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A B S T R A C T   

The olfactory bulbs (OBs) play a key role in olfactory processing; their volume is important for diagnosis, 
prognosis and treatment of patients with olfactory loss. Until now, measurements of OB volumes have been 
limited to quantification of manually segmented OBs, which is a cumbersome task and makes evaluation of OB 
volumes in large scale clinical studies infeasible. Hence, the aim of this study was to evaluate the potential of our 
previously developed automatic OB segmentation method for application in clinical practice and to relate the 
results to clinical outcome measures. 

To evaluate utilization potential of the automatic segmentation method, three data sets containing MR scans of 
patients with olfactory loss were included. Dataset 1 (N = 66) and 3 (N = 181) were collected at the Smell and 
Taste Center in Ede (NL) on a 3 T scanner; dataset 2 (N = 42) was collected at the Smell and Taste Clinic in 
Dresden (DE) on a 1.5 T scanner. To define the reference standard, manual annotation of the OBs was performed 
in Dataset 1 and 2. OBs were segmented with a method that employs two consecutive convolutional neural 
networks (CNNs) that the first localize the OBs in an MRI scan and subsequently segment them. 

In Dataset 1 and 2, the method accurately segmented the OBs, resulting in a Dice coefficient above 0.7 and 
average symmetrical surface distance below 0.3 mm. Volumes determined from manual and automatic seg
mentations showed a strong correlation (Dataset 1: r = 0.79, p < 0.001; Dataset 2: r = 0.72, p = 0.004). In 
addition, the method was able to recognize the absence of an OB. In Dataset 3, OB volumes computed from 
automatic segmentations obtained with our method were related to clinical outcome measures, i.e. duration and 
etiology of olfactory loss, and olfactory ability. We found that OB volume was significantly related to age of the 
patient, duration and etiology of olfactory loss, and olfactory ability (F(5, 172) = 11.348, p < 0.001, R2 

= 0.248). 
In conclusion, the results demonstrate that automatic segmentation of the OBs and subsequent computation of 

their volumes in MRI scans can be performed accurately and can be applied in clinical and research population 
studies. Automatic evaluation may lead to more insight in the role of OB volume in diagnosis, prognosis and 
treatment of olfactory loss.   

1. Introduction 

On a daily basis, humans are exposed to thousands of different odors. 
While smell plays an important role in daily life, 3% up to 20% of the 
general population exhibits olfactory loss (Boesveldt et al., 2017; 
Brämerson et al., 2004; Hoffman et al., 2016), which is often 

accompanied with complaints such as a diminished appetite, issues with 
daily safety, and a decreased quality of life (Boesveldt et al., 2017; Croy 
et al., 2014; Postma et al., 2020). Currently, a new population of patients 
is arising as olfactory loss is one of the symptoms of a Covid-19 infection 
(Parma et al., 2020). To be able to treat these patients, it is important to 
gain a better understanding of the human olfactory pathway. 
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The olfactory bulbs are the first recipient of odor signals in the 
human brain and process signals from the olfactory receptors cells in the 
nose and transmit them to the olfactory regions in the brain (Lundström 
et al., 2011). Volume of the olfactory bulbs has been associated with 
olfactory function (e.g. Buschhüter et al., 2008; Haehner, Rodewald, 
Gerber, & Hummel, 2008; Rombaux, Huart, Deggouj, Duprez, & Hum
mel, 2012). Moreover, the olfactory bulbs showed a reduced volume 
compared to healthy individuals in patients affected with olfactory loss 
(Han et al., 2017; Han et al., 2018; Shehata et al., 2018; Yao et al., 2018). 
Interestingly, olfactory bulb volume plays a role in prognosis for re
covery in patients with olfactory loss: a larger olfactory bulb volume is 
related to a better recovery of smell ability (Rombaux et al., 2012). 
Moreover, olfactory training (Negoias et al., 2017) and medical treat
ment, like functional endoscopic sinus surgery (Gudziol et al., 2009; 
Sadeghi et al., 2015; Shehata et al., 2018) were both found to be related 
to an increase in olfactory bulb volume in patients with olfactory loss. 
Therefore, the volume of the olfactory bulbs -and their plasticity- may 
have important clinical implications for diagnosis, prognosis and treat
ment of patients with olfactory loss. 

Various patient populations are affected by disease- and/or 
medication-related olfactory loss, such as patients with depression 
(Rottstaedt et al., 2018a; Rottstaedt, Weidner, Hummel, & Croy, 2018b), 
schizophrenia (Asal et al., 2018; Nguyen et al., 2011) and neurode
generative diseases (Marin et al., 2018; Thomann et al., 2009). In these 
patients, reduced olfactory bulb volume was found compared to healthy 
controls, showing that studying the volume of this brain area and related 
outcome measures is clinically relevant. In addition, more research 
might lead to a better understanding of the role of the olfactory bulbs in 
relation to functioning of the brain during disease in general. 

The olfactory bulbs are small structures, with a volume of more than 
58 mm3 in people under 45 years of age and a volume of more than 46 
mm3 in people older than 45 being considered as normal, (Buschhüter 
et al., 2008). A specialized MRI scan sequence is needed to visualize the 
olfactory bulbs. In the clinic, olfactory bulb volume is measured in these 
scans by manually tracing of the outlines of the bulbs in all slices that 
display them to compute their total volume (Hummel et al., 2015; 
Yousem et al., 1997). Such manual segmentation allows comparisons of 
(patient) groups within a study, follow-up of volume over time or 
comparison of relative differences in volumes between studies. How
ever, while most work shows a high intra- and interrater reliability of 
repeated measurements within studies (see e.g. Gudziol et al., 2009; 
Hummel et al., 2015), differences may still be present between studies, 
making it problematic to compare absolute volumes between studies, or 
to establish cut-offs for olfactory bulb volume abnormalities applicable 
to different patient populations. Additionally, the current manual seg
mentation method is time consuming: on average, it takes 10 min per 
scan for a trained observer to segment the olfactory bulbs, which com
plicates clinical applications and hampers large scale studies. 

