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Abstract

Studies in patients with brain lesions play a fundamental role in unraveling the brain's

functional anatomy. Lesion-symptom mapping (LSM) techniques can relate lesion

location to cognitive performance. However, a limitation of current LSM approaches

is that they can only evaluate one cognitive outcome at a time, without considering

interdependencies between different cognitive tests. To overcome this challenge, we

implemented canonical correlation analysis (CCA) as combined multivariable and mul-

tioutcome LSM approach. We performed a proof-of-concept study on 1075 patients

with acute ischemic stroke to explore whether addition of CCA to a multivariable

single-outcome LSM approach (support vector regression) could identify infarct loca-

tions associated with deficits in three well-defined verbal memory functions (encod-

ing, consolidation, retrieval) based on four verbal memory subscores derived from the

Seoul Verbal Learning Test (immediate recall, delayed recall, recognition, learning
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ability). We evaluated whether CCA could extract cognitive score patterns that

matched prior knowledge of these verbal memory functions, and if these patterns

could be linked to more specific infarct locations than through single-outcome LSM

alone. Two of the canonical modes identified with CCA showed distinct cognitive

patterns that matched prior knowledge on encoding and consolidation. In addition,

CCA revealed that each canonical mode was linked to a distinct infarct pattern, while

with multivariable single-outcome LSM individual verbal memory subscores were

associated with largely overlapping patterns. In conclusion, our findings demonstrate

that CCA can complement single-outcome LSM techniques to help disentangle cogni-

tive functions and their neuroanatomical correlates.

K E YWORD S

canonical correlation analysis, cognitive impairment, ischemic stroke, lesion location, lesion-
symptom mapping, pattern-learning algorithms, support vector regression, verbal memory

1 | INTRODUCTION

Studies in patients with brain lesions are fundamental to the under-

standing of the functional architecture of the brain (Karnath

et al., 2018; Rorden & Karnath, 2004). This is based on the principle

that if a particular function is impaired in a patient with a lesion, this

function can be ascribed to the location of this lesion. Throughout the

past two decades, lesion-symptom mapping (LSM) techniques have

become increasingly popular to relate brain lesion locations to behav-

ioral measures such as cognition (de Haan & Karnath, 2017). This is

commonly done through statistical comparisons of patients with and

without a lesion for individual voxels or by associating regional lesion

volumes with cognitive scores.

Traditional LSM techniques, most notably voxel-based LSM (VLSM;

Bates et al., 2003; Rorden et al., 2007), are univariable (i.e., analyzing

each voxel or brain region separately) and univariate (i.e., analyzing a

single outcome or clinical endpoint at a time). This analytical approach

seems straightforward, but there are two important pitfalls. First, brain

regions are anatomically linked and can thus be systematically damaged

together. For example, brain infarcts do not occur randomly, but follow

the vascular topography of the brain. Second, neuropsychological tests

generally rely on multiple cognitive functions. Not all of these functions

are directly related to the primary function that a test aims to probe.

For example, most tests depend on verbal or written instructions and

thus partially rely on language abilities. Hence, when test scores corre-

late with each other, this commonality does not necessarily represent

the cognitive function that the test aims to probe, but can also repre-

sent other shared components. Therefore, both the cross-dependencies

between lesion locations and cognitive performance dimensions

(i.e., commonly multiple test scores) should be taken into account to

avoid falsely attributing a function to a particular location.

The interdependency between lesion locations is a topic of

increasing interest, and various multivariable LSM techniques have

been developed to address this issue (e.g., Mirman et al., 2017;

