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Summary
Background DNA-methylation has been associated with plasma lipid concentration in populations of diverse ethnic
backgrounds, but epigenome-wide association studies (EWAS) in West-Africans are lacking. The aim of this study
was to identify DNA-methylation loci associated with plasma lipids in Ghanaians.

Methods We conducted an EWAS using Illumina 450k DNA-methylation array profiles of extracted DNA from 663
Ghanaian participants. Differentially methylated positions (DMPs) were examined for association with plasma total
cholesterol (TC), LDL-cholesterol, HDL-cholesterol, and triglycerides concentrations using linear regression models
adjusted for age, sex, body mass index, diabetes mellitus, and technical covariates. Findings were replicated in
independent cohorts of different ethnicities.

Findings We identified one significantly associated DMP with triglycerides (cg19693031 annotated to TXNIP, regres-
sion coefficient beta −0.26, false discovery rate adjusted p-value 0.001), which replicated in-silico in South African
Batswana, African American, and European populations. From the top five DMPs with the lowest nominal p-values,
two additional DMPs for triglycerides (CPT1A, ABCG1), two DMPs for LDL-cholesterol (EPSTI1, cg13781819), and
one for TC (TXNIP) replicated. With the exception of EPSTI1, these loci are involved in lipid transport/metabolism
or are known GWAS-associated loci. The top 5 DMPs per lipid trait explained 9.5% in the variance of TC, 8.3% in
LDL-cholesterol, 6.1% in HDL-cholesterol, and 11.0% in triglycerides.

Interpretation The top DMPs identified in this study are in loci that play a role in lipid metabolism across populations,
including West-Africans. Future studies including larger sample size, longitudinal study design and translational
research is needed to increase our understanding on the epigenetic regulation of lipid metabolism among West-
African populations.
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Research in context

Evidence before this study
West African populations have a more favourable lipid profile
than European populations, with lower levels of plasma
triglycerides and higher levels of high-density lipoprotein
(HDL) cholesterol, without an accompanying lower prevalence
of cardiovascular disease outcomes. These differences might
be influenced by DNA methylation. We searched PubMed in
January and September of 2021 for articles describing DNA
methylation associated with plasma lipids using a
combination of Mesh terms “dyslipidaemia”, “cholesterol”,
“DNA methylation” and “epigenomics”. Additionally, we
searched the EWAS Atlas, a curated database of epigenome-
wide association studies, for studies reporting on plasma
lipids. We found several publications, including a meta-
analysis of cohorts, reporting on methylation loci associated
with plasma lipid concentrations. However, few studies were
conducted in populations of African ancestry (African
Americans), and only one study was conducted in a
population-based study in sub-Sahara Africa itself (South
African Batswana). None of the studies was conducted in a
West African population.

Added value of this study
In this epigenome-wide analysis we reported on the
association between DNA methylation and plasma lipids

conducted in a West African population, i.e. in Ghanaians, a
population for whom epigenetic data are scarce. We identified
several methylation loci that have previously been linked to
lipid metabolism and contribute substantially to the variance
in plasma lipid concentration in this Ghanaian population.
Several of identified loci replicated in populations of other
ethnicities, suggesting that these loci may play a role in lipid
metabolism across populations, including West Africans.
Additionally, we identified other loci that are potentially
relevant in lipid metabolism in Ghanaians specifically. These
might contribute to the favourable lipid profile of West
African populations, and these may be potentially relevant
biomarkers in the pathogenesis of dyslipidaemia.

Implications of all the available evidence
The results of this study can serve as a reference for future
replication studies and contribute to elucidating mechanisms
underlying lipid metabolism in diverse populations. Increasing
ethnic diversity in epigenetic research is critical to prevent
exacerbation of existing health disparities. Future studies
should include larger sample size and a longitudinal study
design to increase our pathophysiological understanding of
dyslipidaemia among West African populations, thereby
informing targeted strategies to curb the rising prevalence of
cardiometabolic disorders in sub-Saharan African populations.
Introduction
Dyslipidaemia is a major risk factor for cardiovascular
diseases (CVDs) in general, and ischaemic heart disease
in particular.1 West African origin populations are
considered to have a more favourable lipid profile than
other ethnic groups, with lower plasma levels of tri-
glycerides and low-density lipoprotein cholesterol (LDL-
C), and higher plasma levels of high-density lipoprotein
cholesterol (HDL-C).2 However, whereas in high-
income western regions mean non-HDL-C levels have
decreased over the past few decades, an opposite trend
can be observed in most parts of sub-Saharan Africa
(SSA),3 with a potentially important impact on the CVD
burden in this region.

