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Neonates, especially preterm neonates, have the highest risk of sepsis of all age

groups. Transient immaturity of the neonatal immune system is an important risk

factor. Neonates suffer from hypogammaglobulinemia as nor IgA nor IgM is

transferred over the placenta and IgG is only transferred over the placenta late

in gestation. In addition, neutrophil numbers and complement function are also

decreased. This mini-review focuses on strategies to improve neonatal host-

defense. Both clinical and preclinical studies have attempted to boost neonatal

immunity to lower the incidence of sepsis and improve outcome. Recent advances

in the development of (monoclonal) antibodies show promising results in

preclinical studies but have yet to be tested in clinical trials. Strategies to

increase complement activity seem efficient in vitro but potential disadvantages

such as hyperinflammation have held back further clinical development. Increase

of neutrophil numbers has been tested extensively in clinical trials but failed to

show improvement in mortality. Future research should focus on clinical

applicability of promising new prevention strategies for neonatal sepsis.

KEYWORDS
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Introduction

Neonatal sepsis is a global health burden, with 1,4 million cases and 200,000 deaths

worldwide each year (1). Preterm infants (born at <37 weeks of gestational age) are

particularly at risk of sepsis (2). Despite continuous efforts to improve survival in this

vulnerable patient population, susceptibility to and severity of bacterial infections remain
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disproportionate compared to other age groups. This

susceptibility is multifactorial: transient immunodeficiency of

immaturity, indwelling central lines and respiratory support are

important risk factors (3). This review focuses on the

physiological transient immaturity of the neonatal

immune system.

Both innate and adaptive immunity are immature in

neonates. We focus on three major components of the

immune system that are impaired in neonates. Firstly,

neonates suffer from transient antibody deficiency, reflecting

immaturity of the adaptive immune system (4). Secondly,

complement levels are low in preterm neonates, when

compared to term neonates and adults (5). Thirdly, preterm

neonates have lower absolute neutrophil counts at birth, and

some neutrophil functions may be decreased (6). Both

complement and neutrophils reflect immaturity of the innate

immune system. These three factors contribute to the high risk

of sepsis in neonates, which is most pronounced in

preterm neonates.

The importance of host defense in neonatal infection is

illustrated by neonatal sepsis as presenting symptom of inborn

errors of immunity, which may manifest at a young age due to

limited redundancy in the immature immune system (7).

This review provides an overview of several available and

novel strategies that aim to prevent or treat neonatal sepsis by

harnessing the host response. We discuss laboratory studies and

clinical trials results and address the latest advances in host

targeted therapies, primarily focusing on novel immunoglobulin

therapies (see Supplementary Table 1 and Supplementary

Table 2 for an overview of the clinical and preclinical

studies reviewed).
Hypogammaglobulinemia

Immunoglobulins are an essential component of the

adaptive immune system. They recognize and bind antigens

and are able to activate the complement system and immune

cells of the innate immune system, such as neutrophils.

Immunoglobulins can be classified into five different subtypes

(IgA, IgD, IgE, IgG and IgM), which differ in antigen recognition

and effector function (8). Lower levels of immunoglobulins

(hypogammaglobulinemia), can lead to both recurrent

infections and severe infections, resulting in an increased

mortality (9).

Fetal and neonatal antibody production is low. Therefore,

neonates depend on transplacental maternal antibody transfer to

provide protective plasma immunoglobulin levels against

pathogens. Transplacental antibody transfer is restricted to

IgG and occurs through active transport by the neonatal Fc

receptor (FcRn) (10). IgA and IgM do not bind to the FcRn. As a

result, all newborns are deficient in IgA and IgM (11).
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Transplacental transfer of IgG starts around 13 weeks of

gestational age and fetal IgG levels rise to about 10% of maternal

IgG levels at 22 weeks, 50% at 32 weeks, and spike in the final

four weeks of pregnancy (Figure 1) (12–17). Since most IgG are

transferred after 36 weeks of gestational age, preterm neonates

born before that time have deficient plasma IgG levels and are at

especially increased risk of sepsis (18). Additionally, endogenous

antibody production is low up to 12 months of age, thus term

neonates also face an increased susceptibility to infectious

diseases as antibody production initially does not compensate

antibody degradation rates (19).
Intravenous immunoglobulin G

An obvious strategy to protect newborns vulnerable to

infection due to hypogammaglobulinaemia is antibody

supplementation therapy in the form of intravenous

immunoglobulins (IVIG) (20). IVIG consists of pooled

immunoglobulins (mainly IgG) of at least 1000 healthy donors

and is administered intravenously or subcutaneously (21).