Pustina et al., 2017; Wilson et al., 2010; Zhang et al., 2014; Zhao

et al., 2017). Meanwhile, the interdependency between cognitive

scores is commonly dealt with by consecutively analyzing multiple

cognitive tests that depend on shared and distinct cognitive functions

in separate univariate analyses (Sperber et al., 2020). Shared and dis-

tinct anatomical correlates are then ascribed to the shared and distinct

cognitive functions through indirect comparisons of these separate

analyses (e.g., in Biesbroek et al., 2016, 2021). However, there are

methodological challenges to this approach, given that the complex

interrelationship between cognitive tests is not taken into account

and the comparison between the different analyses is generally quali-

tative (illustrated in Figure 1). Indeed, a recent study demonstrated

that this approach can lead to topographical bias and false-positive

artifacts (Sperber et al., 2020). To our knowledge, thus far no suitable

solution to this issue has been proposed. Multioutcome modeling

strategies could potentially overcome this. From a theoretical per-

spective, canonical correlation analysis (CCA) is a promising candidate

for multioutcome LSM (Hotelling, 1936; Wang et al., 2020). CCA can

simultaneously evaluate two different sets of variables (e.g., a set of

cognitive scores and a set of measures for brain infarct location),

thereby taking the interrelationship within a set of variables

(e.g., cognitive scores related to each other) and between sets of vari-

ables (e.g., cognitive scores related to infarct locations) into account in

a single model (Bzdok et al., 2019; Clemens et al., 2020; Wang

et al., 2020). These statistical properties could be advantageous for

LSM analyses, because CCA can account for both the interrelationship

between infarct locations (i.e., similar to available multivariable LSM

techniques) and the interrelationship between cognitive scores at the

same time. Of note, a form of CCA has been previously implemented

in LSM, but only as multivariable approach to increase spatial accuracy

and reliability of results, and not to address multiple outcomes simul-

taneously (Pustina et al., 2017).

Here, we performed a proof-of-concept study on 1075 patients

with acute ischemic stroke, in which we evaluated whether addition

of CCA to a multivariable single-outcome LSM analysis pipeline could

aid identification of infarct locations related to specific cognitive func-

tions. For this purpose, we examined three commonly used and well-

defined verbal memory functions as outcomes of interest: encoding,
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consolidation, and retrieval (Baddeley & Hitch, 1974). We used the

Seoul Verbal Learning Test (SVLT) as cognitive assessment, from

which we selected four verbal memory subscores. We explored:

(1) whether CCA could extract cognitive patterns that represent ver-

bal memory functions, by comparing the cognitive patterns derived

from the subscores to prior theoretical knowledge; and (2) to what

extent CCA could link the identified cognitive patterns to more spe-

cific infarct locations than single-outcome LSM alone.

2 | MATERIALS AND METHODS

2.1 | Study population

Patients were selected from the Hallym Vascular Cognitive Impair-

ment (VCI) and Bundang VCI cohorts, consisting of patients admitted

to Hallym University Sacred Heart Hospital or Seoul National Univer-

sity Bundang Hospital (Republic of Korea) with acute ischemic stroke

between January 2007 and December 2018 (Lim et al., 2014; Yu

et al., 2013). A total of 1075 patients were eligible for the present

investigation based on the following inclusion criteria: (1) brain mag-

netic resonance imaging (MRI) showing the acute symptomatic

infarct(s) on diffusion-weighted imaging (DWI) and/or fluid-attenuated

inversion recovery (FLAIR), (2) successful infarct segmentation and

registration (Section 2.2), (3) no previous cortical infarcts, large subcor-

tical infarcts or intracerebral hemorrhages on MRI (Section 2.2), and

(4) available SVLT assessment that includes all four cognitive scores

(Section 2.3) and clinical data on age, sex, and education. At the dis-

cretion of the attending physician, patients were not included in the

study if they suffered from disabilities that would interfere with neu-

ropsychological testing, including neurological deficits such as severe

aphasia or severe motor weakness, or impairment of hearing or vision.

A flowchart of patient selection is provided in Figure 2.

2.2 | Generation of lesion maps

Lesion data were available from a previous project (Weaver

et al., 2021). In short, infarct segmentation and subsequent registra-

tion to the T1 MNI-152 brain template (resolution 1 � 1 � 1 mm;

F IGURE 1 Conventional approach to inferring the neural correlates of cognitive functions from single-outcome lesion-symptom mapping.
Cognitive tests generally encompass multiple cognitive functions. In this hypothetical example, test Score A encompasses Functions 1 and 2, and
Score B Functions 2 and 3. This means that scores reflect partially overlapping and partially distinct functions. For example, Scores A and B both
measure Function 2, whereas score A measures Function 1 but Score B does not. In LSM Scores A and B are analyzed separately, and relevant
lesion locations are revealed for each score. Results can be plotted and compared visually (shown here in red and blue in the upper panel). The
left side of the lower panel shows the usual interpretation of such results, in which overlapping locations (shown in purple) are assigned to
functions that are shared between the two scores, in this example Function 2, and the nonoverlapping locations to functions that differ between
the scores (Function 1 for Score A, Function 3 for B). The right side of the lower panel demonstrates alternative explanations that are also
compatible with the lesion distributions for Scores A and B. Single-outcome LSM is not able to identify which explanation is correct.
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Fonov et al., 2011) were performed in accordance with a previously

published protocol (Biesbroek et al., 2019). First, acute infarcts were

manually segmented on DWI (N = 1048; 97.5%) or FLAIR (N = 27;

2.5%) sequences using in-house developed software built in MeVisLab

(MeVis Medical Solutions AG, Bremen, Germany; Ritter et al., 2011).