Lipid metabolism is determined by both genetic and
environmental factors. Plasma lipid concentrations are
40–60% heritable, but common variants explain only
10–25% of the variance in lipid levels.4 Additionally,
genome-wide association studies (GWAS) show dif-
ferent loci associated with plasma lipid concentration
between African and European origin populations.5

Environmental factors such as urbanisation and “west-
ernisation” are shifting patterns in behavioural factors
towards less physical activity and more consumption of
(fast) food high in salt, sugar, and saturated fat, im-
pacting lipid metabolism.6 However, neither genetic
variants nor environmental factors alone can completely
explain the variation in plasma lipid phenotypes. Gene-
environment interaction, mediated by epigenetic mod-
ifications, potentially accounts for a proportion of this
unexplained variation.7 Epigenetic studies facilitate
understanding of the regulation of gene expression that
occur without changes in the DNA sequence itself.8

Several studies have reported on epigenetic processes
associated with lipid profiles,9 with DNA methylation
(DNAm) being studied most widely. While there are
few epigenetic studies in African-ancestry populations
in general, epigenetics studies in SSA populations are
particularly scarce. Only one epigenome-wide associa-
tion study (EWAS) assessing DNAm in lipid traits has
been conducted in an SSA population.10 Additionally, as
genetic heterogeneity and environmental diversity are
large in SSA, epigenetic analyses in other SSA pop-
ulations can contribute to the discovery of new epige-
netic loci associated with lipids. This can improve
our understanding of this complex trait in SSA pop-
ulations, which is highly relevant in the context of CVD
prevention. In this study, we aim to identify DNAm
www.thelancet.com Vol 89 March, 2023
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loci associated with plasma lipid concentrations in
Ghanaians.

Methods
Study population and study design
This study used baseline data from the prospective,
multicentre Research on Obesity and Diabetes among
African Migrants (RODAM) study. Details on this study
have been published before11 and are summarised here.
Between 2012 and 2015, 6385 Ghanaian men and
women were recruited in rural Ghana (Ashanti region),
urban Ghana (Kumasi and Obuasi), and the European
cities of London, Amsterdam, and Berlin. Most partici-
pants were of Akan ethnicity, and Ghanaians residing in
Europe were first-generation migrants originating from
the villages and towns in the Ashanti region. Of those
participants aged 25 years and over, with complete data
on physical examination and blood sample profile
(n = 5659), 736 participants were selected for DNAm
profiling (Supplementary Fig. S1). The selection process
was based on a case–control design, including about 300
non-drug treated diabetic cases, 300 non-diabetic con-
trols, and 135 non-diabetic, non-obese controls. This
sample size was originally chosen to have 80% power to
detect a 5% methylation difference between diabetic
cases and controls. After exclusion of sex discordances
(n = 11), duplicates (n = 8), and those not meeting the
quality control thresholds (n = 12), 713 eligible partici-
pants remained. Participants with missing data on lipid
profile (n = 6), or those using lipid-lowering medication
(n = 38) were excluded from the analysis. Additionally,
six participants were excluded from the analysis because
of outliers in lipid concentrations, resulting in 663
participants included in the current analyses.

Ethics
Before the start of data collection, ethical approval was
obtained from the respective ethics committees of the
involved institutions in Ghana (School of Medical Sci-
ences/Komfo Anokye Teaching Hospital Committee on
Human Research, Publication & Ethical Review Board,
ref. CHRPE/AP/200-12), UK (London School of Hy-
giene and Tropical Medicine Research Ethics Commit-
tee, ref. 6208), the Netherlands (Institutional Review
Board of the Academic Medical Center, University of
Amsterdam, ref. W12_062#12.17.0086) and Germany
(Ethics Committee of Charité-Universitätsmedizin Ber-
lin, ref. EA1/307/12). All participants provided written
informed consent before enrolment in the study.

