 1C).

Out of the four frequency bands, the low-frequency delta band
exhibited the highest absolute and relative power values during all
sleep states, with theta being the second, and alpha and beta the
lowest (Table 2). Higher delta power was observed in either of
the sleep states compared to wakefulness, while higher power in
other frequency bands was found in wakefulness compared to
sleep states. Relative beta power and absolute power of the delta,
alpha and beta bands were significantly different between each
pair of the three behavioral states (all P < 0.001) (cf. Fig. 2A, 2C
and 2D). Relative delta and alpha power differed significantly in
the state pairs of AS-W and QS-W (all P < 0.001) (cf. Fig. 2E and
2G). Significant differences were also found in absolute theta
power of AS-QS (P = 0.036) (cf. Fig. 2B) and in relative theta power
of AS-W (P = 0.020) (cf. Fig. 2F).

All MSE features were significantly different between each state
pair (all P < 0.001), with the area under the MSE curve, the maxi-
mum value of the curve, and the average slope of the curve in fine
scales following a trend of W > AS > QS, while the average slope of
the curve in coarse scales following a pattern of AS > QS > W (cf.
Fig. 3).
3.3. Effects of age on sleep-qEEG measures

We also tested the influence of age on qEEG measures across
different sleep-wake states (Table 3, Supplementary Table S3 and
S4). The enrolled infants were divided into two subgroups, EP
(<28 wks GA) and VP (28–30 wks GA). Significant age differences
were found in SAT, ISP, ASI, relative alpha power, and absolute
power of delta, theta and alpha bands. Most remarkably, ASI was
significantly higher in AS than in QS for the VP group (P < 0.033).
Wald v2 df P-value

W

) 5.98 (1.94) 40.539 2 <0.001 ***
) 2.60 (2.26) 54.480 2 <0.001 ***
.58) 34.91 (18.50) 212.330 2 <0.001 ***
) 4.11 (1.70) 1.147 2 0.564
97.82) 888.17 (698.74) 264.720 2 <0.001 ***
.58) 75.03 (46.78) 6.330 2 0.042 *
1) 29.92 (32.86) 227.930 2 <0.001 ***
) 29.84 (39.86) 528.800 2 <0.001 ***
) 0.85 (0.10) 75.286 2 <0.001 ***
) 0.09 (0.04) 9.861 2 0.007 **
) 0.04 (0.04) 338.640 2 <0.001 ***
) 0.04 (0.05) 483.560 2 <0.001 ***
) 12.39 (4.75) 281.750 2 <0.001 ***
) 0.83 (0.25) 238.970 2 <0.001 ***
) 0.09 (0.04) 391.250 2 <0.001 ***
) 0.02 (0.01) 132.960 2 <0.001 ***

a generalized linear mixed model with Wald Chi-square (v2) test was used to detect
e null hypothesis that all the three sleep-wake states have identical mean values for
alography; qEEG = quantitative EEG; df = degrees of freedom; AS = active sleep;
val; ISP = percentage of inter-SAT duration per minute; ASI = activation synchrony
uency band; h = theta frequency band; a = alpha frequency band; b = beta frequency
imum value of the MSE curve; MSE_SLOPE_F = average slope of the MSE curve in fine
le 6–20).



Fig. 1. Comparison of EEG bursting and synchrony characteristics (A) SAT, (B) ISI, (C) ISP and (D) ASI during different sleep-wake states: AS, QS and W. On each box plot the
central horizontal line indicates the median, the upper and lower box bounds represent the third and first quartile respectively, the upper and lower whiskers represent 1.5
times the interquartile range from upper and lower quartile respectively, and the white diamonds denote the mean. Asterisks indicate statistically significant differences
among sleep-wake state pairs (* P < 0.05, ** P < 0.01, *** P < 0.001, Holm corrected for multiple comparisons). EEG = electroencephalography; SAT = spontaneous activity
transients; ISI = inter-SAT interval; ISP = percentage of inter-SAT duration per minute; ASI = activation synchrony index; AS = active sleep; QS = quiet sleep; W = wake.