Previously, other methods were developed to improve accuracy and 
speed of olfactory bulb volume measurements. Joshi et al. used the box- 
frame method. This method requires manual interaction (Joshi et al., 
2020), while in recent years, deep learning techniques, and especially 
convolutional neural networks (CNNs), have become the method of 
choice for the automated analysis of medical images. CNNs analyze 
images through layers of convolutional filters to perform prediction 
(Litjens et al., 2017). These automated algorithms allow processing of 
large datasets in a short timeframe with increased reproducibility 
compared to manual analysis. Desser et al. (2021) and Estrada et al. 
(2021) both successfully developed automated methods to measure ol
factory bulb volume. However, both studies used different methods and 
did not investigate the relation between the volumes measured by the 
automated methods and other clinical outcomes, like olfactory ability. 
In our previous work, we developed an automatic method for segmen
tation of the olfactory bulbs in MRI. The method first localizes the center 
of each OB using a CNN and defines region of interest by a bounding box 
that includes both OBs. Subsequently, the method analyzes the defined 

region of interest with another CNN to perform voxel-wise segmentation 
of the OBs (as described in detail in Noothout et al., 2021). 

The aim of the current study was to evaluate the potential of our 
previously developed automatic olfactory bulb segmentation method for 
application in clinical practice and in diverse studies. In the present 
study, we evaluated our method using three independent datasets. In 
two datasets, differing in acquisition parameters, we evaluated the 
performance of the method by comparing results with available manual 
reference annotations. In a third dataset, we related olfactory bulb 
volume computed solely from automatically obtained segmentations to 
clinical outcomes, i.e. duration and etiology of olfactory loss, and ol
factory ability. 

2. Data 

2.1. Datasets 

The method was evaluated using three different datasets including 
clinical patients with olfactory loss. In all datasets, patients’ olfactory 

Table 1 
Patient characteristics of patients included for the analysis for all datasets, 
including patients with congenital anosmia (mean ± SD or N (%)).   

Dataset 
1 
(N =
66) 

Dataset 
2 
(N =
42) 

Dataset 3 
(N = 181)    

Post- 
infectious 
(N = 68) 

Chronic 
rhino- 
sinusitis (N 
= 61) 

Trauma 
(N =
52) 

Age (years) 59 ±
16.3 

54 ±
15.4 

60 ± 10.7 59 ± 12.7 49 ±
16.7  

Men/women 
ratio 

28/38 17/25 17/51 37/24 20/32  

Duration of 
olfactory loss 
0–2 years 
2–5 years 
5–10 years 
> 10 years 
Whole life  

15 
(23%) 
16 
(24%) 
16 
(24%) 
15 
(23%) 
4 (6%)  

24 
(57%) 
8 (19%) 
3 (7%) 
2 (5%) 
5 (12%)  

29 (43%) 
20 (29%) 
9 (13%) 
10 (15%) 
0  

11 (18%) 
6 (10%) 
22 (36%) 
22 (36%) 
0  

21 
(40%) 
18 
(35%) 
7 (13%) 
6 (12%) 
0  

Etiology of 
olfactory loss 
Idiopathic 
Chronic 
rhinosinusitis 
Post-infectious 
Trauma 
Congenital 
Othera  

22 
(34%) 
20 
(30%) 
12 
(18%) 
4 (6%) 
4 (6%) 
4 (6%)  

8 (19%) 
0 
29 
(69%) 
0 
5 (12%) 
0  

0 
0 
68 (100%) 
0 
0 
0  

0 
61 (100%) 
0 
0 
0 
0  

0 
0 
0 
52 
(100%) 
0 
0  

Sniffin’ Sticks 
score 

16.1 ±
7.6b 

17.0 ±
7.0 

18.4 ± 6.7 15.5 ± 6.6 
b 

14.8 ±
6.6 b  

Smell disorder 
Functional 
anosmia 
Hyposmia 
Normosmia  

34 
(57%) 
23 
(38%) 
3 (5%)  

21 
(50%) 
17 
(40%) 
4 (10%)  

28 (41%) 
39 (57%) 
1 (2%)  

37 (62%) 
23 (38%) 
0  

31 
(62%) 
18 
(36%) 
1 (2%)  

a = toxic/drugs (N = 3) and iatrogenic (N = 1). 
b
= could only be determined for 60/60/50 patients due to missing data. 
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function was measured using the Sniffin’ Sticks test (Hummel et al., 
1996). The scores of this test (total range: 1–48; range in this study: 
3.0–35.5) were used to categorize patients in one of the olfactory 
functioning groups: functional anosmia (TDI ≤ 16); hyposmia (16 > TDI 
< 30.75) or normosmia (TDI ≥ 30.75) (Oleszkiewicz et al., 2019). 
Characteristics of all patients are shown in Table 1. 