Phenotypic measurements
Data collection procedures for questionnaire and phys-
ical examination were highly standardised across the
different study locations, to allow for comparison be-
tween the sites. Data on sex, age, and length of stay in
Europe were obtained using questionnaires. The use of
lipid-lowering medication was based on the Anatomical
www.thelancet.com Vol 89 March, 2023
Therapeutic Chemical classification of medication that
participants brought with them to the research location.
Physical examination was performed using validated
devices. Weight was measured in light clothing without
shoes with a SECA 877 scale (Seca GmbH & Co. KG,
Hamburg, Germany) to the nearest 0.1 kg. Height was
measured without shoes using a SECA 2017 portable
stadiometer to the nearest 0.1 cm (Seca GmbH & Co.
KG, Hamburg, Germany). Anthropometric measures
were taken twice and the mean was used in analyses.
Body mass index (BMI) was calculated by dividing the
weight in kilograms by the square of the height in
meters. Venous blood samples were collected after an
overnight fast of at least 10 h. All biochemical analyses
were performed in Berlin to avoid inter-laboratory bias.
Fasting plasma glucose concentration was measured
using the hexokinase method by colorimetry. Diabetes
mellitus was defined according to self-reported diabetes
and/or fasting glucose ≥7.0 mmol/L. Participants using
glucose-lowering medication were excluded from
DNAm analysis, because of the potential confounding
effect of medication use on methylation profile. A ready-
to-use reagent for colorimetry was used to obtain
concentrations of total cholesterol (TC), HDL-C, and
triglycerides. All analyses were performed using and
ABX Pentra 400 chemistry analyser (Horiba ABX SAS,
Oberursel, Germany). LDL-C concentration was calcu-
lated using the Friedewald equation for individuals with
triglyceride levels <4.5 mmol/L. The distribution of the
lipid concentration was assessed using histograms and
the Shapiro–Wilk test. To ensure normal distribution of
the lipid traits, rank-based inverse normal trans-
formation was performed for TC, LDL-C, and HDL-C.
Triglyceride concentration was natural log-transformed
because of its skewed distribution.

DNA methylation profiling, processing, and quality
control
Source BioScience, Nottingham, UK, conducted the
DNA extraction and methylation profiling on partici-
pant’s whole blood samples. The process of DNAm
profiling, processing, and quality control on RODAM
whole blood samples has been described previously.12,13

In short, the Zymo EZ DNAm™ kit (Zymo Research
Corp., Irvine, CA, USA) was used for bisulphite con-
version of DNA. Using the Infinium® Human-
Methylation450 BeadChip (Illumina, San Diego, CA,
USA), the converted DNA was amplified and hybridised,
thereby quantifying DNAm levels of approximately
485,000 CpG sites. Methylation levels were measured
based on the intensities of the methylated and unme-
thylated probes for each CpG site on the array. These
intensities were expressed as methylation Beta-value,
which is a value between zero (unmethylated) and one
(methylated). A log2 ratio of the intensities of methylated
versus unmethylated probes was calculated, which is
referred to as M-values. Quality control was performed
3
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using the MethylAid package (version 1.28.0) in R sta-
tistical software (version 4.1.2). The minfi package
(version 1.40.0) was used for functional normalisation of
the raw 450K data. A total set of 429,459 CpG sites
remained after removal of probes annotated to the X and
Y chromosomes, known to involve cross-hybridisation or
to involve common SNPs with a minor allele frequency
of≥5%.14 Blood cell mixture estimation was based on the
method described by Houseman et al.15

