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A B S T R A C T   

MR Spin TomogrAphy in Time-domain (“MR-STAT”) is quantitative MR technique in which multiple quantitative 
parameters are estimated from a single short scan by solving a large-scale non-linear optimization problem. In 
this work we extended the MR-STAT framework to non-Cartesian gradient trajectories. Cartesian MR-STAT and 
radial MR-STAT were compared in terms of time-efficiency and robustness in simulations, gel phantom mea
surements and in vivo measurements. 

In simulations, we observed that both Cartesian and radial MR-STAT are highly robust against undersampling. 
Radial MR-STAT does have a lower spatial encoding power because the outer corners of k-space are never 
sampled. However, especially in T2, this is compensated by a higher dynamic encoding power that comes from 
sampling the k-space center with each readout. In gel phantom measurements, Cartesian MR-STAT was observed 
to be robust against overfitting whereas radial MR-STAT suffered from high-frequency artefacts in the parameter 
maps at later iterations. These artefacts are hypothesized to be related to hardware imperfections and were 
(partially) suppressed with image filters. The time-efficiencies were higher for Cartesian MR-STAT in all vials. In- 
vivo, the radial reconstruction again suffered from overfitting artefacts. The robustness of Cartesian MR-STAT 
over the entire range of experiments may make it preferable in a clinical setting, despite radial MR-STAT 
resulting in a higher T1 time-efficiency in white matter.   

1. Introduction 

Quantitative magnetic resonance imaging (“qMRI”) techniques aim 
to provide estimates of MR-related tissue properties like T1 and T2. From 
these tissue property maps, image contrasts can be synthesized retro
spectively using signal equations for different MR sequences [1,2]. An 
additional advantage of qMRI over regular, qualitative MRI is that it 
removes scanner- and sequence induced variability in the images, which 
is beneficial for multi-center studies and computer aided diagnosis [3,4]. 
Despite its advantages, clinical adoption of qMRI is currently limited 
because most conventional qMRI techniques require prohibitively long 
scan ties and only produce one tissue parameter map at a time. 

MR Fingerprinting (“MRF”) is a recent multi-parametric qMRI 
technique which drastically reduces scan times compared to conven
tional qMRI methods [5]. In MRF, transient-state sequences with ran
domized components (e.g. flip angles, TR, TE) are used to generate 
“fingerprints” in each voxel. These fingerprints are measured with a 

highly undersampled acquisition and are subsequently matched to a pre- 
computed dictionary. Assuming spatio-temporal incoherence of the 
undersampling artefacts, the dictionary matching procedure can suc
cesfully select the correct tissue parameters [5]. The succes of MRF 
approach has sparked research interest in highly accelerated, multi- 
parametric qMRI techniques [6,7]. 

In order to achieve spatio-temporal incoherence in MRF, it is bene
ficial to use non-Cartesian acquisition strategies [8]. In the original MRF 
work and most subsequent MRF studies, variably density spirals are used 
in the acquisition [5,9]. Radial acquisitions have also been used exten
sively [10–12]. Only few studies have been reported that use Cartesian 
(spin-warp) imaging in the context of MRF and the studies that do use 
such acquisitions report much longer scan times compared to the non- 
Cartesian MFR studies [13–15]. 

In a different direction from MRF, qMRI has seen advancements in 
the form of non-linear volumetric inversion methods that directly esti
mate tissue parameters from measured k-space (or “time-domain”) data 
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[16]. A benefit of using a such a time-domain signal model is that the 
sampling of spatial frequencies that are required by the Nyquist criterion 
can be distributed among different contrasts [17]. That is, the spatial 
encoding and the dynamic encoding (i.e. T1 and T2 encoding) are inter
twined. These techniques have initially been proposed in the context of 
pulse sequences for which analytical signal models are available 
[18–20]. 

Magnetic Resonance Spin Tomography in Time-domain (“MR- 
STAT”) is a recently proposed multi-parametric qMRI framework [21] 
that combines the idea of non-linear, volumetric inversion together with 
the use of generic, transient-state sequences for performing multi- 
parametric qMRI. For transient-state sequences, each contrast is usu
ally highly undersampled (typically only one readout per contrast is 
acquired in MR-STAT), yet by applying the non-linear volumetric 
inversion it is still possible to reconstruct high-quality quantitative pa
rameters maps from the data [22]. The MR-STAT reconstruction pro
cedure relies on a forward model that relates multiple quantitative tissue 
parameters maps directly to the measured time-domain (k-space) signal. 
Evaluation of the forward model involves numerical integration of the 
Bloch equations as, in general, no analytic signal models are available 
for the type of time-varying flip angle sequences used in MR-STAT. The 
forward model gives rise to a large-scale non-linear inversion problem 
which is solved through iterative algorithms that require computing 
partial derivatives of the forward model with respect to all tissue pa
rameters. In addition, instead of using the (non-uniform) Fast Fourier 
Transform (“FFT”) for transforming back and forth between image space 
and spatial frequency space, the gradient encoding is taken into account 
explictly within the Bloch simulations. In other words, the spatial and 
dynamic encoding are simultaneously modeled. The MR-STAT recon
struction is computationally challenging and requires dedicated algo
rithms to manage computation times as well as computer memory 
requirements [22–24]. 