2.1.1. Dataset 1 
Dataset 1 was obtained from the Smell and Taste Center in Ede, The 

Netherlands. This dataset contained patients who visited the Smell and 
Taste Center between August 2015 and July 2017 and were diagnosed 
with olfactory loss. For this dataset, 100 patients were included as a 
random sample. All patients signed an informed consent on the use of 
their patient files for research and this study was approved by the review 
committee for scientific research of Hospital Gelderse Vallei, Ede, the 
Netherlands (BC/1703–143). MRI scans were acquired on a 3 T Siemens 
Magnetom Verio scanner (Siemens, Erlangen, Germany) with the use of 
a 32-channel head coil. To image the olfactory bulb, a coronal T2- 
weighted 2D turbo spin-echo scan of 28 slices was made, using GRAPPA 
factor 2 (repetition time: 4630 ms; echo time: 153 ms; field of view: 205 
× 256 mm; in-plane voxel size: 0.47 mm; slice thickness: 1.0 mm (no 
gap); 28 slices; flip angle = 145◦; total scan time: 4.30 min). In total, 61 
patients with a visible olfactory bulb and 5 patients with no visible ol
factory bulb were included for final analysis after manual segmentation 
of the olfactory bulbs (total N = 66). 

2.1.2. Dataset 2 
Dataset 2 was obtained from the Smell and Taste Center at the 

University Hospital Carl Gustav Carus in Dresden, Germany. This dataset 
contained 70 MRI scans of patients who were diagnosed with olfactory 
loss, and who signed an informed consent on the use of their medical 
records for research. MRI scans were acquired on a 1.5 T Siemens Verio 
scanner (Siemens, Erlangen, Germany) with the use of a 32-channel 
head coil. To image the olfactory bulb, a coronal T2-weighted scan of 
32 slices was made (repetition time: 2300 ms; echo time: 2.98 ms; field 
of view: 256 × 240 mm; in-plane voxel size: 0.47 mm; slice thickness: 
1.2 mm (no gap); flip angle = 9◦; total scan time: 9.20 min). In total, 36 
patients with a visible olfactory bulb and 6 patients with no visible ol
factory bulb were included for final analysis after manual segmentation 
of the olfactory bulbs (total N = 42). 

2.1.3. Dataset 3 
Similar to Dataset 1, Dataset 3 was also obtained from the Smell and 

Taste Center in Ede, The Netherlands. This dataset contained 181 MRI 
scans of patients with clinically diagnosed olfactory loss based on three 
etiologies: post-infectious olfactory loss, olfactory loss due to chronic 
rhinosinusitis, or olfactory loss due to trauma. Patients visited the Smell 

and Taste center between July 2015 and February 2018 and signed an 
informed consent on the use of their patient files for research. MRI scans 
were made with the same acquisition settings as to those in Dataset 1. 

2.2. Reference standard 

To establish a reference standard, for every scan in Dataset 1 and 2, 
the left and right olfactory bulb were manually segmented and their 
volumes were subsequently computed. 

For every scan, manual segmentation of the left and right olfactory 
bulb was obtained by performing planimetric manual contouring of each 
bulb in all slices according to a standardized protocol as described 
previously, following current practice for manual segmentations 
(Rombaux et al., 2009). Manual segmentation started with the selection 
of slices on which the olfactory bulbs were visible between the posterior 
parts of the eyeballs in the coronal plane. The first slice with a visually 
detectable olfactory bulb was used as the starting point of the manual 
segmentation. The contours of the olfactory bulbs were drawn manually 
in each successive slice. The sudden change in diameter at the beginning 
of the olfactory tract was used to define the end of the olfactory bulb 
(Rombaux et al., 2009; Yousem et al., 1997). After contouring, the 
volume of the left and right olfactory bulb in a scan was computed in 
mm3 by multiplying the number of segmented voxels by the voxel size 
for each slice in which the olfactory bulb was visible. 

Manual segmentation of the bulbs in Dataset 1 and 2 was performed 
by observers who were all trained following the same protocol, 
including data from 10 different patients, ranging from ‘easy to segment’ 
and ‘difficult to segment’. In Dataset 1, manual segmentations were 
performed twice by one observer on different days. When the repeated 
segmentations differed more than 10% in volume from each other, a 
third segmentation was conducted to obtain two segmentations that 
differed<10%. In Dataset 2, manual segmentations were performed by 
two independent observers on different days. The observers were blin
ded to all patient characteristics. To minimize variability in both data
sets for training of the algorithm, only two segmentations of the same 
bulb that differed < 10% in volume were included. Based on this cri
terion, for the final dataset, 61 patients with a visible olfactory bulb from 
Dataset 1 and 36 patients with a visible olfactory bulb from Dataset 2 
were included (Fig. 1). To perform the segmentation, for Dataset 1, 
MIPAV software (version 7.4.0, Centre for Information Technology, 
National Institutes of Health, Bethesda, Maryland, USA) was used, while 
for Dataset 2, AMIRA software (version 6.0, Department for Scientific 
Visualization, Zuse Institute Berlin (ZIB)) and AVIZO software (version 
9.4, ThermoFisher Scientific, Waltham, Massachusetts, USA) were used. 
For Dataset 3, no manual reference segmentations were obtained. 

Fig. 1. Flowchart for Dataset 1 and 2, including input data and final data that was used as input for the method.  

E.M. Postma et al.                                                                                                                                                                                                                              



NeuroImage: Clinical 38 (2023) 103411

4

3. Method 

For automatic segmentation of the olfactory bulbs in MRI, we applied 
our previously developed method (Noothout et al., 2021). The method 
performs automatic segmentation of the olfactory bulbs in MRI scans in 
two consecutive steps. First, the center of each olfactory bulb is localized 
to define a region of interest (ROI) containing both bulbs. Subsequently, 
the ROI is analyzed to automatically segment the olfactory bulbs. After 
automatic segmentation, bulb volumes are determined from the ob
tained segmentations (see Fig. 2). 