Statistical analyses
Association between lipids and DNA methylation
To identify differentially methylated positions (DMPs),
the association between lipid concentration (indepen-
dent variable) and DNAmM-values (dependent variable),
were examined using multivariate linear regression
analysis using the lmFit function of the Limma package
(version 3.50.1). M-values were used for DMP analyses
because of the non-normal distribution of Beta-values.
Beta-values were reported for visualisation and to help
interpretation of the results.16 Because of correlation with
DNAm, sex, age, geographical location, estimated cell
count (CD8+, CD4+, natural killer cells, B cells, mono-
cytes, and granulocytes), hybridisation batch and array
position were included as covariates in themodels, based
on principal components analysis (Supplementary
Fig. S2). Additionally, BMI and diabetes were included
in the model, because of an overrepresentation of par-
ticipants with diabetes and high BMI in the sample. QQ-
plots were used to assess model fit (Supplementary
Fig. S3). The DMP analysis was run stratified by
geographical location, because of the previously observed
large difference in plasma lipid profile between the sites
(rural and urban Ghana, London, Amsterdam, and Ber-
lin), and to reduce the impact of unobserved confound-
ing factors that differ between the geographical locations.
The results for the EWAS per site were then meta-
analysed using METAL statistical software (version
2011-03-25). A fixed-effect model, based on effect size
and accompanying standard errors was applied. Direc-
tion of effect per site was summarised as ‘+’ for positive
effect size, or ‘–‘ for negative effect size. Heterogeneity
between the sites was considered significant if the p-
value for Chi-squared test for heterogeneity was <0.05.
To correct for multiple testing, false discovery rate (FDR)
adjusted p-values were calculated using the Benjamini-
Hochberg method. FDR-adjusted p-values of <0.05
were considered epigenome-wide significant.

To examine the association between DNA methyl-
ation and lipid concentration, as well as the explained
variance, the raw Beta-values of the top DMPs for each
lipid trait were extracted and used as independent vari-
able in models with untransformed lipid concentration
as the dependent variable. Methylation Beta-values were
used for this analysis to facilitate interpretation as the
increase in plasma lipid concentration in mmol/L per
percent increase in methylation Beta-value. The models
included the same covariates as the DMP analysis. The
multiple R squared statistic of the regression models
with and without covariates was used to calculate the
variance explained by the DMP. As this analysis was run
in the total study population, the analysis was addi-
tionally adjusted for geographical location.

Replication and transferability
To determine whether the top DMPs with the lowest
FDR-adjusted p-values in our study replicated in inde-
pendent cohorts from different ethnic backgrounds, we
performed a look-up using summary statistics from
EWAS analyses among Batswana in South Africa,10 Af-
rican Americans in the USA, and European ancestry
populations in the USA and Europe.9 The criteria for
replication were a nominal p-value of <0.05 in the
replication cohort and a consistent direction of effect.
Supplementary Table S1 provides detailed information
on the population and design of the replication studies.

We also evaluated whether findings from populations
of different ethnic backgrounds, i.e. South African Bat-
swana, African Americans, and Europeans, were trans-
ferable to our Ghanaian study population. Cohort-specific
thresholds for epigenome-wide significance were used to
determine which CpG sites to extract. For the African
Americans and European ancestry populations, these
were CpG sites with a Bonferroni adjusted p-value <1*10̂–
9 in themeta-analysis by Jhun et al.9 For the South African
Batswana population, this was a nominal p-value of
<1*10̂–5 in the study by Cronjé et al.10 The association
between lipid concentration and these candidate CpGs
was assessed in the Ghanaian study population using
linear regression models following the same strategy and
covariates as in the DMP analysis. Bonferroni adjusted
p-values were calculated for each trait and per ethnic
group. Results were considered statistically significant if
the p-value was <0.05/nCpGs.

Sensitivity analysis
Location of residence
As previous RODAM results have shown distinct dif-
ferences in lipid profiles between Ghanaians in Europe
(migrants) and their non-migrating counterparts in
Ghana (rural and urban),17 a sensitivity analysis was
performed to evaluate the effect of the location of resi-
dence on our findings. The median DNAm Beta-values
for each of the top 5 CpGs as identified in the DMP
analysis were compared between the geographical loca-
tions, using the Kruskal–Wallis test because of the non-
normal distribution of Beta-values.

Excluding participants with diabetes mellitus
To examine the impact of diabetes status on our find-
ings, we re-fitted the DMP regression model in a sub-
sample of participants without diabetes (n = 432
participants). The summary statistics of the top CpGs
from the EWAS in the total population were then
www.thelancet.com Vol 89 March, 2023
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compared to the summary statistics in the subsample of
participants without diabetes.