Fig. 2. Comparison of EEG spectral power characteristics (A) SP_ABS_d, (B) SP_ABS_h, (C) SP_ABS_a, (D) SP_ABS_b, (E) SP_REL_d, (F) SP_REL_h, (G) SP_REL_a and (H) SP_REL_b
during different sleep-wake states: AS, QS and W. On each box plot the central horizontal line indicates the median, the upper and lower box bounds represent the third and
first quartile respectively, the upper and lower whiskers represent 1.5 times the interquartile range from upper and lower quartile respectively, and the white diamonds
denote the mean. Asterisks indicate statistically significant differences among sleep-wake state pairs (* P < 0.05, ** P < 0.01, *** P < 0.001, Holm corrected for multiple
comparisons). EEG = electroencephalography; SP_ABS = absolute spectral power; SP_REL = relative spectral power; d = delta frequency band; h = theta frequency band;
a = alpha frequency band; b = beta frequency band; AS = active sleep; QS = quiet sleep; W = wake.
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3.4. Automated sleep stage classification using qEEG features

The MLR classifier based on the combination of all qEEG fea-
tures reached a mean AUC of 0.748 (SD = 0.065, P < 0.001) and a
59
mean accuracy of 0.658 (SD = 0.041, P < 0.001) (cf. Fig. 4). The most
contributing features for recognizing AS, QS and W were the max-
imum value of the MSE curve, the area under the MSE curve, and
the average slope of the MSE curve in fine scales, respectively.



Fig. 3. Comparison of EEG complexity characteristics (A)MSE_AUC, (B)MSE_MAX, (C)MSE_SLOPE_F and (D)MSE_SLOPE_C during different sleep-wake states: AS, QS andW.
On each box plot the central horizontal line indicates the median, the upper and lower box bounds represent the third and first quartile respectively, the upper and lower
whiskers represent 1.5 times the interquartile range from upper and lower quartile respectively, and the white diamonds denote the mean. Asterisks indicate statistically
significant differences among sleep-wake state pairs (* P < 0.05, ** P < 0.01, *** P < 0.001, Holm corrected for multiple comparisons). EEG = electroencephalography;
MSE = multiscale entropy; MSE_AUC = area under the MSE curve; MSE_MAX =maximum value of the MSE curve; MSE_SLOPE_F = average slope of the MSE curve in fine scales
(scale 1–5); MSE_SLOPE_C = average slope of the MSE curve in coarse scales (scale 6–20); AS = active sleep; QS = quiet sleep; W = wake.

Table 3
GLMM results for age � sleep-wake states interaction effects on qEEG measures.

Feature type Feature Wald v2 df P-value

Bursting SAT [n/minute] 19.247 2 <0.001 ***
ISI [seconds] 2.388 2 0.303
ISP [%] 7.969 2 0.019 *

Synchrony ASI 8.031 2 0.018 *
Spectral power SP_ABS_d 20.661 2 <0.001 ***

SP_ABS_h 3,582,376 2 <0.001 ***
SP_ABS_a 15.263 2 <0.001 ***
SP_ABS_b 3.928 2 0.140
SP_REL_d [%] 2.585 2 0.275
SP_REL_h [%] 1.859 2 0.395
SP_REL_a [%] 18.482 2 <0.001 ***
SP_REL_b [%] 1.157 2 0.561

Complexity MSE_AUC 2.269 2 0.322
MSE_MAX 1.025 2 0.599
MSE_SLOPE_F 6.990 2 0.030 *
MSE_SLOPE_C 0.408 2 0.816

* P < 0.05, ** P < 0.01, *** P < 0.001.
Means were reported with their standard deviation in parentheses. For each qEEG feature a generalized linear mixed model with Wald Chi-square (v2) test was used to
determine whether the interaction effect of age� sleep-wake states is statistically significant. The significance threshold was set at P < 0.05. GLMM = generalized linear mixed
model; EEG = electroencephalography; qEEG = quantitative EEG; df = degrees of freedom; AS = active sleep; QS = quiet sleep; W = wake; SAT = spontaneous activity transients;
ISI = inter-SAT interval; ISP = percentage of inter-SAT duration per minute; ASI = activation synchrony index; SP_ABS = absolute spectral power; SP_REL = relative spectral
power; d = delta frequency band; h = theta frequency band; a = alpha frequency band; b = beta frequency band; MSE = multiscale entropy; MSE_AUC = area under the MSE
curve; MSE_MAX = maximum value of the MSE curve; MSE_SLOPE_F = average slope of the MSE curve in fine scales (scale 1–5); MSE_SLOPE_C = average slope of the MSE
curve in coarse scales (scale 6–20).
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We further compared the individual predictive power of each kind
of feature by building four independent MLR models. The complex-
ity (i.e., MSE) feature subset yielded the best AUC, which is close to
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the predictive ability of all kinds of feature collection (cf. Fig. 5).
The classification performance was also significant for EP
(accuracy = 0.664 ± 0.045, P < 0.001; AUC = 0.762 ± 0.077,