3.1. Automatic localization 

Localization of the centers of the olfactory bulbs is performed using a 
landmark localization method performing a global-to-local analysis of 
images using CNNs (Noothout et al., 2020). 

To obtain a reference location for the center of each olfactory bulb 
for training of the localization CNNs, the center of each manually 
segmented olfactory bulb was computed. For automatic localization of 
the olfactory bulb centers, one global and two specialized CNNs, i.e. one 
for the left and one for the right olfactory bulb, were trained. Both the 
global and local localization CNNs analyzed image patches and perform 
regression and classification tasks simultaneously. Hence, training was 
performed using a combined loss-function consisting of two parts. For 
the regression task, the mean absolute error was computed between the 
reference displacements and the regression output, while for the clas
sification task, the binary cross-entropy between reference labels and 
the classification output was computed. CNNs were trained for 300,000 
iterations using mini-batches containing 4 randomly sampled sub- 
images. During every iteration, the global CNN analyzed mini-batches 
containing sub-images of size 72x72x72 voxels, while specialized 
CNNs each analyzed mini-batches containing sub-images of size 
16x16x16 voxels. Adam (Kingma & Ba, 2015) (lr = 0.001) was used to 
optimize network weights. During training, networks were evaluated on 
the validation set every 10,000 iterations. The best performing settings 
were defined as final parameter settings and used during testing. 

3.2. Automatic segmentation 

After localization, predicted center locations are used to define a 
region of interest (ROI) containing both bulbs. To ensure that the bulbs 
are completely contained within the ROI, the ROI contains all coronal 
slices of the MRI and has an in-plane size of 61x61 pixels. To automat
ically segment the olfactory bulbs, a CNN is trained to classify each pixel 
in the coronal slices of an ROI as left or right olfactory bulb, or back
ground (Noothout et al., 2021). 

For automatic segmentation of the olfactory bulbs, a segmentation 
CNN was trained during 80,000 iterations. During every iteration, the 
network analyzed a mini-batch containing 40 sub-images of size 35x35 
pixels, of which the network classified the center 21x21 pixels. The Dice 
coefficient was used as loss-function and network weights were 

optimized using Adam (Kingma & Ba, 2015) (lr = 0.001). As an example 
of the output of the automatic segmentation method, individual results 
for 10 randomly selected patients are shown in Appendix A (Table A1). 

To train the CNN to recognize the absence of an olfactory bulb, 
before training 5 and 6 MRI of patients without (visible) olfactory bulbs, 
originating from the respective centers, were added to Dataset 1 and 2, 
respectively. 

4. Evaluation 

Performance of the automatic segmentation method was evaluated 
for the localization and segmentation step separately, using Dataset 1 
and 2. Dataset 3 was used for statistical analysis of automatically ob
tained segmentations and clinical outcome measures. 

4.1. Evaluation of the automatic segmentation method 

Manual reference segmentations were available for Dataset 1 and 2. 
Due to substantially different characteristics of the images in the two 
datasets, analysis was performed per set. Performance of the localization 
networks was evaluated by computing the Euclidean distance error 
between automatic and manual reference location of the center of each 
olfactory. Evaluation of the segmentation network was performed by 
computing the Dice coefficient to evaluate the overlap between auto
matic and manual segmentations, and the average symmetrical surface 
distance (ASSD) in millimeters between automatic and manual seg
mentations to evaluate automatic segmentation along the bulbs surface. 
To improve performance of the automatic segmentation CNN on Dataset 
2, transfer learning was applied by initializing the segmentation CNN 
with the weights of the CNN trained only on Dataset 1 and subsequent 
training of the CNN with the training set of Dataset 2 during 40,000 
iterations. 

The correlation between olfactory bulb volumes computed from the 
manual segmentations and the automatic segmentations was investi
gated by performing Spearman’s correlation in IBM SPSS Statistics 
(version 25). Furthermore, because scans can contain non-visible ol
factory bulbs, as there are patients who are born with a very small or 
even invisible olfactory bulbs (Abolmaali et al., 2002; Karstensen et al., 
2018), the ability of the network to recognize the absence of an olfactory 
bulb was evaluated by using available scans of patients with no visible 
olfactory bulbs. 

4.2. Relating olfactory bulb volume to clinical outcome measures 

To investigate how automatically determined OB volumes based on 
the segmentations from the CNN are related to clinical outcome mea
sures, i.e. olfactory ability and etiology and duration of olfactory loss, 
olfactory bulb volumes in Dataset 3 were computed from the automatic 
segmentations. Subsequently, differences in olfactory bulb volume be
tween etiologies and durations of olfactory loss were calculated using a 
Kruskal-Wallis test. The relation between objective smell function as 

Fig. 2. Automatic segmentation of the olfactory bulbs in MRI scans using convolutional neural networks (CNNs). First, the center of each OB is localized. Subse
quently, a region of interest (ROI) containing both olfactory bulbs is extracted and used as input for the segmentation of both olfactory bulbs to determine their 
volumes (figure derived from [Noothout et al., 2021], with permission). 
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measured with the Sniffin’ Sticks test and olfactory bulb volume was 
tested using Spearman’s correlations. Additionally, a multiple linear 
regression was performed to investigate the relation between olfactory 
bulb volume and age, sex, etiology and duration of olfactory loss, and 
olfactory ability. All tests were performed in IBM SPSS Statistics (version 
25). 