ADC and T1 sequences were used as reference when available. Next,

all scans and the corresponding lesion maps were transformed to

MNI-152 space with the RegLSM tool (https://github.com/Meta-VCI-

Map/RegLSM). Quality checks of all registration results were per-

formed by an experienced rater (Nick A. Weaver) and manual adapta-

tions were made in case of minor registration errors (N = 468; 43.5%).

Presence of chronic cortical infarcts (any size), large subcortical

infarcts (>15 mm), and large intracerebral hemorrhages (>10 mm) was

assessed by an experienced rater (Nick A. Weaver), and patients with

any of these lesions were excluded from this study.

2.3 | Neuropsychological assessment

Four verbal memory subscores derived from the SVLT were used for

the present study. The SVLT is a verbal memory test that consists of a

list of 12 nouns with four words drawn from each of three semantic

categories: flowers, writing materials, and kitchen appliances (Kang &

Na, 2003). The SVLT includes three learning trials, a 20-min delayed

recall trial, and a yes/no delayed recognition trial. The recognition trial

consists of a randomized list of 12 target and 12 nontarget words, six

of which are drawn from the same categories as those of the targets.

Three scores were directly taken from the SVLT test battery: immedi-

ate recall (i.e., sum of all three trials), delayed recall, and recognition. A

fourth subscore, for learning ability, was calculated by taking the

increase in number of words remembered between the first and last

learning trial. Patients with a recognition score below 12 (maximum:

24) were excluded (see Figure 2), because it was deemed improbable

that this task performance was worse than chance level. All four SVLT

subscores were converted into sample-based z-scores and individually

adjusted for age, sex, education level, and total infarct volume using

linear regression. Recognition subscores were natural log-transformed

to fit the linearity requirements of the feature selection step of the

support vector regression (SVR) analyses.

Three verbal memory functions are distinguished in Baddeley's

model for memory: encoding, consolidation, and retrieval (Baddeley &

Hitch, 1974). Based on this model, combinations of findings on

F IGURE 2 Flowchart of patient selection. Seoul Verbal Learning Test (SVLT) results were deemed unreliable if the recognition subscore was
<12 (maximum: 24), because that would mean that patients performed worse than chance level. Availability of all four SVLT subscores
(i.e., immediate recall, delayed recall, recognition, and learning ability) was required for inclusion in this study.
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different SVLT subscores were hypothesized to represent different

verbal memory functional deficits. Hypothesized patterns of subscores

that would represent each of the verbal memory functions are shown

in Table 1. Impaired learning ability subscores suggest an encoding

deficit. Immediate recall subscores also capture information on encod-

ing, but are less specific. Immediate and delayed recall can also be

impaired as downstream effect, as retrieval is not possible without

prior encoding. The combination of impaired delayed recall and

impaired recognition subscores suggests a consolidation deficit, but

only if learning ability and immediate recall subscores are relatively

unimpaired. An impaired delayed recall subscore combined with a rela-

tively unimpaired recognition subscore suggests a retrieval deficit.

2.4 | Machine learning analysis workflow

We implemented a two-step analysis approach. As first analysis step,

we performed SVR region of interest (ROI)-based LSM (SVR-ROI),

which is a well-established multivariable LSM method (Zhang

et al., 2014; Zhao et al., 2017). SVR-ROI was done for each SVLT sub-

score individually. As second analysis step, we selected ROIs that

were statistically significant in one or more individual SVR-ROI ana-

lyses for the CCA analysis. A schematic overview is shown in Figure 3,

and details on SVR-ROI and CCA analysis steps are described below.

This two-step approach was applied to deal with the directionality

of lesion-symptom associations. In LSM, coefficients are calculated

based on within-group comparisons, meaning that they represent the

relative performance between patients, and are not compared to

healthy controls. All included patients have a brain lesion, and some

will perform worse than others on cognitive tests. Negative

coefficients—that is, when damage to a particular region is associated

with better cognitive performance—represent relatively good perfor-

mance within the patient group. Therefore, only positive coefficients

are considered relevant from a clinical perspective in LSM. With tradi-

tional LSM techniques such as VLSM and SVR-based LSM, a coeffi-

cient is calculated for each location (i.e., voxel/region) separately,

allowing negative coefficients to be filtered out post hoc. Meanwhile,

CCA inherently creates the canonical modes based on strength of

both positive and negative coefficients (i.e., weights). This means that

each mode is still driven by both positive and negative correlations,

making it difficult to interpret the resulting association patterns. For

this reason, we performed CCA as secondary step following SVR-ROI.

SVR-ROI allowed us to first identify ROIs with positive coefficients

for verbal memory functions, and subsequently only enter these ROIs

in the CCA to reduce the effect of negative coefficients when creating

the canonical modes.