Fig. 4. The ROC curve of the multinomial logistic regression combined with a
repeated 10-fold cross-validation procedure. Macro-averaged AUC value is reported
with its standard deviation in parentheses. ROC = receiver operating characteristic;
AUC = area under the curve.

Fig. 5. Comparison of AUCs obtained from MLR models using the collection of all
qEEG features and different kinds of feature subsets. On each error bar the central
black diamonds indicate the mean, and the upper and lower whiskers represent 1
standard deviation above and below the mean, respectively. AUC = area under the
curve; MLR = multinomial logistic regression; qEEG = quantitative
electroencephalography.
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P < 0.001) and VP (accuracy = 0.665 ± 0.065, P < 0.001; AUC = 0.7
13 ± 0.105, P < 0.001) subgroups, separately.
4. Discussion

Using quantitative analysis of dual-channel EEG, the current
study characterized the distributions of a set of representative
qEEG measures across different behavioral sleep-wake states (AS,
QS, and W) for extremely and very preterm infants (<30 wks GA)
during their first three days after birth. Our results showed that
most (15/16, 94 %) qEEG features differed significantly between
sleep-wake states in the entire sample. The exception was the syn-
chrony feature (i.e., ASI) which only differed significantly between
AS and QS in the very preterm subgroup (28–30 wks GA). In addi-
tion to ASI, sleep-bursting and sleep-spectral power associations
were also found to be influenced by age. Furthermore, the combi-
nation of all qEEG features achieved good automated sleep-wake
state classification performance.

The results of bursting analyses showed that SAT rate was sig-
nificantly higher in AS than in QS, while ISP and ISI were higher
in QS than in AS. Similar results were also reported by Palmu
et al. (2013), who found that the proportion of SAT events was dif-
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ferent between PSG-defined sleep stages, with AS > QS. Moreover,
our findings agree well with existing visual EEG assessment find-
ings that QS and AS are characterized by discontinuous and rela-
tively continuous background EEG activity, respectively (André
et al., 2010; Bourel-Ponchel et al., 2020; Dereymaeker, Pillay,
Vervisch, De Vos, et al., 2017). A growing body of evidence has
now demonstrated the critical importance of SAT events in early
human brain development (Arichi et al., 2017; Benders et al.,
2015; O’Toole et al., 2016; Tolonen et al., 2007; Vanhatalo and
Kaila, 2006). The result of higher SAT in AS than in QS thus lend fur-
ther support to the present notion that AS, as compared to QS,
might contribute more to the early developmental processes
(Graven and Browne, 2008; Mirmiran, 1995; Mirmiran et al.,
2003). To promote optimal brain development, it is of particular
importance for caregivers to safeguard AS in the NICU settings.

Despite the significant sleep-bursting associations, it appeared
that the state of wakefulness could not be well characterized by
the bursting features in the current sample. Both lowest SAT rate
and inter-SAT (ISI and ISP) values were seen during wakefulness
(cf. Fig. 1). This is paradoxical, as SAT and inter-SAT measures are
negatively correlated. One possible explanation for this paradoxi-
cal finding is that the small number of waking states observed in
the current study could not adequately represent the actual
situation.