5. Experiments and results 

Before experiments, Dataset 1 was randomly divided into a training 
dataset (43 MRI scans), a validation dataset (2 MRI scans), and a hold- 
out test dataset (21 MRI scans). In the training and test set, three and 
two scans without clearly visible olfactory bulbs were present, respec
tively. Dataset 2 was also randomly divided into a training set (20 MRI 
scans), a validation set (2 MRI scans) and a hold-out test set (20 MRI 
scans). In the test set, six scans without clearly visible olfactory bulbs 
were present. Dataset 3 was solely used as a hold-out test set (181 MRI 
scans). Overall, training and validation sets were used to develop the 
method while hold-out test sets were not used during method develop
ment in any way. 

5.1. Automatic segmentation of visible olfactory bulbs 

5.1.1. Dataset 1 
The localization CNNs and the segmentation CNN were trained using 

training scans from Dataset 1. Automatic localization of the olfactory 
bulb centers in the test set of Dataset 1 resulted in an average Euclidian 
distance error between reference and automatically obtained locations 
of 1.24 ± 0.84 mm for the left, and 1.40 ± 1.21 mm for the right 

olfactory bulb. Subsequent automatic segmentation of the olfactory 
bulbs resulted in an average Dice coefficient and ASSD of 0.79 ± 0.13 
and 0.23 ± 0.31 mm for the left olfactory bulb, respectively, and an 
average Dice coefficient and ASSD of 0.82 ± 0.10 and 0.17 ± 0.18 mm 
for the right olfactory bulb, respectively. Fig. 3 shows segmentation 
results obtained on two images from the test set, for which the method 
obtained Dice coefficients of 0.89 and 0.90 for segmentation of the left 
bulbs, and 0.88 and 0.91 for segmentation of the right bulbs. Total time 
needed for the localization and segmentation per MRI scan was 0.20 s. 
For illustration purposes, we added an example of olfactory bulb volume 
obtained by automatic segmentation at the posterior coronal slice, 
where the cut-off needs to be made between the olfactory bulb and the 
olfactory nerve (Fig. 4).Subsequently, olfactory bulb volumes were 
calculated from the automatic segmentation and correlated with the 
volumes calculated from the manual measurements (Table 2). The 

Fig. 3. Automatic segmentation of the left (orange) and right (blue) olfactory bulb in two MRI scans (rows). The first column shows a coronal slice of the image, 
cropped for visualization purposes. The middle column shows the automatic segmentation result, obtained with the method while the last column shows the 
reference segmentation (manual segmentation). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 4. Automatic segmentation of the right (yellow) olfactory bulb. The left column shows the posterior coronal slice, where the cut-off needs to be made between 
the olfactory bulb and the olfactory nerve, cropped for visualization purposes. The middle column shows the automatic segmentation result, obtained with the 
method while the last column shows the reference segmentation (manual segmentation). 

Table 2 
Mean ± SD volume of the left and right OB in mm3 measured with the manual 
measurements and the volumes based on the segmentations from the CNN in the 
test set of Dataset 1 (N = 19).   

Manual 
measurements 

Automated 
measurements 

Correlation 

Volume left 
olfactory bulb 

43.6 ± 12.90 40.0 ± 15.04 r = 0.92, p <
0.001 

Volume right 
olfactory bulb 

47.3 ± 12.37 42.2 ± 10.32 r = 0.47, p =
0.04 

Total volume 
olfactory bulbs 

90.0 ± 24.79 80.2 ± 20.83 r = 0.79, p <
0.001  
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average absolute volumetric difference was 7.49 ± 5.42 mm3 for the left 
olfactory bulb and 7.88 ± 9.74 mm3 for the right olfactory bulb. All 
volumes showed a significantly moderate to strong positive correlation 
between results from the manual measurements and the volumes 
calculated based on the segmentations from the CNNs. A Bland-Altman 
plot for these results is added in Appendix A (Figure A1). 

5.1.2. Dataset 2 
The previously trained localization CNNs were also evaluated on 

Dataset 2, which had different MRI acquisition parameters compared to 
Dataset 1. On average, automatic localization of the center of the left 
and right olfactory bulb in the test set showed a Euclidean distance error 
of 1.81 ± 1.55 and 2.15 ± 1.38 mm. Even though distance errors were 
slightly higher compared to those for Dataset 1, ROIs could still be 
successfully extracted and no olfactory bulb was left out. 

Subsequent automatic segmentation of the olfactory bulbs after 
additional training with Dataset 2 resulted in an average an average Dice 
coefficient and ASSD of 0.72 ± 0.13 and 0.26 ± 0.29 mm for the left 
olfactory bulb, respectively, and an average Dice coefficient and ASSD of 
0.74 ± 0.10 and 0.23 ± 0.19 mm for the right olfactory bulb, respec
tively. Fig. 5 shows segmentation results obtained on two images from 
the test set with the method trained with only Dataset 1 and with the 
method trained additionally with Dataset 2. For both images, segmen
tation results improved when additional training with Dataset 2 was 
performed. 

Subsequently, olfactory bulb volumes were calculated for the seg
mentations obtained with the CNN additionally trained with Dataset 2 
and correlated with the volumes calculated from the manual measure
ments (Table 3). All volumes showed a significant moderate to strong 
positive correlation. A Bland-Altman plot for these results is added in 

Appendix A (Figure A1). 