Antibody replacement therapy effectively prevents infections in

patients with inborn errors of immunity characterized by

hypogammaglobulinaemia (22). The effectiveness of IVIG as

prophylaxis for sepsis in neonates has been studied extensively in

randomized controlled trials (RCTs) in preterm and low birth

weight neonates (birth weight < 2500 gram). IVIG

administration is safe and resulted in a modest 3% reduction

in sepsis and a 4% reduction in one or more episodes of any

serious infection but was not associated with reductions in other

clinically relevant outcomes, including mortality (23).

Potentially, IVIG could be used therapeutically to treat sepsis.

However, thus far, the use of IVIG to treat sepsis in addition to

antibiotics showed no benefit (24).

The disappointing results with neonatal IVIG therapy may

in part be attributed to a high variability in concentration of

antibodies against relevant pathogens between batches of IVIG

(25). Enrichment of IVIG with IG’s against common neonatal

pathogens may increase efficacy.
Intravenous immunoglobulin G enriched
with IgM and IgA

IgM is more efficient than IgG in activating the complement

system. As IgM does not pass the placenta, newborns are

deficient in IgM, and as such, administering IgM to newborns

seems like a rational option to improve immunity (26).

However, studies conducted with the currently available IgM-

enriched IVIG preparation (Pentaglobin), did not show

improved outcomes in terms of mortality or morbidity (24).

These disappointing results could be due to the treatment of

Pentaglobin with ß-propiolactone to decrease immunoglobulin
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aggregation. However, this also leads to complement fixation

and reduced Fc-binding capacity of immunoglobulins (27). The

recently developed IgM-enriched preparation Trimodulin is

manufactured differently. It is not treated with ß-propiolactone

and contains twice the amount of IgA (21%) and IgM (23%) in

comparison to Pentaglobin, and is therefore potentially more

effective (28, 29). Recently, the results of a phase II trial, which

included 160 adult patients with severe community-acquired

pneumonia treated with Trimodulin, were published. Although

no difference was observed for ventilator-free days between the

placebo and Trimodulin groups, post-hoc analyses supported

improved outcome in patients with reduced IgM (29).

No neonatal studies with this new IgM-enriched

immunoglobulin preparation have been performed to date.
Maternal vaccination

In general, transplacental antibody transfer does not protect

the child against pathogens specific for the neonatal period, as

adults, including pregnant women, have low circulating

antibody levels against these pathogens. Maternal vaccination

strategies aim to specifically induce maternal antibodies to

pathogens threatening the days and weeks after birth (30).

Currently, vaccinations against several other diseases are

available or under development for pregnant women,
Frontiers in Immunology 03
including diphtheria, tetanus, respiratory syncytial virus (RSV)

and Group B streptococcus (GBS), the latter being an important

cause of neonatal sepsis (31–35).

Although maternal vaccination is a promising strategy to

prevent neonatal infections, it does not protect preterm neonates

at the highest risk of infection since they are born before the late

transplacental transfer of antibodies.
Monoclonal pathogen-specific
immunoglobulins

Because of their ability to efficiently neutralize pathogens,

monoclonal antibodies (mAbs) are currently extensively

researched to prevent or treat infectious diseases. Currently,

several mAbs are available, the oldest US Food and Drug

administration (FDA) approved one is palivizumab, a

prophylactic antibody therapy against severe respiratory

syncytial virus infection in preterm neonates. Against

coronavirus disease 2019 (COVID-19) several mAbs have been

FDA approved, for instance casirivimab and imdevimab, an

antibody combination for therapeutic treatment of mild to

moderate infection in children and adults with high risk of

progression to severe COVID19 disease (36–38). Bezlotoxumab

is a mAb targeted against bacteria and is efficient in preventing

recurrent Clostridium difficile infection (39). These examples
FIGURE 1

Immunoglobulin serum concentrations in different age groups. Levels of immunoglobulins A, G and M in different stages of life. IgG is actively
transported over the placenta during pregnancy, with a peak between 36 and 40 weeks of gestational age. Children born before this age have
lower levels of IgG at birth and are at increased risk for bacterial infections. In new born infants, IgG wanes over time which leads to a window
of increased susceptibility to infection (between the age of 3 months and 2 years in term infants). IgA and IgM are not transferred over the
placenta, which means that children are dependent on endogenous antibody production to reach protective serum IgA and IgM concentrations.
Immunoglobulin levels are depicted as percentage of average adult serum levels (median adult IgG 10.9 g/L; median adult IgA 1.3 g/L median
adult IgM 2.3 g/L. The figure is a composite of information from many sources (12–17).
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demonstrate the potency of mAb therapy to prevent disease or

severe disease progression.