Regarding the degree of interhemispheric synchrony, we found
lower ASI values during all three sleep-wake states in VP infants
compared to EP infants (Supplementary Table S3). This result is
in line with previous visual EEG studies in which high synchrony
between the two hemispheres was consistently observed before
28 wks GA, followed by asynchronous bursting activity until
near-term age (André et al., 2010; Hrachovy and Mizrahi, 2015).
The early synchronizations occurring in EP infants are believed to
reflect non-synaptic communication (Bourel-Ponchel et al., 2020;
Wallois et al., 2021). So far, no evidence exists that transitions
between sleep states drive changes in non-synaptic activities in
EP infants, which might be the cause for non-significant sleep-
ASI associations in this subgroup. The subsequent asynchrony in
older preterm infants is considered to be caused by the fact that
the generation of non-synaptic events is massively attenuated,
and the developing callosal fibers are not yet mature enough to
produce stable interhemispheric interactions (Wallois et al.,
2021). The synaptic plasticity has long been postulated to be facil-
itated by AS during early brain development (Del Rio-Bermudez
and Blumberg, 2018; Knoop et al., 2021; Kurth et al., 2015; Li
et al., 2017; Liu et al., 2007). Hence, it is reasonably speculated that
the significantly higher ASI value in AS compared to QS, as found in
the subgroup of VP infants, is related to callosal synaptic
development.

Additionally, Räsänen et al. (2013) found that ASI could not well
represent continuous activity during AS in an older preterm cohort
with average conceptional age of 30.4 weeks. This, however,
appears to have little discernible impact on the present study, since
the EEG itself is almost completely constituted by a discontinuous
background in all behavioral states (relatively more continuous in
AS than in QS) in preterm infants born before 30 wks GA (André
et al., 2010). Future studies should consider the fact that the use
of ASI might lead to controversial results in older infants with more
continuous EEG background activity, especially during AS.

In accordance with existing preterm EEG evidence, the power
spectral analyses revealed an imbalance between low- and high-
frequency content. For all sleep-wake states, the overwhelming
majority (above 85 %) of overall spectral power was concentrated
in the low-frequency delta band. Slow delta waves with superim-
posed fast activity (i.e., 8- to 30-Hz alpha–beta spindles), also
known as ‘‘delta brushes”, are the hallmark of preterm EEG and
constitute the main component of the SATs (Milh et al., 2007;



X. Wang, A. Bik, E.R. de Groot et al. Clinical Neurophysiology 146 (2023) 55–64
Pavlidis et al., 2017; Vecchierini et al., 2007). During the early pre-
term period, delta brushes occur more in AS than in QS (Vanhatalo
and Kaila, 2006; Whitehead et al., 2016), which explains the signif-
icantly higher power of the delta, alpha and beta bands during AS
compared to QS, as observed in the present work.

Higher-frequency components, primarily alpha and beta bands,
of neonatal EEG signals have been associated with the processing
of exogenous or environmental stimuli during wakefulness
(Norman et al., 2008; Saby and Marshall, 2012). Given that infants’
brain shows less EEG activity while asleep than awake, it is not sur-
prising to see higher alpha and beta power in wake than in either
of the sleep states. Interestingly, there is evidence that neonates
are capable of learning and processing external information even
during sleep, particularly AS (Fifer et al., 2010; Tarullo et al.,
2011). This could also be the reason for the higher alpha and beta
power observed in AS than in QS.

The theta power was of limited value for differentiating
between sleep-wake states in the entire group (cf. Fig. 2B and
2F). However, most pairwise comparison analyses of theta power
reached statistical significance for the EP and VP subgroups, sepa-
rately (Supplementary Table S4). Previous research suggested that
the evolution of theta activities depends upon subsequent activa-
tion of endogenous generators (Wallois et al., 2021). The drivers
of these generators change at around 28 wks GA (i.e., the boundary
between EP and VP subgroups) from spontaneous activities to sen-
sory information. Therefore, it would be attractive to speculate that
different generator-based mechanisms underlie the association
between theta power and sleep-wake states in extremely and very
preterm infants.

The complexity index (i.e., the area under the MSE curve) was
highest in W but decreased in AS and reached its lowest level dur-
ing QS, reflecting the high-to-low level of brain activity associated
with each sleep/wake state (Ma et al., 2018). The fine-scale slope of
the MSE curve and the maximum value of the curve showed a sim-
ilar distribution pattern across the three states. In contrast, at
coarse time scale, the slope of the MSE curve followed a distinct
pattern of AS > QS > W. These results indicate a time scale-
specific relationship between entropy and sleep-wake states,
which was also seen in healthy adults (Miskovic et al., 2019; Shi
et al., 2017). Furthermore, fine-to-coarse time scales of MSE were
assumed to be linked to power content in terms of high-to-low fre-
quencies, respectively (Courtiol et al., 2016). This explains the
same distribution pattern found for finer-scale MSE and higher fre-
quency power (W > AS > QS), and the same pattern for coarser-
scale MSE and lower frequency power (AS > QS > W).