5.2. Automatic segmentation of non-visible olfactory bulbs 

Clinical populations with olfactory loss also include patients who 
have no visible olfactory bulbs, e.g. patients with congenital anosmia 
(Abolmaali et al., 2002; Karstensen et al., 2018). Therefore, the ability of 
the network to recognize the absence of an olfactory bulb was evaluated 
by using available scans of patients with no visible olfactory bulbs of 
Dataset 1 and 2 (Table 4). Here, the Dice coefficient and ASSD could not 
be calculated as manual segmentations were -by definition- not possible 
in these scans. On average, segmentation results yielded volumes 
smaller than 4 mm3. 

Fig. 5. Automatic segmentation of the left (orange) and right (blue) olfactory bulb in two MRI scans (rows). The first column shows an axial slice of the image, 
cropped for visualization purposes. The second and third column show the segmentation results, obtained with the segmentation CNN trained with only Dataset 1 and 
with additional training with Dataset 2, respectively, while the last column shows the reference segmentation. Dice coefficients improved from 0.64 to 0.75 (first 
row), and from 0.42 to 0.62 (second row) for the left olfactory bulb, while for the right olfactory bulb Dice coefficients improved from 0.74 to 0.83 (first row), and 
from 0.54 to 0.65 (second row). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Mean ± SD volume of the left and right OB in mm3 measured with the manual 
measurements and the volumes based on the segmentations from the CNN in the 
test set of Dataset 2 (N = 14).   

Manual 
measurements 

Automated 
measurements 

Correlation 

Volume left 
olfactory bulb 

21.8 ± 9.18 27.3 ± 9.64 r = 0.80, p =
0.001 

Volume right 
olfactory bulb 

22.8 ± 9.27 27.5 ± 7.85 r = 0.76, p =
0.002 

Total volume 
olfactory bulbs 

44.5 ± 17.58 54.8 ± 15.57 r = 0.72, p =
0.004  

Table 4 
Mean ± SD accuracy measures for left and right olfactory bulb volume mea
surements by the segmentation network for Dataset 1 (N = 2) and 2 (N = 6); both 
datasets included only patients with no visually detectable olfactory bulb.  

Training 
method 

Test set Abs. vol. difference 
left 

Abs. vol difference 
right 

DS 1 No bulb DS 
1 

1.53 ± 1.53 3.74 ± 3.74 

DS 1 No bulb DS 
2 

2.24 ± 1.47 2.55 ± 3.72 

DS 1 – DS 2 No bulb DS 
2 

2.86 ± 1.72 1.67 ± 1.94 

DS = dataset; DS 1 – DS 2 = trained on Dataset 1 and additionally on Dataset 2; 
abs. vol. difference = absolute volumetric difference in mm3. 

Table 5 
Mean ± SD volume of the left and right OB in mm3 based on the segmentations 
from the CNN for the different etiologies and correlation between total volume 
and Sniffin’ Sticks score in MRI of Dataset 3.   

Post-infectious 
(N = 68) 

Chronic 
rhinosinusitis (N =
61) 

Trauma 
(N = 52) 

Total volume olfactory 
bulbs 

73.5 ± 25.61a 79.5 ± 29.96a 37.4 ±
29.85b 

Correlation volume – 
olfactory ability 

r = 0.15, p =
0.23 

r = -0.03, p = 0.81 r = 0.50, p 
< 0.001 

Different letters indicate significant differences between groups (p < 0.05). 
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5.3. Relating olfactory bulb volume to clinical outcome measures 

Because image acquisition parameters were the same as those from 
Dataset 1 (Section 2.1.3), the method trained with Dataset 1 was used to 
automatically segment the olfactory bulbs in MRI of Dataset 3. Subse
quently, volumes of the olfactory bulbs were computed using the auto
matic segmentations and related to clinical outcome measures, i.e. 
olfactory ability, and etiology and duration of olfactory loss. Results 
showed that there was a significant effect of etiology of olfactory loss on 
total olfactory bulb volume (χ2(2) = 49.623, p < 0.001). Total volume 
was significantly smaller in patients with olfactory loss due to trauma 
compared to patients with olfactory loss due to chronic rhinosinusitis (p 
< 0.001) or patients with post-infectious olfactory loss (p < 0.001) 
(Table 5). In addition, there was a significant effect of duration of ol
factory loss on total olfactory bulb volume (χ2(3) = 11.311, p = 0.01): 
pairwise comparisons only showed a significant difference in volume 
between patients with olfactory loss for 2–5 years and for 5–10 years (p 
= 0.02). 

In the total population, there was a significantly moderate positive 
correlation between olfactory ability and olfactory bulb volume (r =
0.21, p = 0.006). When looking at the etiology subgroups separately, 
there was a significant correlation between total volume and olfactory 
ability for patients with olfactory loss due to head trauma (r = 0.50, p <
0.001; Table 5), but not for the other etiologies. For comparison reasons, 
we also correlated olfactory ability with olfactory bulb volume for the 
patients in dataset 1 and 2 using Spearman’s rank correlations. There 
was no correlation between olfactory ability and both measurements of 
olfactory bulb volume (see Table A2 in Appendix A). 

A multiple regression model was used to predict olfactory bulb vol
ume from age, sex, and duration and etiology of olfactory loss. This 
model showed that these variables significantly predicted olfactory bulb 
volume (F(5, 172) = 11.348, p < 0.001, R2 = 0.248). Of these variables, 
sex (beta = -0.166, p = 0.02), duration (beta = 0.178, p = 0.03), etiology 
(beta = -0.406, p < 0.001) and olfactory ability (beta = 0.174, p = 0.01) 
significantly contributed to the prediction. Average olfactory bulb vol
ume in women was 11.28 mm3 smaller than in men. For the subgroups of 
duration, there was an average decrease of olfactory bulb volume of 
5.20 mm3 for a longer duration of olfactory loss. For etiologies of ol
factory loss, the biggest volume was found in the post-infectious pa
tients, followed by chronic rhinosinusitis and trauma patients, with a 
decrease in olfactory bulb volume of 16.76 mm3 per group. Lastly, an 
increased olfactory ability was related to an increased olfactory bulb 
volume of 0.86 mm3. 