MAbs could be a promising new treatment option for

neonatal sepsis. Unfortunately, the first randomized controlled

trial to test a Staphylococcus-specific mAb pagibaximab (directed

against anti-lipo-teichoic acid) failed to demonstrate significant

reduction in staphylococcal late onset neonatal sepsis in preterm

infants ≤32 weeks (40). The reasons for this failure are

incompletely understood. However, mAbs are targeted at one

pathogen, while many different pathogens can cause neonatal

sepsis. Thus, the future of mAb based therapies to prevent

neonatal sepsis likely lies in the development of a cocktail of

different mAbs targeted against different pathogens. Currently,

several preclinical studies examined the potential of other mAbs

against common neonatal pathogens, such as S. epidermidis, E.

coli, Klebsiella spp and GBS (41–45) (Supplementary Table 2).
Synthetic polyvalent immunoglobulins

Passive immunization, using immunoglobulins derived from

plasma of donors recently vaccinated or infected with a certain

pathogen which results in a high immunoglobulin titer to that

specific pathogen [polyvalent hyperimmune IgG (HIG)], is an

effective strategy to protect against specific life-threatening

diseases (46). An example of the successful application of HIG

is the post-exposure prophylaxis with varicella-zoster immune

globulin (Varizig) to prevent varicella in exposed preterm

neonates (47). However, two anti-staphylococcal HIG INH-A2

(anti-staphylococcal surface components hyperimmune IgG)

and Altastaph (S. aureus serotype 5 and 8 vaccine induced

hyperimmune IgG) were not effective in randomized

controlled trials to prevent staphylococcal late onset neonatal

sepsis in preterm infants ≤32 weeks (48). In addition, as

production of HIG is costly and slow, the demand for these

antibodies will always exceed supply.

In recent years, novel techniques have emerged that allow

production of synthetic polyvalent immunoglobulins (49). These

are molecular genomic strategies to capture diverse mammalian

antibody repertoires to create recombinant multivalent

hyperimmune globulins. The antigen-specific regions can be

derived from previously developed mAbs or be copied from the

B cells of individuals recently vaccinated against or infected with

the pathogen of interest. This mimics natural HIG preparations

from donors. The benefit of polyvalent immunoglobulins is the

possibility to target several different epitopes on a pathogen and

target multiple different types of pathogens. This new technique

could potentially increase the potency of anti-infective

immunoglobulin therapy.
Modified monoclonal antibodies

Immunoglobulins can be modified in several ways to

increase their efficiency. One way to enhance immunoglobulin
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effector function is modification of glycosylation. Glycosylation

of antibodies does not alter antigen binding but does affect

downstream effector functions, such as binding of antibodies to

the Fc receptor (50). For example, Rituximab, a recombinant

monoclonal antibody (rMAb) directed against the B cell receptor

CD19, shows more effective antibody-mediated killing in an a-

glycosylated state than its glycosylated form (50, 51). Altering

the glycosylation of antibodies may potentially improve

antibody-mediated killing, therefore providing a better

protection against pathogens.

A second way to maximize the beneficial effect of

immunoglobulins is to increase the half-life. Antibody levels

wane over time. Palivizumab, for example, has a half-life of

approximately 20 days and needs to be administered monthly to

maintain prophylactic levels (52). By modifying the Fc region of

this antibody, an extended half-life antibody (nirsevimab) has

been developed with a half-life of up to 100 days, allowing for

less frequent dosing of prophylactic antibodies, as a bridge to

adequate endogenous antibody production (53).