2.4.1 | SVR step

SVR-ROI was performed using MATLAB (version R2018a), in accor-

dance with previously published methods (Zhao et al., 2017). Regional

infarct volumes of a total of 163 predefined ROIs were used as input

variables for the SVR-ROI. These volumes were calculated in milliliters

in MNI-152 1 mm space (Fonov et al., 2011) using the Harvard-

Oxford grey matter atlas (111 ROIs; Makris et al., 2006), ICBM DTI-

81 white matter atlas (50 ROIs; Mori et al., 2008), and the Hammers

atlas for the cerebellar hemispheres (2 ROIs; Hammers et al., 2003).

Only ROIs damaged in at least five patients were included in the ana-

lyses. A linear SVR model with feature selection was used (Yourganov

et al., 2016). In the feature selection step, ROIs with a univariate sig-

nificant Pearson correlation (p < .05) between infarct volume and

SVLT subscores were selected. Parameter training of the linear SVR

model was performed to determine the optimal regularization parame-

ter (C) to maximize the prediction performance. Prediction perfor-

mance was calculated for each C by determining the mean Pearson

correlation coefficient between the real and predicted SVLT subscores

with 5-fold cross-validations (optimal parameters in Table S1). Statisti-

cal inference was performed by shuffling the observations of z-scores

to create pseudoweight coefficients. The significance level of each

voxel was calculated by counting the number of pseudoweights larger

than the real weight in 5000 permutations. ROIs with permutation-

based p < .05 were considered statistically significant.

2.4.2 | Multivariable multioutcome cross-
association step

CCA identifies sources of common variation in two sets of variables,

in our case regional infarct volumes and SVLT subscores. Joint

TABLE 1 Theoretical constructs for verbal memory functions and representation by Seoul Verbal Learning Test subscores

Function Definition
Score impaired in case of functional deficit?

Immediate recall
Delayed
recall Recognition Learning ability

Encoding Ability to attend to and register new

information

Possiblya Possiblya Yes Yes

Consolidation Ability to maintain, elaborate, and

store new information in long-term

memory

No Yes Yes Yes, but less specific than delayed

recall and recognition

Retrieval Ability to retrieve information from

long-term memory

Yes, but less specific

than delayed recall

Yes No No

aImpaired as downstream effect, because words cannot be recalled if the words are not encoded (Lezak et al., 2012; Vanderploeg et al., 2001).
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modeling of SVLT subscores exploits the existence of shared underly-

ing processes between various cognitive functions to model brain-

behavior relationships. CCA, similar to Principal Component Analysis,

performs change of basis, but of both sets of variables simultaneously.

It does so by transforming both sets of variables to latent space such

that linear correspondence between each corresponding latent dimen-

sion is maximized (Wang et al., 2020). More details are presented

below.

Mathematical notions

Let, X and Y are two sets of variables with dimensions p and q, respec-

tively. The first CCA mode estimates the parameters associated with

canonical vectors a and b from each set of variables as follows:

U¼ aTX;a�Rp

V¼ bTY;b�Rq

F IGURE 3 Schematic overview of analysis steps. An overview of the analysis steps is shown, using actual data from present study. Prior to
analyses, infarct volumes in predefined regions of interest (ROIs) were calculated for each patient. In Step 1, we performed support vector
regression-based lesion-symptom mapping (SVR-ROI), in which the association between ROI infarct volumes and four Seoul Verbal Learning Test
(SVLT) subscores was analyzed individually across all 163 ROIs. This resulted in the identification of ROIs where infarct volumes were significantly
associated with one or more SVLT subscores (upper right panel; corresponding with Figure 4). Only the 49 ROIs with a significant association in
the SVR-ROI for one or more subscores (p < .05, 5000 permutations) were selected for the subsequent canonical correlation analysis (CCA)
analysis. In Step 2, the 49 selected ROIs and all SVLT subscores were entered in a single CCA model. Four canonical modes were produced
(i.e., equal to the minimum number of cognitive variables, in this case SVLT subscores, entered in the model) using a purely data-driven approach.
Each canonical mode represented a unique pattern of paired cognitive (white circles) and lesion data (black circles). For each mode, positive betas
on both the SVLT subscore (here only the name of associated subscore per mode is given; see Figure 5 for full results) and ROIs (colors yellow to
red) indicate that poorer performance on the SVLT subscore(s) is linked to higher infarct volumes Arrows indicate whether or not the test or ROI
contributed to a mode; filled arrows indicate a strong contribution, dashed arrows indicate little or no contribution (corresponding with neutral or
negative betas). DR, delayed recall; IR, immediate recall; LA, learning ability; Re, recognition.
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such that the linear association as measured by Pearson correlation

between U and V, the canonical variates, is maximized.