The feasibility of the MR-STAT approach has been demonstrated in 
previous work with acquisitions that rely on Cartesian gradient trajec
tories. High-resolution (1 mm in-plane) 2D quantitative T1,T2 and 
proton density maps were reconstructed from in vivo brain data ac
quired in scan times comparable to what is reported in MRF studies 
using non-Cartesian acquisitions [22,24]. The theory behind the MR- 
STAT concept, however, is not restricted to Cartesian acquisitions. To 
demonstrate the generic nature of MR-STAT, in the current work we 
have extended the framework to non-Cartesian acquisitions. This allows 
us to compare Cartesian and non-Cartesian trajectories within MR- 
STAT. 

The main aim of this paper will be to perform an empirical com
parison of Cartesian and radial MR-STAT reconstructions performed on 
both simulated and measured data. The focus will lie on the efficiency 
and robustness of the two different encoding strategies. Efficiency is 
interpereted in this context as T1,2-to-noise ratio per square root of scan 
time [25]. The efficiency is assumed to capture both the spatial and 
dynamic encoding capabilities of an acquisition. Robustness of the 
iterative reconstruction procedures against model inaccuracies (e.g. 
hardware imperfections) and reconstruction parameters (e.g. the num
ber of iterations used) will also be studied since they can have a sig
nificant impact on efficiency as well. 

For conventional, qualitative MR imaging, it is known that, for 
example, radial trajectories have a lower SNR efficiency due to the non- 
uniform sampling density [26]. That is, in terms of spatial encoding, 
radial is less efficient than Cartesian. However, we expect non-Cartesian 
MR-STAT acquisitions to potentially have higher dynamic encoding ca
pabilities based on the following reasoning. The transient-state nature of 
the MR-STAT acquisition implies that the underlying image contrast is 
constantly changing. Image contrast information is mostly contained in 
the central region of k-space. With non-Cartesian acquisitions like radial 
and spiral, the center of k-space can be sampled with each readout and 
thus each readout can provide information about the changing contrast. 
On the other hand, with a Cartesian acquisition, readouts that sample 

the outer parts of k-space are expected to provide relatively little in
formation on the underlying contrast changes and thus provide less 
dynamic encoding power compared to the central k-space lines. Because 
in MR-STAT both spatial and dynamic encoding is required, it is a priori 
unclear which trajectory type will result in a higher efficiency. 

The choice to consider radial acquisitions in this work - as opposed to 
other non-Cartesian trajectories - is motivated by the fact that most 
acquisition parameters like TR, TE, total number of readouts, number of 
samples per readout, readout bandwidth and total scan time can be kept 
similar for both. With, for example, spiral trajectories, one typically 
acquires fewer readouts with longer TRs and more samples are acquired 
per readout depending on the design of the spirals. A comparison of 
Cartesian against other non-Cartesian acquisitions thus requires many 
design choices that may influence the outcomes. 

To study the efficiency and robustness question in the context of 
Cartesian and radial MR-STAT, we proceed as follows. Assuming that a 
pulse sequence is used that has sufficient T1 and T2 encoding power, and 
assuming that the MR-STAT reconstructions have succesfully converged, 
errors in the final parameters maps are caused by either 1) thermal noise 
on the data, 2) undersampling artefacts and/or 3) inaccuracies in the 
forward model (e.g. hardware imperfections, partial volume effects or 
unmodelled biophysical phenomena). Since the model-based MR-STAT 
reconstruction is expected to be highly robust against undersampling, 
we expect errors from undersampling to be minimal for both the Car
tesian and radial cases. To verify whether this is the case, we will first 
perform numerical simulations without thermal noise or model imper
fections such that undersampling artefacts are the only expected error 
source. Afterwards, we will study the efficiency and robustness in the 
presence of thermal noise by adding (complex) Gaussian noise to the 
simulated data. We then proceed by performing gel phantom and in vivo 
measurements where also model imperfections are expected to be pre
sent. 

2. Methods 

2.1. MR-STAT 

In MR-STAT, the forward model for the measurable time-domain 
signal s after spatial discretization is given by 

s(t) =
∑Nv

j=1
m(θj, t)e− 2πik(t)⋅rj ΔV . (1)  

Here Nv is the number of voxels within the field-of-view, ΔV is the vol
ume element for each voxel, rj is the vector of spatial coordinates for the 
voxel associated with index j, θj is the vector of MR-relevant biophysical 
tissue properties (e.g. T1,T2,ρ,…) for the voxel associated with index j,
k(t) is the k-space trajectory and m is the complex transverse magneti
zation whose time-varying behavior is modeled by the Bloch equations. 
For simplicity, we do not include receive coils in the forward model in 
here but it should be noted that within the actual MR-STAT re
constructions data from multiple coils is taken into account [22]. Let t1,
…, tNt denote the sampling times with Nt the total number of samples 
and define the vector of time-domain samples s 

s := [s(t1),…, s(tNt )] ∈ CN
t .