A third way to modify synthetic antibodies is to alter the Fc

tail to facilitate polymerization of antibodies upon binding to the

antigen. Hexamerization of IgG at the bacterial surface is needed

to efficiently activate complement. Complement factor C1Q

binds IgG hexamers and initiates the classical complement

activation route. These results in opsonization of the bacterial

surface with complement factor C3b and formation of the

membrane attack complex (MAC) on the surface of Gram-

negative bacteria. Antibodies with hexamerization-enhancing

mutations (hexabodies) activate complement more efficiently

compared to wild-type IgG. These hexabodies showed more

efficient C3b activation and phagocytosis of Staphylococcus

aureus in vitro, Streptococcus pneumoniae in vitro and more

efficient MAC activation and bacterial lysis of Neisseria

gonorrhoeae in vitro and in vivo (54–56). Recently, it was

shown that hexabodies can also enhance C3b activation and

phagocytosis of Staphylococcus epidermidis in the context of

neonatal plasma in vitro (42).

There are different ways to alter immunoglobulins to make

them more efficient in pathogen neutralization, and the three

methods mentioned above can be considered when designing

synthetic immunoglobulins.
Complement deficiency

The complement system is an important element of human

immune defense against bacterial infections. The killing of

Gram-negative bacteria can be accomplished by the

complement system alone, through lysis of the bacterial cell

via the formation of the membrane attack complex. Gram-

positive bacteria on the other hand, have thicker cell walls and

no outer cell membrane and can only be killed by phagocytic

cells after being coated with antibodies and complement, a
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process called opsonophagocytosis (57). Complement

deficiencies lead to an increased risk of infections caused by

both Gram-negative and Gram-positive bacteria (58). Newborns

have decreased complement function compared to adults, and

preterm neonates are most deficient in complement activity (5).

This relative complement deficiency contributes to an increased

susceptibility to infectious diseases. On the other side, over-

activation of complement can lead to tissue damage in patients

with severe infections, such as sepsis or meningitis. Therefore,

modulation of complement (both inhibition and specific

activation) has been a point of interest in immunology research.
Enhancing complement activation
in neonates

Properdin is a component of the complement system that

enhances alternative pathway complement activity. The

alternative complement pathway functions by amplifying

complement activation resulting from the classical and lectin

activation routes. Decreased levels of properdin, for example in

patients with genetic defects or newborns, are associated with

susceptibility to severe bacterial infections (5, 59). A possible

therapy would be administering (low dose) properdin to these

patients. In theory, this approach could also strengthen

complement activation in response to infection in newborns.

One preclinical study showed that a low dose of recombinant

properdin significantly boosted resistance against S pneumonia

and N meningitidis infection in vitro and animal infection model

data (60). Application in patients of this approach carries risks,

as massive complement activation in the context of sepsis may

induce hyperinflammation and tissue damage (61). In the

animal disease model, this hyperinflammation was not

described. However, translation from animal models to clinical

application is difficult, as murine models poorly reflect human

inflammatory conditions (62).

Controlled modulation of complement remains a challenge,

as complement inhibition could lead to infections, and

complement activation can lead to hyperinflammation.
Complement inhibition

In severe infectious or inflammatory conditions, complement

plays an important role in hyperinflammation. Specific inhibition

of the complement system has been used to decrease the effects of

hyperinflammation in different diseases. A complement inhibitor

(eculizumab) was developed to treat certain auto-inflammatory

conditions, such as paroxysmal nocturnal hematuria (PNH) or

atypical hemolytic uremic syndrome (aHUS). This mAb prevents

cleavage of C5, which leads to decreased C3 fragmentation on red

blood cells in PNH and contributes to reduced hemolysis in PNH

and aHUS patients (63, 64). Recently a similar approach has been
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tested in patients with infection-associated hyperinflammation.

For example, patients with severe COVID-19 caused by SARS-

CoV-2 have severe tissue damage attributed to increased

complement activity (65). One small case series described the

successful use of eculizumab in pediatric acute SARS-CoV2

infection, multisystem inflammatory syndrome and thrombotic

microangiopathy (66). The same principle of complement

inhibition has been tested in a small phase-II clinical trial of

adult patients with severe COVID-19 caused by SARS-CoV-2. To

prevent hyperinflammation in these patients, a mAb that blocks

C5a (vilobelimab) was administered, and preliminary results show

a decrease in pulmonary embolisms (67). Vilobelimab has not yet

been tested in pediatric patients, therefore the safety as well as the

efficacy in this patient group is not clear.