ρ¼ corr U,Vð Þ¼ corr aTX,bTY
� �

:

Here, ρ represents the canonical correlation.

Canonical Modes 2, 3, and so on up to min (p, q) can also be

obtain in a similar way with the condition that canonical modes are

uncorrelated with each other.

Region of interest-based analyses using CCA were performed

using the Python 3.7 environment using the packages Scikit-learn

(version 0.22.1; Abraham et al., 2014) and Nilearn (version 0.5.2;

Pedregosa et al., 2011). The code is publicly available at: https://

github.com/hasnainmamdani/stroke-impairment-inference-lsm-cca/.

Infarct volumes in the predefined ROIs were the same as used in the

SVR-ROI analyses.

Infarct volumes of the 49 statistically significant ROIs obtained

from the SVR-ROI analysis were z-transformed and fed to the CCA

model, on the one hand, along with all four SVLT subscores, on the

other hand. Four canonical modes were extracted, equal to the mini-

mum number of variables in either of the variable sets (in this case,

SVLT subscores; Wang et al., 2020). Canonical vectors were obtained

that represent the contribution of every brain region and SVLT sub-

score for each mode. The explained variance for each canonical mode

was calculated as the Pearson correlation between the corresponding

canonical variates (of infarct volumes of ROIs and SVLT subscores) of

each mode. We evaluated whether CCA could extract patterns of

SVLT subscores that match prior theoretical knowledge of verbal

memory functions, by comparing the SVLT subscore patterns from

the canonical modes to the hypothesized representations of cognitive

functions, as shown in Table 1. For each canonical mode, p-values per

ROI were calculated using random permutation testing (1000 permu-

tations). Z-scores of the four SVLT subscores were shuffled indepen-

dently in each permutation and CCA was fitted on the permuted data

to obtain pseudocanonical vectors. The significance level of each ROI

was calculated by counting the number of times the pseudoweights

associated with each ROI and canonical mode were larger (smaller for

F IGURE 4 Lesion prevalence and
single-outcome support vector regression
(SVR) region of interest (ROI)-based
lesion-symptom mapping (SVR-ROI)
results. (A) Infarct prevalence map
showing ROIs that are damaged in ≥5
patients (total N = 1075) and thus
included in the SVR-ROI analyses.
(B) Results of region of interest-based

lesion-symptom mapping (SVR-ROI) for
each cognitive test. ROIs were defined by
the Harvard-Oxford gray matter atlas,
ICBM DTI-81 white matter atlas, and the
Hammers atlas for the cerebellar
hemispheres. ROIs from the SVR-ROI
analysis are shown (p < .05; based on
5000 permutation iterations); colors
indicate the standardized beta for each
ROI (i.e., higher betas indicate that higher
infarct volume is associated with worse
cognitive performance). L, left; R, right;
Stβ, standardized beta.
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negative weights) than the original weight in 1000 permutations. To

take the analysis of 49 ROIs into account, correction for multiple com-

parisons was performed by repeating random permutation testing

using 49,000 iterations (i.e., 49 � 1000). As additional step, CCA was

repeated without correction for total infarct volume, to determine

whether this correction had any impact on the results.

3 | RESULTS

3.1 | Study population

Demographic and clinical characteristics of 1075 included patients are

provided in Table 2. Mean age was 67 years (SD = 12), 452 patients

were female (42%), and median years of education was 9 (interquartile

range [IQR] = 6–12). Infarcts were generally small, with a median nor-

malized volume of 2.3 ml (IQR = 0.9–12.3). SVLT assessment most

commonly took place 3–4 months poststroke, with a median of

98 days (IQR = 84–125). SVLT subscores covered the full range of

possible scores, and included substantial numbers of patients with

clinically relevant impairment (i.e., scores <3rd percentile based on

age-corrected and education-corrected local normative data: for

immediate recall 22% of patients, delayed recall 22%, and recognition

subscores 25%; Table 2). No normative data were available for learn-

ing ability.

3.2 | Lesion prevalence and brain coverage

Lesion prevalence per region of interest is shown in Figure 4a. Infarct

distribution was symmetrical and subcortical regions were more com-

monly damaged than cortical regions. Overall brain lesion coverage

was high: all 163 ROIs were damaged in at least 5 patients and there-

fore included in the SVR-ROI analyses.