Biological relevance
The function gaphunter within the minfi package was
used to examine whether the top DMPs were potentially
under the influence of a genetic variation. The function
was run with a threshold of 0.05, reflecting a gap of 5%
in Beta-value, suggestive of genetic influence. Identified
CpGs with gaps were next searched in the GoDMC
database,18 to see whether they have previously been
correlated to genetic variation. To assess whether genes
annotated to our top DMPs have previously been linked
to lipid traits, GeneCards,19 the GWAS catalog,20 and the
EWAS atlas21 were examined.

To evaluate the levels of gene expression of the top
DMPs per lipid trait as identified in our EWAS, the
iMETHYL database was consulted.22 This database in-
cludes whole-DNA-methylation, whole-genome, and
whole-transcriptome data for CD4+ T-lymphocytes, mo-
nocytes, and neutrophils collected from about 100 sub-
jects. Gene expression is expressed in log-transformed
fragments per kilobase of transcripts per million mapped
reads (FPKM). A negative value of FPKM suggests low
Total Rural Ghana

n (% of total) 663 101 (15.2)

Sex, male (%) 281 (42.4) 32 (31.7)

Age (mean (SD)) 50.67 (9.96) 56.21 (8.86)

BMI (mean (SD)) 26.73 (5.49) 22.81 (4.35)

Diabetes mellitus (%) 231 (34.8) 40 (39.6)

Alcohol intake (units/day)
(median [IQR])

0.00 [0.00, 0.07] 0.00 [0.00, 0.07]

Smoking (%)

No, but I used to smoke 61 (9.5) 11 (11.3)

No, I have never smoked 569 (88.4) 86 (88.7)

Yes 14 (2.2) 0 (0.0)

Length of Stay in Europe (years)
(mean (SD))

18.55 (9.70) NA

Blood cell distribution (%)
(mean (SD))

CD8+ T lymphocytes 0.11 (0.05) 0.12 (0.05)

CD4+T 0.18 (0.06) 0.18 (0.06)

NK cells 0.11 (0.06) 0.13 (0.06)

B cells 0.11 (0.03) 0.11 (0.04)

Monocytes 0.08 (0.02) 0.08 (0.02)

Granulocytes 0.45 (0.09) 0.42 (0.10)

Lipid profile (mmol/L)
(median [IQR])

TC 5.18 [4.43, 5.93] 4.57 [3.91, 5.56]

LDL-C 3.30 [2.69, 3.94] 2.79 [2.35, 3.65]

HDL-C 1.29 [1.10, 1.51] 1.18 [1.01, 1.36]

Triglycerides 0.97 [0.72, 1.38] 1.09 [0.81, 1.47]

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; T
the geographical locations, using one-way ANOVA to compare normally distributed co
categorical variables.

Table 1: Population characteristics.

www.thelancet.com Vol 89 March, 2023
gene expression, whereas a positive value suggests high
expression. Additionally, a search in the EWAS toolkit23

was performed, to assess DNA methylation level in sub-
cutaneous and visceral adipose tissue, and in liver tissue
for our top DMPs. Pathway enrichment analysis was
performed using canonical pathway analysis QIAGEN
Ingenuity Pathway Analysis application,24 including CpGs
that were associated with lipid concentration at a signifi-
cance level of nominal p-value <1*10̂–4. Pathways with a
nominal p-value <0.01, as calculated by the right-tailed
Fisher’s Exact Test, were considered to be significantly
associated.

Role of funders
The study funders had no role in the study design, data
collection, data analysis, data interpretation or writing of
the report. The corresponding author had full access to
all the data and the final responsibility to submit for
publication.