6. Discussion 

In this study, we evaluated the potential of our previously developed 
automatic olfactory bulb segmentation method for clinical measure
ments of olfactory bulb volume. We have shown that our method was 
able to accurately segment olfactory bulbs in MRI scans differing in 
acquisition parameters and that volumes computed from automatic 
segmentations were moderately to highly correlated with those 
computed from manual segmentations. These results are similar to the 
results of previously developed methods. Moreover, the method was 
able to detect the absence of an olfactory bulb. Additionally, we have 
shown that volumes computed from automatically obtained segmenta
tions are related to clinical outcome measures such as duration and 
etiology of olfactory loss, indicating that the use of our automated 
method to segment the olfactory bulbs has potential for clinical appli
cations, e.g. in various populations of patients with olfactory loss. 

We evaluated our method using three datasets acquired on different 
MRI scanners. For Dataset 1, automatic segmentation of the olfactory 
bulbs resulted in an average Dice coefficient above 0.8 and an ASSD 
below 0.24 mm. For Dataset 2, additional training of the segmentation 
CNN resulted in an average Dice coefficient of above 0.72 and an ASSD 
below 0.26 mm, which is slightly worse compared to the performance on 

Dataset 1. Reasons for this could be a larger slice thickness for scans in 
Dataset 2 than in Dataset 1 and the limited sizes of the datasets. In a 
smaller sample, interindividual variability, associated with a patient 
population, can have a large impact on the final result. However, the 
Bland-Altman plot showed only one result that exceeded the upper 95% 
CI. Additionally, there were differences in image acquisition parameters 
between datasets. Scans from Dataset 2 were made on a 1.5 T MRI 
scanner. Therefore, image acquisition time for Dataset 2 was longer than 
for Dataset 1 (3 T), which might have led to motion artefacts, also caused 
by the interleaved scanning sequence that was used. Future work should 
focus on training a single CNN using heterogeneous training data rep
resenting diverse populations and comprised of scans made with 
different scanners and different image acquisition protocols to make the 
method more robust., This will make the method applicable to quanti
fication of olfactory bulb volume for a wider variety of scans with 
diverse acquisition parameters. Nevertheless, our results show that the 
results based on the noisier scans obtained on a 1.5 T scanner were still 
accurate once additional training was performed. 

Dataset 1 and 2 also included patients who did not have an olfactory 
bulb due to congenital anosmia and patients who suffered from olfactory 
loss after head trauma and did not have a visible olfactory bulb, prob
ably due to lesions caused by the head trauma (Lötsch et al., 2016). The 
method was able to successfully detect the absence of an olfactory bulb in 
these scans. In these scans, on average, segmentation results yielded 
volumes smaller than 4 mm3. This volume is unlikely in bulbs visually 
detectable on MRI and suggests that the method can be applied to the 
full range of olfactory bulb volumes seen in clinical practice. 

Olfactory bulb volume can be an important indicator for prognosis of 
patients with olfactory loss (Rombaux et al., 2012). Fast and reliable 
measures of olfactory bulb volume in relation to other clinical outcome 
measures are therefore of importance for daily health care. While we 
found a strong correlation between both measurements for the left OB, 
the correlation between volumes for the right OB was lower. A similar 
correlation for both side olfactory bulbs would be expected. However, in 
clinical patient data, we often see that there is a difference in volume and 
demarcation between the left and right side of the olfactory bulb, for 
example due to trauma or to chronic infections in the nose. In our 
datasets, these etiologies were present among the included patients. This 
could have influenced the correlations for each bulb. Using Dataset 3, we 
showed that the volumes can be related to clinical outcome measures, 
which is in line with previous studies in patients, that also found dif
ferences in volume between different etiologies of olfactory loss 
(Thomas Hummel et al., 2015; Yildirim et al., 2020), a decrease of 
volume in patients with a longer duration of olfactory loss (Yao et al., 
2018), and a relation between volume and olfactory function (Haehner 
et al., 2008; Thomas Hummel et al., 2015). Moreover, we found a dif
ference in volume between women and men, while there was no sig
nificant relation between age and olfactory bulb volume, which is in line 
with previous findings in healthy participants (Buschhüter et al., 2008) 
and patients (Hummel et al., 2015). 

We consider the use of our method as described in the current study 
as a proof of principle that the use of automated assessment of olfactory 
bulb volume in clinical settings is feasible after further training of the 
CNNs. Our results show that this method can accurately perform mea
surements of olfactory bulb volume in a much faster manner than 
manual measurements (0.2 s compared to 10 min), while the reliability 
of the measurements is independent from individual observers. Alto
gether this indicates the potential for applying this automated method in 
clinical settings in which olfactory bulb volume is relevant, for example 
in patients with depression (Rottstaedt et al., 2018a; Rottstaedt, Weid
ner, Hummel, & Croy, 2018b), schizophrenia (Asal et al., 2018; Nguyen 
et al., 2011) or neurodegenerative diseases (Marin et al., 2018; Tho
mann et al., 2009). However, olfactory bulb volume is not only relevant 
for diseases that are primarily related to the brain; there is also evidence 
that it can be of clinical relevance in other patients, such as patients with 
obstructive sleep apnea (Doğan et al., 2020), patients with obesity 
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(Karaoglan & Colakoglu Er, 2020; Poessel et al., 2020). In addition, 
current studies showed that olfactory loss due to a COVID-19 infection 
can lead to atrophy of the olfactory bulb volume (Chiu et al., 2021; 
Tsivgoulis et al., 2021). Therefore, this method will be widely applicable 
in the future. 