3.3 | SVR-ROI results

Forty-nine ROIs were significantly associated (p < .05, 5000 permuta-

tions) with one or more SVLT subscores (Figure 4b and Table S2). All

significant ROIs were located in the left hemisphere, except for the

corpus callosum ROI that crossed between both hemispheres. Each

verbal memory subscore was significantly associated with multiple

ROIs. Immediate recall and recognition subscores were both associ-

ated with infarct volumes in an extensive pattern of ROIs, with a large

degree of ROI overlap between subscores. Delayed recall and learning

ability subscores were associated with fewer ROIs, but these ROIs

largely overlapped with those associated with immediate recall and

recognition scores. Of note, very few ROIs were associated with only

a single SVLT subscore: immediate recall subscores were exclusively

associated with infarct volumes in the left subcortical white matter,

recognition subscores were exclusively associated with infarct vol-

umes in left temporo-occipital gyri, and learning ability subscores

were exclusively associated with infarct volumes in the left frontal

operculum cortex. Delayed recall subscores had no exclusive associa-

tions. All four SVLT subscores showed high betas in the thalamus;

immediate recall and recognition showed high betas in the basal gang-

lia, medial temporal lobe, occipital lobe, and frontoparietal ROIs.

Delayed recall and learning ability only showed high betas for the

thalamus.

We translated the SVR-ROI results for individual SVLT subscores

back to the theoretical constructs of verbal memory functions using

Table 1 as framework. Next, we evaluated the spatial patterns of

TABLE 2 Demographic and clinical characteristics of study
sample (N = 1075).

Demographics and clinical

characteristics Total sample (N = 1075)

Age (years), mean (SD) 66.5 (11.7)

Female, N (%) 452 (42.0%)

Years of education, median (IQR) 9 (6–12)

Hand preference, N (%) (Missing N = 19)

Right 1033 (97.8%)

Left 9 (0.9%)

Ambidextrous 14 (1.3%)

Verbal memory assessment

Time interval between stroke onset

and assessment (days), median (IQR),

range

98 (84–125), range 1–
365 (missing N = 3)

Immediate recall (sum of 3 trials, max.

range 0–36), median (IQR), range

16 (12–20), range 0–36

Immediate recall, impaired based on

normative data (<3rd percentile),

N (%)a

235 (22.0%; missing

N = 5)

Delayed recall (maximum range 0–12),
median (IQR), range

4 (2–6), range 0–12

Delayed recall, impaired based on

normative data (<3rd percentile),

N (%)a

240 (22.4%; missing

N = 2)

Recognition (maximum range 0–24),
median (IQR), range

20 (17–22), range 0–24

Recognition, impaired based on

normative data (<3rd percentile),

N (%)a

261 (24.5%; missing

N = 10)

Learning ability (difference immediate

recall trials 1–3), median (IQR),

rangeb

3 (2–4), range 0–9

Brain MRI

Time interval between stroke onset

and MRI (days), median (IQR), range

3 (1–5), range 0–46

Total infarct volume in ml,c median

(IQR), range

2.3 (0.9–12.3), range
0.04–535.1

Note: Missing data are noted behind the respective variable, when

appropriate. Valid percent is indicated in cases with missing data.

Abbreviations: IQR, interquartile range; MRI, magnetic resonance imaging;

SD, standard deviation.
aPercentile scores were calculated using local normative data from a

healthy population-based sample (Kang and Na, 2003).
bNo normative data available for learning ability score.
cNormalized volumes after registration to the MNI-152 template.
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overlap and difference between significant ROIs as shown in

Figure 4b. The interpretation for consolidation and retrieval is illus-

trated in Figure 5. Two ROIs in the temporo-occipital fusiform cortex

fit the theoretical construct for consolidation, whereas no ROIs fit the

pattern for retrieval. For encoding, impairment in any of the four SVLT

subscores could theoretically result in an encoding deficit, therefore

we could not extract ROIs by comparing individual SVLT subscore

results to the theoretical construct without taking their relative contri-

bution into account.

3.4 | CCA results

The 49 ROIs selected with the SVR-ROI and all four SVLT subscores

were entered in the CCA model, and four canonical modes were

extracted. CCA results are shown in Figure 6 and Tables S3 and S4.

Table S4 shows the p-values per ROI calculated through random per-

mutation testing. Cognitive scores in Mode 1 were primarily driven by

immediate and delayed recall subscores (i.e., high weights compared

to the other SVLT subscores), and lower scores were most strongly

associated with higher infarct volumes in the left thalamus (Figure 6).