Note that s depends on the tissue parameters θj for all voxels j. All tissue 
parameters are concatenated into a single vector α. The forward model 
(Eq. (1)) then gives rise to a large-scale non-linear inverse problem 

α* = argminα
1
2
‖d − s(α)‖2

2. (2)  

This inverse problem is numerically solved using a Gauss–Newton 
method that requires the computation of partial derivatives of the 
objective function at each iteration [22]. 
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Instead of using the (non-uniform) FFT to evaluate an approximation 
to the forward model (Eq. (1)) as is common in other frameworks (e.g. 
MRF), in MR-STAT the forward model (Eq. (1)) is evaluated directly. 
Both Cartesian and non-Cartesian gradient trajectories k(t) can be 
inserted into the forward model. In the case of non-Cartesian trajec
tories, no gridding or density compensation are required as opposed to 
typical non-uniform FFT implementations. Also note that, in principle, 
spin dynamics during readouts (e.g. T(*)

2 − decay or off-resonance 
induced rotations) can be modeled. These effects are expected to be 
neglible for acquisitions with short readouts and therefore exploring 
potential benefits of including these dynamics in the forward model is 
outside the scope of the current work. 

2.2. Acquisition 

2.2.1. Numerical brain phantom simulations 
To compare the theoretical efficiency of both Cartesian and radial 

acquisitions in the context of MR-STAT, we first perform a simulation 
study for which ground truth parameter values are available. A 2D nu
merical brain phantom [27] was generated consisting of several com
partments with different combinations of T1,T2 and proton density 
values. The field-of-view of the phantom was set to 224 mm x 224 mm 

with an in-plane resolution of 1 mm x 1 mm, resulting in a matrix of 
224 × 224 voxels. In a conventional (qualitative) MR setting, a mini
mum of 224 phase encoding lines would need to be acquired for the 
Cartesian case to satisfy the Nyquist criterion. In a radial setting, a 
minimum number of π/2 × 224 would need to be acquired [28] to 
satisfy the Nyquist criterion. 

For the MR-STAT acquisitions, a gradient-spoiled sequence consist
ing of 1792 (= 8× 224) TR’s was employed with a varying flip angle 
train such that the flip angle at the n-th TR was given by 
35 × 1 − cos(2n/280) (resulting in a sinusoidal pattern of flip angles 
between 0 and 70 degrees, see Fig. 1a). For the Cartesian case, linear 
ordering of the 224 different phase encoding lines was chosen and the 
pattern is repeated eight times (Fig. 1b middle row). For the radial 
trajectory the first readout was identical to the Cartesian ky = 0 line, and 
subsequent readout lines were obtained by rotating the previous readout 
line with the golden angle, resulting in 1792 different radial angles with 
a very dense cumulative sampling of k-space. The TR and TE remained 
fixed throughout the sequence with values of 8.8 ms and 4 ms, respec
tively. For each of the 1792 readouts a total number of 448 samples per 
readout (corresponding to a readout oversampling factor of two) were 
simulated. The total simulated acquisition time was 15.8 for both the 
Cartesian and the radial case. s. The k-space coverage for both 

Fig. 1. [a] Flip angle train used for both the Cartesian and radial acquisitions. [b] The phase encoding order for the Cartesian acquisitions. [c and d] K-space 
coverage for the Cartesian and radial acquisitions, respectively. Note that the Cartesian sampling scheme is repeated eight times. 
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acquisitions is depicted in Fig. 1c and d, respectively. 
The magnetization response in each voxel was simulated using the 

Extended Phase Graph (“EPG”) method [29]. In these simulations, a 
Gaussian-shaped RF excitation waveform was used and the corre
sponding slice profile was modelled by partitioning each voxel into 35 
compartments that experience different effective flip angles (i.e. the 
partitioned EPG method [23,26]). The scaling factors to determine the 
effective flip angles were obtained from simulating the magnetization 
response at different z-locations for all the different RF-excitation 
waveforms corresponding to different flip angles. Using the MR-STAT 
forward model (Eq. (1)), time-domain data was simulated for both 
Cartesian and radial readout trajectories. The simulation code was 
written in the Julia programming language [4] and the simulations were 
performed on an NVIDIA GeForce RTX A5000 graphics card. 

To study the efficiency and robustness in the presence of thermal 
noise, we corrupted the noiseless datasets with random noise sampled 
from a complex Gaussian distribution. The noise was generated such 
that the signal-to-noise ratio in decibels (SNRDB) was 15.36 DB for the 
Cartesian case. The SNRDB is computed as 

SNRDB = 10log10

(
RMS(signal)2

RMS(noise)2

)

,

where RMS(x) is the root mean square of a vector x. The same noise 
vector was added to the radial dataset. 

2.2.2. Gel phantom measurements 
Twelve vials containing gadolinium-doped gel with varying T1 and 

T2 values (TO5, Eurospin II test system, Scotland) were scanned using a 
3T Philips Ingenia Elition X MR System (DDAS spectrometer, software 
release 5.6) with the vendors 16-channel receive headcoil. Data from a 
single 2D slice was acquired using Cartesian and radial sequences 
similar to the ones used the simulation study. In both cases the in-plane 
resolution was 1 mm x 1 mm, the field-of-view was 224 mm x 224 mm 
and slice thickness was 5 mm. A total number of 1792 readouts were 
acquired with 448 samples per readout (factor two readout over
sampling) with a readout bandwith of 85.6 kHz. For both acquisitions, 
the TE and TR were set to their shortest possible values. For the Carte
sian acquisition the TE was 3.8 ms and the TR was of 7.5 ms, resulting in 
a scan time of 13.4 s. For the radial acquisition, the TE and TR were 
slightly different at 4 ms and 8.5 ms, respectively, resulting in a total 
scan time of 15.2 s. 