Despite the noticeable impact of maturational effects on some
of the above-mentioned qEEG features, we found that automated
sleep staging is possible in extremely and very preterm infants
by combining these different features together. The classification
performance (overall AUC = 0.748) is comparable to, or even better
than existing automated sleep staging algorithms based on multi-
channel qEEG in the same population, which were implemented
during a later postnatal period (i.e., a few weeks after birth) (De
Wel et al., 2017; Dereymaeker, Pillay, Vervisch, Van Huffel, et al.,
2017; Koolen et al., 2017). In addition, we found that MSE metrics
are the most important features in automated sleep staging, irre-
spective of age, which implies their greater robustness and reliabil-
ity compared to other qEEG measures used in the present study.
Although the MSE analysis is still rarely applied to preterm EEG,
our findings show it as a promising avenue for future studies on
better characterizing sleep-wake states and as a useful index
applied across different preterm age groups.

Several limitations of this study warrant mention. To achieve
reliable estimates of sleep-qEEG patterns, we conducted successive
behavioral observations over a period of three hours, covering sev-
eral complete sleep cycles (André et al., 2010), in relatively healthy
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infants who were clinically stable at the time of observation. How-
ever, this resulted in a small sample size (n = 17), which may
reduce the statistical power to draw firm inferences. Furthermore,
as sleep pervades preterm newborn’s life, only a small number of
waking states were observed in the current sample. More awake
data is needed for further confirmation of our findings on wakeful-
ness in future work. Another point of concern is the restricted vis-
ibility of behaviors in several infants, due to respiratory support or
phototherapy during sleep observation (Supplementary Table S1).
These conditions led to fewer parameters available to score sleep
stages confidently. This issue can be mitigated by the sleep anno-
tation smoothing procedure used in the current study but cannot
be entirely excluded. Moreover, a clear sleep state distinction is
known to be quite difficult in preterm infants born at less than
30 wks GA, which might inherently limit the sleep classification
performance (Barbeau and Weiss, 2017; Bennet et al., 2018;
Kuhle et al., 2001).

It is worth highlighting several promising directions for future
research. Firstly, despite the use of cross-validation in the current
study, an independent external validation sample would help
enhance the generalizability (i.e., external validity) of our findings.
In the future, we will explore a web-accessible implementation of
our analysis procedure, creating an opportunity for NICU clinicians
and researchers to validate our qEEG-based automated sleep stag-
ing model in their own practice. Secondly, aiming to provide guide-
line values for clinicians, the present study only included a limited
number of typical qEEG features. To create a fully automated sleep
classification system in the NICU, future research should consider
using a more extensive and comprehensive qEEG feature set. In
particular, a basic assumption of the spectral analysis is the sta-
tionarity of data, which is not well fulfilled due to the non-
stationary nature of neonatal EEG. Future research could apply
more advanced time–frequency techniques to improve the time-
varying EEG spectral estimation. Finally, state-of-the-art EEG tech-
niques, such as dry electrodes and cable shielding, are being devel-
oped for early preterm infants, which would further increase the
clinical utility of the present work in the future.
5. Conclusion

In sum, we demonstrated the feasibility of differentiating sleep-
wake states using quantitative analysis of dual-channel EEG in pre-
term infants born before 30 wks GA during their first three days
after birth. The fusion of different qEEG features enabled auto-
mated sleep-wake state classification with achieving a good pre-
diction performance in both EP and VP infants. Complexity
characteristics showed the strongest predictive power among the
four kinds of qEEG parameters and might be the most promising
and valuable features for future preterm sleep-EEG research. Our
findings may provide a promising solution for creating a com-
pletely automated sleep assessment tool that assists appropriate
care planning in the NICU, thereby enhancing neurodevelopmental
outcomes for extremely and very preterm infants.
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