Mode 2 was driven by delayed recall and recognition subscores, and

to lesser extent learning ability subscores, and lower scores were most

strongly associated with higher infarct volumes in the left occipital

and medial temporal lobes including the hippocampus. Mode 3 was

driven by recognition and to lesser extent immediate recall subscores,

and lower scores were most strongly associated with infarcts in the

anterior and lateral temporal regions. Mode 4 was predominantly

driven by learning ability subscores, and was associated with infarcts

in left frontal regions, including the basal ganglia. The explained vari-

ances of the four canonical modes were 0.404, 0.275, 0.204, and

0.191, respectively.

We related the CCA results back to the theoretical constructs of

verbal memory functions (Table 1) by evaluating whether cognitive

patterns in each canonical mode fit the predefined patterns. Mode

2 corresponded with our prior construct for consolidation: strong

association with impaired delayed recall and recognition, but no asso-

ciation with immediate recall or learning ability. Mode 4 corresponded

with our construct for encoding, showing a strong association with

impaired learning ability. In this mode, lack of association with other

SVLT subscores can be explained as downstream effect, that is, result-

ing from explained variance already extracted in Modes 1 through

3, leaving learning ability as most specific score for encoding. Modes

1 and 3 did not clearly fit any of the predefined patterns. Figure S1

shows that CCA results remained essentially the same without correc-

tion for total infarct volume.

4 | DISCUSSION

This study shows how CCA can complement multivariable single-

outcome LSM by taking cross-dependencies between lesion locations

and cognitive scores into account. Using verbal memory functions as

a proof-of-concept, multivariable single-outcome LSM alone showed

that individual SVLT subscores were associated with largely overlap-

ping locations, providing limited insight into the neural correlates of

verbal memory functions. CCA revealed that cognitive patterns repre-

sentative of specific verbal memory functions, specifically encoding

and consolidation, were linked to distinct infarct patterns. Our find-

ings thus demonstrate the added value of CCA in LSM to help disen-

tangle lesion-behavior associations.

Dealing with interdependencies between cognitive tests is an

important challenge in the LSM field (Sperber et al., 2020). A recent

methodological study analyzed two common approaches for dealing

with this issue, namely indirect comparison of parallel univariate ana-

lyses and correcting for related cognitive scores through nuisance

regression. The authors found that both approaches suffer from topo-

graphical bias and false-positive artifacts (Sperber et al., 2020). Fur-

thermore, as our SVR-ROI results illustrate, interpretation of parallel

univariate analysis results is hampered by the need to select distinct

and overlapping spatial results, leading to loss of information and lack

of sensitivity (see Figure 5).

Using verbal memory functions as a proof of concept, we demon-

strated that CCA offers a viable solution to these challenges. With

CCA we identified SVLT subscore patterns extracted by the canonical

modes that aligned with prior theoretical knowledge on encoding and

consolidation (Lezak et al., 2012; Vanderploeg et al., 2001). The identi-

fied neuroanatomical correlates also fit with prior knowledge, thus

supporting the validity of our findings. We found that cognitive test

score pattern that fit encoding impairment was linked to frontal

infarcts (Mode 4), which aligns with evidence from functional imaging

studies that show that frontal lobes are activated during encoding

processes (Budson & Price, 2009). Meanwhile, the pattern for consoli-

dation impairment (Mode 2) was linked to medial temporal lobe

infarcts, also in line with extensive literature (McGaugh, 2000;

Squire & Zola-Morgan, 1991). Of note, LSM studies on verbal memory

are scarce (recent review in Lugtmeijer et al., 2021), and to our knowl-

edge none compared multiple (sub)scores. One LSM study (N = 88)

did find that recognition score impairment on the Rey Auditory Verbal

Learning Test (i.e., highly similar to the SVLT) was associated with left

medial temporal lobe and temporo-occipital infarcts, which is in line

with our results (Biesbroek et al., 2015).

This proof-of-concept study demonstrated the potential value of

CCA as novel LSM approach. It is important to note that our study

provides a single application of this approach using real-life data, and

was not designed to establish method validity. As next step, validation

studies are needed to establish the validity and robustness of CCA for

broader use in LSM. Validation studies could be performed using sim-

ulated behavioral data, similar to previous studies (Mah et al., 2014;

Sperber et al., 2020; Sperber & Karnath, 2017), to circumvent the lack

of a gold standard for validation. In addition, these validation studies

should address applicability in smaller sample sizes, considering that

our dataset was exceptionally large compared with most available

LSM studies (generally N < 400; Weaver et al., 2019).