In addition to the MR-STAT scans, inversion-recovery single spin- 
echo T1 measurements as well as single echo spin-echo T2 measure
ments were performed to obtain reference parameter values for the 
vials. For the T1 mapping measurement, inversion times of [50, 100,150,
350,550,850,1250] ms were chosen and for the T2 mapping measure
ment echo times of [8, 28, 48,88,138,188] ms were chosen. The T1 and 
T2 values were obtained pixel-wise by fitting (non-linear) exponential 
regrowth (T1) and exponential decay (T2) curves to the measurements 
using the variable projection method [30]. 

2.2.3. In-vivo measurements 
In-vivo measurements were performed on a healthy volunteer after 

having obtained written informed consent. The same scanner hardware 
acquisition settings were used as for the gel phantom measurements, 
except that for the Cartesian acquisition the TR, TE and total scan time 
were 7.7 ms, 4.0 ms and 13.8 s, respectively. For the radial acquisition 
the TR, TE and total scan time were 8.6 ms, 4.0 ms and 15.4 s, respec
tively. 

2.3. MR-STAT reconstructions 

To reconstruct quantitative parameter maps from the data, the 
matrix-free Gauss–Newton MR-STAT method proposed in van der Heide 
et al. [22] was used to reconstruct quantitative parameter maps from the 

data. Within this method, the magnetization response in each voxel was 
simulated using the EPG method with the same slice profile correction 
technique and computer hardware as described in Section 2.2.1. Partial 
derivatives of the magnetization response were computed using finite 
differences. The initial parameter estimates for T1 and T2 were set to 1.0 
s and 0.1 s, respectively. The proton density was initialized by inserting 
the initial T1 and T2 values into Eq. (2), which then reduces to a linear 
problem that can be solved using the LSQR algorithm [31]. Given the 
initial proton density, a spatial mask was generated by selecting the 
voxels for which the magnitude of the initial proton density was higher 
than 10 % of the maximum magnitude. The maximum number of outer 
iterations of the iterative reconstruction algorithm was set to twenty and 
the number of Conjugate Gradient iterations within each outer iteration 
was set to twenty as well. 

Raw data from the scanner was exported using ReconFrame (Gyro
tools, Switzerland). In all reconstructions on measured data, the singular 
value decomposition was applied prior to the reconstruction to generate 
virtual coil data [32]. The number of virtual coils was chosen such that 
approximately 85% of the total energy was captured (i.e. the sum of the 
singular values was approximately 0.85). Coil sensitivity maps were 
estimated from the measured data using the ESPIRiT algorithm [33]. To 
correct for B+

1 inhomogeneities that may be present at 3T, we measured 
a B+

1 map separately using the dual angle method [34]. This B+
1 map was 

then used in the reconstruction model to scale the effective RF induced 
flip angles in each voxel. 

For the radial acquisitions, the outer corners of k-space are never 
sampled, as can be seen from Fig. 1d. In conventional non-uniform FFT 
based MR reconstructions, this is not necessarily problematic since the 
gridding procedure essentially zero-fills these non-sampled k-space re
gions. However, for iterative reconstruction techniques like MR-STAT, 
these non-sampled regions can cause strong noise amplification [35]. 
We therefore filter the reconstructed quantitative parameter maps by 
applying a circular symmetric window function in the Fourier domain as 
after the MR-STAT reconstruction. For the gel phantom data, the arctan- 
based filter proposed by Pruessmann et al. [35] was used with a cutoff of 
value set to kx,max and β = 100. For the in vivo data, we used the Hann 
filter defined as 

k→cos

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
x + k2

y

√

|kmax|

⎞

⎠

2  

where k is the k-space coordinate. The same filters will be applied to 
parameter maps obtained from Cartesian and radial data, respectively. 

2.4. Efficiency assessment 

The time-efficiency of the acquisitions will be computed as 

TnNR
̅̅̅̅̅̅̅̅̅
Tscan

√ , n = 1, 2,

where TnNR is the Tn-to-noise ratio and T is the scan time [25]. For the 
numerical brain phantom, we compute the TnNR (n = 1,2) for each 
tissue type separately by dividing the mean Tn value by the standard 
deviation of the Tn value for that tissue type. For the gel phantom 
measurements, values for TnNR are obtained in a similar fashion by 
computing the mean values and standard deviations in manually drawn 
regions-of-interest in each vial. For the in vivo measurements, gray- and 
white matter segmentation is performed using the T1 maps as input to 
FSL Fast [36] and the TnNR values are computed in these regions. 

Because the MR-STAT reconstructions follow an iterative procedure, 
one question that needs to be addressed is which iterations will be used 
for analyzing the efficiency. For this purpose, whenever ground truth 
parameter maps are available, the root mean squared relative errors 
(“RMSRE”) is utilized. If αgt denotes the vector of ground truth 
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parameter values, the RMRSE value for the current estimates of the 
tissue parameter α is computed as 

RMRSE(α)
(

1
Np

∑Np

j=1

(αj − αgt
j

αj

))

The iterations with minimum RMSRE value are assumed to strike a 
balance between bias and precision. To assess the robustness of the re
constructions against overfitting, the efficiencies will also be computed 
at the final iterations in each case. Note that in the in vivo case, no 
ground truth parameter values are available so the RMSRE cannot be 
computed and therefore only the final iterations are considered. 