Complement inhibition may be a useful adjuvant therapy in

treating severe sepsis to reduce secondary damage from the

inflammatory host response. However, clinical studies in

(neonatal) bacterial sepsis are lacking, so the beneficial effect

in (preterm) infants needs to be further explored.
Neutrophil number and function

Neutrophil number

Neutrophils are key players of the innate immune system, as

they are important in opsonophagocytic killing of pathogens

(68). Neutropenic patients are at risk for severe bacterial and

fungal infections (69). Preterm neonates and especially very low

birth weight neonates, have decreased neutrophil numbers, and

thus, correcting neutropenia has long been a target for

preventative and therapeutic strategies (70, 71). Several

intervention studies, not including RCTs, have been

performed. One strategy is stimulating the bone marrow to

increase neutrophil production using granulocyte colony-

stimulating factor (G-CSF). Although the use of G-CSF is

widely used in neutropenic patients after chemotherapy,

studies investigating the role of G-CSF in preventing neonatal

sepsis show disappointing results thus far (72, 73). In most

studies, administration did not lead to an increase in

granulocytes and in the studies that did report an elevated

absolute neutrophil count, there was no decrease in mortality

(74, 75).

Instead of stimulating granulocyte production, another

possibility is the direct transfusion of donor granulocytes

(GTX). In clinical trials however, a preventative as well as a

therapeutic strategy did not lead to a decrease in serious

infections or mortality in patients with neutropenia or

neutrophil dysfunction (76, 77). Another systematic review

assessed the use of GTX for confirmed or suspected sepsis,

specifically in neonates (78). There was no reduction in all-cause

mortality when GTX was compared to placebo or no GTX.

Compared to IVIG, GTX showed a reduction in all-cause
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mortality, which was borderline significant (p=0.06). So,

although promising, transfusion of granulocytes did not lead

to a significant decreased infection or mortality.
Neutrophil function

Several studies document decreased function of neonatal

neutrophils. Neutrophil extracellular trap (NET) formation is

impaired in both preterm and term infants (79). In addition,

neutrophil oxidative burst response is decreased in neutrophils

of preterm infants when compared to term infants (80). Lastly,

migration and chemotaxis of neutrophils is also impaired (81).

Limited studies are available on improving neutrophil function

of (preterm) neonates. One study showed that administration of

G-CSF in neutropenic very low birth weight infants not only

resulted in an increased absolute neutrophil count, but also

improved oxidative burst (82). However, as discussed previously,

administration of G-CSF does not improve mortality in

neonatal sepsis.

When it comes to phagocytosis, no major impairment in

bactericidal activity is evident in preterm and term neonates.

Neutrophils of preterm infants are equally capable of bacterial

phagocytosis of bacteria as term infants (6). This leads to the

hypothesis that neonatal neutrophils could potentially be

activated by external stimuli such as mAbs.
Conclusion

Transient immunodeficiency of the newborn remains a

significant risk factor for developing potentially life-threatening

infections in preterm but also in term newborns. The development

of protective and therapeutic treatment options is an ongoing

challenge, but many promising strategies are currently being

investigated. Presently, antibody supplementation therapy seems

to be the closest to being a successful clinically applicable

treatment, either in the form of maternal vaccination or mAbs

(83). While maternal vaccination currently is the best strategy for

term-born neonates, preterm neonates may benefit most from

innovative antibody therapies, especially intravenous

immunoglobulin G enriched with IgM and IgA, and modified

synthetic polyvalent immunoglobulins (83).

Inhibition of complement activation in newborns may be

beneficial to reduce organ dysfunction resulting from sepsis

associated inflammation, but clinical studies are needed to see

if this strategy benefits newborns with sepsis. Most of the

strategies described in this review are focused on prevention of

neonatal sepsis, but if successful, they could potentially also

contribute to treatment.

Overall, neutrophils from term newborns seem sufficiently

effective in opsonophagocytic killing, despite being reduced in

number and decreased in effector functions. Opsonophagocytosic
Frontiers in Immunology 06
killing can be boosted either by immunoglobulins or potentially by

complement activating treatment strategies.

The strength of this review is that it provides an overview of

key aspects of neonatal and infant immunodeficiency and

preclinical as well as clinical data on potential treatment

interventions against infection. A limitation of this review is

the focus on only three key elements of the neonatal immune

system, not discussing the relevance of other deficiencies such as

T-cell immunity. A second limitation is the scarcity of pre-

clinical and clinical studies for most of the approaches discussed,

making it difficult to predict efficacy of interventions in the

context of the (preterm) neonatal immune system.

Future research should focus on clinical applicability of these

promising prevention strategies for (preterm) neonatal sepsis.
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