Strengths of this study are the large homogenous study sample

and use of well-defined cognitive functions and cognitive tests with a
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F IGURE 5 Relating support vector regression (SVR) results back to theoretical constructs of verbal memory functions. This figure illustrates
how the actual SVR region of interest (ROI)-based lesion-symptom mapping (LSM [SVR-ROI]) results can be related back to the theoretical
constructs of consolidation and retrieval functions through single-outcome LSM approaches. Note that the presented results are the same as in
Figure 4b, but all significant ROIs per SVLT subscore are shown in a single color rather than a scale. By convention, an isolated consolidation
deficit would be reflected by impairment in both delayed recall and recognition, but with relatively unimpaired immediate recall and learning
ability (see definitions Table 1). Thus, we first identified ROIs associated with both delayed recall and recognition impairment (purple ROIs, upper
panel). Next, ROIs associated with immediate recall and/or learning ability (green) were subtracted, resulting in only two ROIs attributed to
consolidation (purple ROIs, bottom panel). Along the same lines, a specific retrieval deficit should be reflected in impaired delayed recall, but with
all other subscores relatively unimpaired. Retrieval would thus be ascribed to ROIs linked to delayed recall (red ROIs, upper panel), after
subtracting ROIs associated with immediate recall and/or learning ability impairment (bottom panel; green ROIs). No ROIs matched this
combination. This demonstrates how this approach to interpreting single-outcome LSM results, that is, analyzing distinct and overlapping results
(as shown in Figure 1), provides limited insight into the neural correlates of cognitive functions. Particularly in the subtraction step information is
lost; however, this cannot be avoided without taking the relative contribution of different subscores into account.
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firm theoretical basis. Some potential limitations must also be noted.

First, CCA is exploratory by nature, which means that it does not pro-

vide statistical significance (Wang et al., 2020). Through random per-

mutation testing we showed that within each mode, ROIs with high

betas were statistically significant (p < 0.05), demonstrating the

robustness of our findings. Second, CCA did not allow for voxel-based

analyses—which are often preferred in LSM because of the higher

spatial resolution than ROI-based analyses—because of the high

dimensionality that would be required. Therefore, spatial resolution of

the CCA results is relatively low compared with VLSM and remains

dependent on brain atlases. Third, the time interval between stroke

onset and SVLT assessment was relatively wide (range 1–365 days).

Brain plasticity and functional recovery can occur after stroke, and the

degree of recovery may depend on which brain region is damaged.

Finally, an inherent limitation of CCA is that it creates canonical

modes based on positive and negative coefficients, while only positive

coefficients are relevant from a clinical perspective in LSM (see

Section 2). This means a form of feature selection is needed prior to

CCA to minimize the impact of negative coefficients, for which we

applied SVR-ROI as first step. However, this might lead to loss of

information due to statistical thresholding. Further research is neces-

sary to determine how to best incorporate CCA into LSM pipelines.

5 | CONCLUSION

We showcase the value of CCA as multivariable and multioutcome

LSM approach. This approach creates a novel opportunity to address

a multitude of research questions focused on disentangling complex

or interrelated brain processes in relation to their neuroanatomical

correlates. Like other LSM methods, this can be applied in the context

of stroke for acute infarcts, but also for other lesion types (e.g., white

matter hyperintensities or brain tumors). Further investigation in inde-

pendent datasets using different cognitive outcome measures, possi-

bly with simulated cognitive data, is warranted to establish the validity

of CCA, for broader application in LSM studies (Bzdok & Yeo, 2017;

F IGURE 6 Multioutcome canonical correlation analysis results. Combined multivariable and multioutcome lesion-symptom mapping with
canonical correlation analysis (CCA). Only statistically significant regions of interest (ROIs) from the SVR-ROI (p < .05, 5000 permutations) for one
or more of the four Seoul Verbal Learning Test (SVLT) subscores were used in the CCA to reduce noise. Forty-nine ROIs and four SVLT subscores
and were entered in a single model to identify the four canonical modes that each represent a unique pattern of paired test score and lesion data.
Modes are extracted consecutively, that is, Mode 1 has the highest explained variance and is therefore extracted first; once this information has
been extracted, Mode 2 captures the remaining variance, and so on. For each mode, positive betas on both the SVLT subscore (bar on positive y
axis) and ROIs (colors yellow to red) indicate that poorer performance on the SVLT subscore(s) is linked to higher infarct volumes. Note that beta
values indicate a relative contribution of all included variables in the CCA analyses, therefore neutral or negative betas indicate that these SVLT
subscores and/or brain regions do not contribute to a particular mode. DR, delayed recall; IR, immediate recall; L, left.; LA, learning ability; R, right;
Re, recognition
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Wang et al., 2020). Of note, this approach benefits large datasets with

extensive brain coverage and availability of multiple cognitive test

scores, and thus could benefit from multicenter designs through con-

sortia such as STROKOG (Sachdev et al., 2017) and Meta-VCI-Map

(Weaver et al., 2019).
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