3. Results 

3.1. Numerical brain phantom simulations 

3.1.1. Noiseless dataset 
In Fig. 2 the T1 and T2 maps reconstructed from the noiseless nu

merical brainweb phantom datasets are displayed, as well as the relative 
error maps. The RMRSE values for each iteration are shown in Fig. 3. In 
the Cartesian case, the relative errors and RMSRE value at iteration 
twenty are neglibly small. The parameter maps are reconstructed 
without apparent aliasing artefacts despite each contrast (i.e. each TR) 
being sampled with only one Cartesian readout line. The Cartesian 
acquisition thus has sufficient spatial and dynamic encoding power. 

In the radial case we do observe non-neglible errors in the parameter 
maps and the RMSRE value is orders of magnitude higher compared to 
the Cartesian case. We argue that the higher errors are not resolved by 
acquiring more spokes per contrast or running more iterations in the 

Fig. 2. The T1 and T2 parameter maps reconstructed from noiseless simulated brain data. The first column shows the ground truth T1 and T2 maps. The second 
column shows the parameter maps and relative error maps for the Cartesian case after twenty iterations. The third columns shows the parameter maps and relative 
error maps at iteration twenty for the radial case. 
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reconstruction procedure. Instead, this reduced spatial encoding power 
of the radial acquisition is the result of not sampling the outer corners of 
k-space (see Fig. 1d). This makes it impossible for the reconstruction 
procedure to properly resolve the finer structures in the parameter maps. 

In Supplementary Material S1 we adjusted the radial k-space tra
jectory to also sample the outer corners to improve the spatial encoding. 
In that situation we indeed observe that the parameter maps are prop
erly reconstructed with neglibly low relative errors and RMSRE values. 
The errors - although neglible - are still higher compared to the Cartesian 
case, but this is expected because, unlike in the Cartesian case, the image 
grid does not exactly match with the sampling grid. 

3.1.2. Noisy dataset 
In Fig. 4a the cost (

(
α ↦ 1

2‖d − s(α)‖2
2
)
) is plotted for each iteration of 

the MR-STAT reconstructions on the noisy numerical brain phantom 
datasets. Since the model used to simulate the data is equal to the model 
used in the reconstruction, upon convergence, the cost function is ex
pected to be similar to 1

2‖η‖2
2, where η denotes the vector of complex 

noise that was added to both datasets. The noise level 12‖η‖2
2 is plotted as 

a horizontal line and it can be seen that for both reconstructions, the 
noise level is indeed reached. In Fig. 4b the RMRSE values per iteration 
of the MR-STAT reconstruction algorithm are shown. No filtering was 
applied to these reconstructions. Iterations three and eight results in the 
lowest RMSRE values for the Cartesian and radial cases, respectively. At 
these optimal iterations, the RMSRE value for radial is lower than for 
Cartesian. After the optimal iterations, the RMSRE values go up slightly 
whereas the cost functions decrease, suggesting that the reconstructions 
may be susceptible to overfitting artefacts. 

Fig. 3. RMRSE values (for T1 and T2combined) per outer iteration. For the radial case the RMRSE values are higher because the outer corners of k-space are never 
sampled and therefore finer structures in the parameter maps cannot be properly resolved (i.e. reduced spatial encoding). 

Fig. 4. Reconstruction results for the noisy numerical brain phantom dataset. a: Cost as function of the number of outer iterations. b: RMRSE values (for T1 and T2 

combined) per outer iteration. 
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The reconstructed parameter maps and relative error maps at the 
optimal iterations are shown in Fig. 5 together with the parameter maps 
at the final iterations. Like in the noiseless case, no apparent under
sampling artefacts are observed. Although the increase of the RMSRE 
value suggests that the reconstructions may be susceptible to overfitting, 
it is visually difficult to observe for both the Cartesian and the radial 
case. That is, the reconstructions appear to be robust against simulated 
thermal noise. 

The mean T1 and T2 values as well as standard deviations per 
compartment at the optimal iterations as well as the final iterations are 
shown in Fig. 6a-b. It can be observed that the mean tissue parameter 
values per compartment are in good agreement with the ground truth 
values (well within one standard deviation). The efficiencies per 
compartment are displayed in Fig. 6c-d. We see that at the final itera
tions, the radial acquisition results in higher efficiencies (approximately 
25%) for T2 in six out of the seven distinct tissues despite the radial 
reconstruction suffering from errors caused by not sampling the outer 
corners of k-space. For T1, the Cartesian acquisition is more efficient for 
four out of the seven tissues, but in gray- and white matter (arguably the 
most relevent tissues for most brain imaging applications) the radial 
acquisition is more efficient. 

3.2. Gel phantom measurements 

To assess the efficiency and robustness of the MR-STAT 

reconstructions on the Cartesian and radial data obtained from gel 
phantoms, we follow a similar procedure as in the numerical brain 
phantom study. In Fig. 7a the RMRSE values for each iteration are 
shown. The RMSRE values for the Cartesian case follow a similar curve 
as in the noisy numerical brain phantom case and iteration two is 
observed to result in the lowest RMSRE value. For the radial case, the 
situation is different compared to the noisy numerical brain phantom 
case. Without filtering the parameter maps in a post-processing step, the 
lowest RMSRE occurs at iteration three but at further iterations the 
RMSRE values rapidly increases, indicating that the radial case is highly 
susceptible to overfitting. 