Another clinical application would be the follow-up of olfactory bulb 
volume over time. These measurements can be applied to follow pro
gression of disease over time, or for instance to monitor the effect of 
treatment for olfactory loss, like olfactory training, on olfactory bulb 
volume. Moreover, this would allow further research on olfactory bulb 
volume in relation to disease. In neurodegenerative diseases like Par
kinson’s disease of Alzheimer’s disease, changes in olfactory ability can 
be an early signal for development of disease (Attems et al., 2015; Marin 
et al., 2018). Further investigations on changes in olfactory bulb volume 
may give more insight in the role of changes in olfactory bulb volume in 
detection of neurodegenerative diseases at an early stage. In the future, 
this might increase the possibilities for an early start of treatment 
(Fullard et al., 2017; Kumar & Singh, 2015). 

Our current results are based on training the segmentation CNN with 
images for which manual reference segmentations were available. While 
previous studies show that this can yield reliable results based on inter- 
and intra-rater comparisons (Huart et al., 2019; Thomas Hummel et al., 
2015), surprisingly little is known about how these manual segmenta
tions relate to the actual volume of the olfactory bulb. In this study, 
manual segmentation was considered as the approximate ground truth. 
To determine how measurements of olfactory bulb volume in MRI scans 
relate to actual volume, ground truth should be measured. This would, 
for example, be possible by using post-mortem data. Implementing re
sults from such ground truth measurements could be applied to improve 
manual measurements. Training the CNNs on these improved mea
surements might further increase accuracy of the automatic 
segmentation. 

Results showed that the segmentations produced by our method can 
be used to calculate olfactory bulb volume in patients exhibiting olfac
tory loss, and can be extended to other patients with disease-related 
olfactory loss. As there are many individual differences in volume of 
the olfactory bulb, for example between men and women (Buschhüter 
et al., 2008; Rombaux et al., 2009) or due to ageing (Yousem et al., 
1998), it is important to train the CNNs on a broad sample of patients, 

including multiple patients populations, as well as on a sample of 
healthy individuals to obtain absolute normative data. Therefore, this is 
a promising proof of principle on a limited amount of data. To further 
validate and refine the method, we aim to expand our dataset with 
additional MRI data of various patient groups and healthy individuals 
for which manual segmentation of olfactory bulb volume have been 
performed. By this, we will increase the variability of the dataset with 
which the CNNs are trained, which will enable the use of our CNNs in 
different settings for research and in daily practice. Moreover, this al
lows the investigation of total brain volume as determinant of olfactory 
bulb volume, since total brain volume affects grey matter volume 
(Lüders et al., 2002). Described software will be available to other re
searchers and health care professionals upon request at https://gra 
nd-challenge.org/algorithms/automatic-olfactory-bulb-segmentatio 
n-in-mri/. 

7. Conclusion 

In this study we demonstrated that the use of our automatic olfactory 
bulb segmentation method is accurate and fast, and that the results 
relate to clinical outcome parameters. This approach may facilitate the 
use of olfactory bulb volume measurements in clinical practice for pa
tient populations with olfactory loss to improve diagnosis, prognosis and 
inform treatment options. 
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Fig. A1. Bland-Altman plot, showing the average difference in measurements between both measurements.  
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Table A1 
Individual data for 10 randomly selected patients from Dataset 1 and Dataset 2.  

DS Volume left Volume right Total volume Sniffin’ 
Sticks score 

Etiology Difference between 
measurements (total 
volume) 

Mean of both 
measurements (total 
volume)  

Manual Automated Manual Automated Manual Automated     

1 43.73 50.10 51.20 51.86 94.92 101.95  21.00 Post-infectious  − 7.03  98.44 
2 20.8 23.47 17.40 12.66 38.23 36.12  17.00 Post-infectious  2.11  37.18 
2 36,12 37,44 37,71 35,86 73,83 73,30  15.75 Idiopathic  0.53  73.56 
1 41.97 47.68 43.07 43.07 85.03 90.75  18.00 Idiopathic  1.76  72.07 
1 42.41 46.80 40.87 46.14 83.28 92.94  11.50 Post-infectious  − 9.67  88.11 
2 12.92 24.52 11.87 17.14 24.79 41.66  14.00 Post-infectious  − 16.88  33.22 
1 31.64 23.51 35.38 38.67 67.02 62.18  9.00 Idiopathic  4.83  64.60 
1 37.13 32.52 40.43 38.23 77.56 70.75  8.00 Idiopathic  6.81  74.16 
2 17.67 17.14 19.51 21.62 37.18 38.76  24.50 Post-infectious  − 1.58  37.97 
1 32.30 36.91 39.11 52.95 71.41 89.87  10.00 Chronic 

rhinosinusitis  
− 18.46  80.64  

Table A2 
Correlations between total volume of the olfactory bulb and olfactory ability for 
manual measurements and automated measurements (including patients from 
dataset 1 and 2, N = 33 for all correlations).   

Manual measurements Automated measurements 

Olfactory ability r = -0.10, p = 0.58 r = -0.06, p = 0.74  
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