In Fig. 8 the T1 and T2 parameter maps for the MR-STAT re
constructions of the gel phantom data are shown. In columns one and 
two the maps from the Cartesian acquisition are shown at iterations two 
and twenty, respectively. Some mild overfitting artefacts (e.g. high 
frequency noise) can be observed in the maps corresponding to iteration 
twenty when compared to iteration two. On the other hand, when 
comparing iterations three and twenty for the radial acquisition (col
umns four and five, respectively), the appearance of strong overfitting 
artefacts can indeed be observed. Therefore, the application of a window 
function to the parameter maps in Fourier domain is deemed necessary. 
In this case, an arctan-based filter was chosen [35]. The resulting RMSRE 
curves are displayed in Fig. 7b and in Fig. 8, columns three and six, the 
filtered parameter maps are displayed as well. We observe that the 
RMSRE values for the radial case stabilize to values comparable to the 

Fig. 5. The T1 and T2 parameter maps reconstructed from noisy simulated brain data. The first column shows the ground truth T1 and T2 maps. The second and third 
columns show the parameter maps and relative error maps for the Cartesian case for the iteration with the lowest RMSRE value (iteration three) and the final 
iteration (iteration twenty), respectively. The fourth and fifth columns show the parameter maps and relative error maps for the radial case. 
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RMSRE values and the high frequency noise in the parameter maps is 
greatly reduced. For the Cartesian case, this particular choice of filter 
has no significant impact on the RMSRE values or the parameter maps. 
We also visually observe that for both the Cartesian and radial cases, at 
the optimal iterations, the T2 of the vial with the highest T2 value has not 
fully converged yet. 

The mean T1 and T2 values as well as standard deviations per vial at 
the iterations with lowest RMSRE values as well as the filtered versions 
of the final iterations are shown in Fig. 9. The T1 values obtained from 
both the Cartesian and the radial reconstructions are in excellent 

agreement with the reference values. For T2 we observe good agreement 
but the deviations from the reference values are larger compared to T1. 
This may be explained by potential errors in the B+

1 maps used in the 
reconstructions that mostly have an impact on estimated T2 values [37]. 
As observed before from Fig. 8, the vials with the highest T2 values have 
not converged yet at the optimal iterations. The efficiencies per vial are 
displayed in 9c-d. At the optimal iterations, the radial case results in 
higher efficiencies in all vials(except for T1 in vial number ten). How
ever, at the (filtered) final iterations, a significant drop in efficiencies is 
observed for the radial case and the Cartesian case results in higher 

Fig. 6. a-b: Mean T1 and T2 values and standard deviations per tissue type of the numerical brain phantom reconstructions. Ground truth parameter values are 
displayed using the yellow bars. c-d: Efficiencies for T1 and T2 per tissue type. It can be observed that overall the radial case results in higher efficiencies. 

Fig. 7. Reconstruction results for the gel phantom measurements. a: RMRSE values (for T1 and T2 combined) per outer iteration. b: RMRSE values after applying an 
arctan-based filter to the parameter maps in a post-processing step. 
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Fig. 8. The T1 and T2 parameter maps reconstructed from measured gel phantom data. The first two columns show the Cartesian reconstrutions at the optimal 
iteration (two) and the final iteration (twenty). In columns four and five the corresponding radial reconstructions are shown. It can be observed that - unlike in the 
simulation study - the radial reconstruction is highly susceptible to overfitting artefacts and applying a filter is deemed necessary. The filtered maps are shown in 
columns three (Cartesian) and six (radial). For the Cartesian case, the effect of the filter is difficult to observe visually. For the radial case, it significantly reduces the 
high-frequency noise in the parameter maps. 

Fig. 9. Reconstruction results for the gel phantom measurements. a-b: Mean T1 and T2 values as well as standard deviations per vial of the gel phantom for the outer 
iterations with the lowest RMRSE values (two for Cartesian, three for radial) and the final iterations. c-d: Efficiencies per vial are shown. It can be observed that 
overall the radial case results in higher efficiencies at the optimal iterations while Cartesian case results in higher efficiencies at the latest iteration. 

O. van der Heide et al.                                                                                                                                                                                                                        



Magnetic Resonance Imaging 99 (2023) 1–13

10

efficiencies in all vials (except for T1 in vial number six). 

3.3. In-vivo measurements 

With no ground truth measurements available, the RMSRE values 
cannot be computed and an optimal iteration cannot be selected. 
Therefore we only consider the final iterations (i.e. iteration twenty) for 
both the Cartesian and radial cases. In Fig. 10, the T1 and T2 maps at 
these final iterations are shown. Like in the case for the gel phantoms, 
the radial reconstruction suffers from high frequency noise and win
dowing is deemed necessary. For this dataset, a Hann filter was utilized 
and the filtered maps are shown in Fig. 10 as well. Although the filtering 
greatly improves the quality of the radial parameter maps, some high 
frequency noise is still present after filtering (mostly in or around ce
rebrospinal fluid (“CSF”) regions) whereas no high-frequency artefacts 
are observed to be present in the filtered Cartesian maps. 

In the Cartesian reconstruction, the CSF appears to suffer from flow- 
induced artefacts that are known to be present in gradient-spoiled se
quences as used in this work [38]. For the radial case these artefacts are 
much less severe, likely because the radial sampling pattern effectively 
results in the flow effects being averaged out over the whole duration of 
the acquisition. 

Mean T1 and T2 values in gray- and white matter for the filtered maps 
as well as standard deviations and efficiencies are displayed in Table 1. 
Recent literature values [39] are also reported. For T1, the Cartesian and 
radial reconstructions result in similar mean values in gray- and white 
matter and these values are in line with literature values. For T2 the 
mean values for white matter between Cartesian and radial agree but in 
gray matter there is a larger discrepancy between the Cartesian and 
radial cases. Segmenting the gray matter is more challenging and seg
mentation errors may partly explain the larger discrepancy and larger 
standard deviations. 

In terms of efficiency, the radial reconstruction results in higher ef
ficiencies in white matter (0.098 vs 0.144 for T1, 0.055 vs 0.065 for T2) 

whereas for gray matter the efficiencies are similar to their Cartesian 
counterparts (0.091 vs 0.088 for T1, 0.033 vs 0.03 for T2). 

4. Discussion 

In this work we have extended the MR-STAT framework with non- 
Cartesian gradient trajectories with the main purpose of comparing 
Cartesian and radial MR-STAT in terms of robustness and time- 
efficiency. Because MR-STAT uses a model-based iterative reconstruc
tion in which spatial and dynamic encoding are coupled, providing 
predictions upfront on which acquisition type will result higher effi
ciencies is challenging. We therefore performed an empirical study 
based on simulations and experiments instead. 

In general, errors in the reconstructed parameter maps (which 
directly influence the efficiency) are the result of thermal noise on the 
measured data, undersampling and/or imperfections in the signal model 
used in the reconstruction (due to e.g. hardware imperfections). The 
parameter maps reconstructed from the Cartesian noiseless numerical 
brain phantom dataset did not suffer from any undersampling (i.e. ali
asing) artefacts despite the high undersampling factor used (one readout 
per contrast). Also in the radial case no streaking artefacts were 
observed in the reconstructed maps. Both Cartesian and radial MR-STAT 
are therefore robust against undersampling. However, in the radial case 
the outer k-space corners were never sampled and therefore the smaller, 
more narrow structures and tissue boundaries could not be properly 
resolved. As such, radial MR-STAT has a lower spatial encoding effi
ciency compared to Cartesian MR-STAT. For the numerical brain 
phantom datasets corrupted with simulated thermal noise, we observed 
that the radial reconstruction resulteded in higher T2 time-efficiencies 
(by approximately 25%) compared to the Cartesian reconstruction in 
most tissue types. We hypothesize these higher efficiencies result from 
the fact that with the radial acquisition the center of k-space is sampled 
with each readout, and as such it has higher dynamic encoding power 
which compensates for the reduced spatial encoding that was observed 

Fig. 10. Reconstruction results for the in vivo measurements. The Cartesian reconstructions at their final iterations are shown in the first (unfiltered) and second 
(Hann-filtered) columns. The radial reconstructions at their final iterations are shown in the third (unfiltered) and fourth (Hann-filtered) columns. 
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in the noiseless numerical phantom reconstruction. For T1 the radial 
reconstruction only results in higher efficiencies in gray- and white 
matter (and only slightly in skin). The difference between T1 and T2 may 
be explained by the presence of the inversion prepulse. This prepulse 
adds strong dynamic T1 encoding to both acquisitions to the point where 
the intrinsic higher dynamic encoding of the radial acquisition may 
provide little to no benefit. On the other hand, the reduced spatial 
encoding for radial is still present, resulting in lower efficiencies in finer 
structures for the radial acquisition. 

In the gel phantom measurements, we observed that - while the 
Cartesian reconstruction procedure results in an RMSRE curve that is 
similar to the noisy brain simulation case - for the radial case the situ
ation is different because the reconstruction procedure is highly sus
ceptible to overfitting. In terms of sources of errors in the parameter 
maps, the main difference between the numerical simulation study and 
the gel phantom study is the presence of potential model inaccuracies in 
the latter. For radial (or more general: non-Cartesian) acquisitions it is 
known that they are more sensitive to hardware imperfections (e.g. 
gradient delays) as compared to Cartesian acquisitions [40]. We thus 
hypothesize that the differences between the simulation results and the 
gel phantom results come from inaccuracies in the forward model due to 
hardware imperfections and that these inaccuracies result in high- 
frequency artefacts in the parameter maps at the later iterations of the 
reconstruction procedure. In that scenario, the benefits of higher dy
namic encoding for radial that was observed in the noisy numerical 
brain phantom case is overshadowed by the presence of these artefacts. 
We also observed that at the “optimal” iterations, the vials with the 
highest T2 had not yet fully converged. An early stopping strategy thus 
poses a risk of introducing a signficant bias in the parameter maps. As an 
alternative strategy to reduce the impact of the high-frequency artefacts 
on the radial reconstructions we applied a k-space filter to the parameter 
maps in a post-processing step (similar to Pruessmann et al. [35]). Even 
after the filtering step, the Cartesian acquisition remained more 
efficient. 

In both the noisy numerical brain phantom and gel phantom ex
periments the cost and RMSRE values had stabilized at iteration twenty. 
We therefore assumed in this work that twenty iterations would be 
sufficient for convergence in the in vivo reconstructions as well. At these 
final iterations, the application of a (Hann) filter was again considered 
necessary for the radial reconstruction. For the filtered reconstructions, 
the radial case resulted in higher efficiencies in white matter and com
parable efficiencies in gray matter. However, some of the high spatial- 
frequency artefacts remained visible in the radial parameter maps 
even after filtering, which may hamper the clinical acceptability. We 
expect the impact of these artefacts to be even stronger on older MR 
systems with less performant gradient systems and less advanced eddy- 
current compensation mechanisms. The necessity of the filtering also 
complicates the reconstruction procedure in the sense that it involves 
more tweaking parameters (e.g. filter type and strength). The Cartesian 
reconstruction, like in the simulations and gel phantom experiments, did 
not display severe high-frequency artefacts. Filtering was not considered 
necessary but could still be desirable for visualisation of the parameter 
maps. 

Over the entire range of experiments performed in this work, Car
tesian MR-STAT was able to produce tissue parameter maps without 
apparent aliasing or overfitting artefacts. The reconstruction procedure 

was robust against the number of iterations in the reconstruction in all 
cases, displayed similar behaviour in both simulations and measure
ments and required less tweaking parameters compared to radial MR- 
STAT. The combination of these factors may make Cartesian MR-STAT 
preferable over radial MR-STAT in a clinical setting despite the lower 
efficiency in white matter. 

An additional downside of the radial acquisitions that is not taken 
into account in the current analysis is the effects of off-resonances. 
Whereas with Cartesian acquisitions the presence of off-resonances 
causes shifts in the image, with radial acquisitions, because the 
readout direction is different each TR, off-resonances will have a blur
ring effect on the reconstructed images. It should be noted though that 
with MR-STAT the off-resonance effects during readouts can be included 
in the forward model. As such, it should be possible to correct for this 
blurring effect by providing a separately measured off-resonance map to 
the reconstruction algorithm. Alternatively, a sequence could be 
designed that allows for the joint estimation of off-resonance maps with 
the T1,T2 and proton-density maps [41]. 

In the current work, we did not use a density compensation function 
for the radial reconstruction to compensate for the fact that the lower 
spatial frequencies are over-represented. Using such a density compen
sation, for example the Ram-Lak filter, as a pre-conditioner may result in 
faster convergence. We expect the (unfiltered) final parameter maps to 
suffer from the the same high-frequency errors as in the reconstructions 
without density compensation. Reducing the number of iterations may 
aid in lowering reconstruction times for radial MR-STAT. 

Instead of applying post-processing k-space filters, a more principled 
approach to suppress high frequency artefacts during reconstructions 
would be to add a spatial regularization term to the parameter maps in 
the MR-STAT objective function. This would, however, add additional 
complexity into the reconstruction procedure (e.g. choice of regulari
zation function(s) and parameter(s), potential non-differentiability of 
the regularization term). At the same time we expect the outcomes to be 
the same: for radial, regularization would be necessary to stabilize the 
reconstructions whereas for Cartesian it is not necessary (but it may still 
be used to reduce noise in the reconstructed parameter maps). 

One important limitation of this work is that we only considered a 
single RF train type in all acquisitions. The RF train was designed such 
that its local maxima were incoherent with respect to the sampling of the 
k-space center for the Cartesian acquisitions [42]. No optimization 
schemes were applied. For the radial case, since all readouts cover 
equivalent portions of k-space, it may not be necessary to take the spatial 
encoding into account such that the optimization can focus purely on 
enhancing the dynamic encoding power [43,44]. In the Cartesian case 
however, different readouts cover distinct parts of k-space and the 
optimization will have to strike a balance between spatial and dynamic 
encoding power. Performing such an optimization is non-trivial and is 
outside the scope of this work [45]. Since optimization schemes for 
Cartesian and radial can result in different RF trains for both, the effi
ciencies and conclusion drawn in the current work may be influenced 
when considering such optimized sequences. 

Another limitation of this work is that we only considered 2D ac
quisitions in this work. For 3D acquisitions, we expect an amplification 
of the the dynamic encoding benefits of radial over Cartesian. Hardware 
imperfections in radial acquisitions remain an issue also at 3D and future 
research will be aimed better understanding and mitigating the impact 

Table 1 
Mean values, standard deviations and efficiencies for in vivo T1 and T2 in gray- and white matter regions. Literate values [39] are reported in the last column.    

Cartesian  Radial  Literature   

Mean ± Std (ms) Efficiency (a.u.) Mean ± Std (ms) Efficiency (a.u.) Mean (ms) 

White Matter T1 898.4 ± 78.0 0.098 881.3 ± 49.3 0.144 954  
T2 32.2 ± 5.0 0.055 31.4 ± 3.9 0.065 38.7 

Gray Matter T1 1471.4 ± 137.7 0.091 1398.1 ± 128.8 0.088 1372  
T2 57.7 ± 14.7 0.033 45.3 ± 12.2 0.03 52.7  
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of these imperfections on the radial reconstructions, for example by 
utilizing gradient impulse response functions [46] to correct the 
gradient trajectory in the forward model (Eq. (1)). 

5. Conclusion 

We extended the MR-STAT framework to non-Cartesian acquisitions 
and compared Cartesian and radial MR-STAT in terms of robustness and 
time-efficiency. While radial MR-STAT resulted in higher T2 efficiencies 
in numerical simulations, in the gel phantom experiment the efficiencies 
were lower compared to Cartesian MR-STAT and we argue this is due to 
increased sensitivity to hardware imperfections. In clinical practice, the 
robustness and reliability of Cartesian MR-STAT may be preferred, 
especially on older MR systems where the impact of hardware imper
fections on the radial reconstructions are expected to be more severe. 
With this work we thus would like emphasize that Cartesian acquisitions 
are still highly relevant in the field of multi-parametric qMRI. 
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