Results
Characteristics of the study population
Population characteristics are described in Table 1. Of
the 663 Ghanaian participants, most participants lived
Urban Ghana Amsterdam Berlin London p-valuea

239 (36.0) 139 (21.0) 75 (11.3) 109 (16.4)

71 (29.7) 83 (59.7) 52 (69.3) 43 (39.4) <0.001

50.57 (9.77) 48.81 (8.00) 46.68 (10.78) 50.84 (10.94) <0.001

26.17 (5.69) 28.21 (4.73) 27.30 (4.34) 29.34 (5.41) <0.001

85 (35.6) 45 (32.4) 28 (37.3) 33 (30.3) 0.619

0.00 [0.00, 0.03] 0.00 [0.00, 0.13] 0.13 [0.00, 0.71] 0.00 [0.00, 0.00] <0.001

<0.001

22 (9.4) 12 (8.9) 11 (14.9) 5 (4.8)

211 (90.2) 120 (88.9) 55 (74.3) 97 (93.3)

1 (0.4) 3 (2.2) 8 (10.8) 2 (1.9)

NA 19.00 (7.55) 19.05 (10.38) 17.53 (11.62) 0.464

0.12 (0.04) 0.10 (0.05) 0.10 (0.05) 0.10 (0.04) <0.001

0.18 (0.06) 0.19 (0.05) 0.18 (0.06) 0.18 (0.06) 0.822

0.11 (0.06) 0.09 (0.05) 0.11 (0.05) 0.10 (0.05) <0.001

0.11 (0.03) 0.10 (0.03) 0.10 (0.03) 0.10 (0.03) 0.003

0.08 (0.03) 0.08 (0.02) 0.08 (0.03) 0.08 (0.02) 0.082

0.44 (0.09) 0.48 (0.09) 0.47 (0.09) 0.47 (0.09) <0.001

5.43 [4.58, 6.22] 5.10 [4.39, 5.79] 4.99 [4.54, 6.02] 4.98 [4.53, 5.70] <0.001

3.56 [2.91, 4.16] 3.24 [2.66, 3.92] 3.13 [2.60, 3.83] 3.18 [2.82, 3.90] <0.001

1.27 [1.08, 1.50] 1.33 [1.10, 1.60] 1.42 [1.22, 1.66] 1.35 [1.15, 1.55] <0.001

1.10 [0.83, 1.54] 0.84 [0.62, 1.16] 0.92 [0.68, 1.35] 0.87 [0.61, 1.12] <0.001

C, total cholesterol; SD, standard deviation; IQR, interquartile range. ap-values represent the comparison between
ntinuous variables, Kruskal–Wallis test for non-normally distributed continuous variables, and Chi-square test for

5

www.thelancet.com/digital-health


TC Regress

cg19693031 −0.0957

cg03753191 0.0997

cg26816907 0.0718

cg11066601 −0.2233

cg03167407 0.1782

LDL-C Regress

cg03753191 0.0976

cg26816907 0.0679

cg13781819 −0.053

cg20294940 −0.049

cg23970275 –0.0674

HDL-C Regress

cg05091570 −0.0746

cg07622193 −0.0624

cg00091964 −0.0888

cg13767294 −0.072

cg08926253 0.0481

Triglycerides Regress

cg19693031 −0.2637

cg17058475 −0.225

cg06500161 0.1001

cg05697101 −0.3446

cg11066601 −0.4686

HDL-C, high-density lipoprot
adjusted for covariates age,
Ghana-Urban Ghana; negativ
value*100.

Table 2: Top differentially
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in urban Ghana, followed by Amsterdam, London, rural
Ghana, and Berlin. More than half of the participants
were female and the mean age was 50.7 years. BMI was
lowest in participants in rural Ghana and highest in
Ghanaians living in London. About one-third of the
participants had diabetes mellitus. Regardless of the
location of residence, only a small proportion of
the participants smoked or drank alcohol. Levels of TC
and LDL-C were highest in participants residing in ur-
ban Ghana and Europe. In contrast, HDL-C levels were
lower, and triglyceride levels were higher in those living
in rural Ghana than in the other geographical locations.
Population characteristics stratified by sex can be found
in Supplementary Table S2.

Association between lipids and DNA methylation
Total cholesterol
None of the CpGs associated with TC concentra-
tion was epigenome-wide significant at 5% FDR
(Supplementary Fig. S4a). The five CpGs with the
smallest nominal p-values (all p-value ≤6*10̂–6), were
annotated to the TXNIP, the EPSTI1, the LHX9 genes,
and to two intergenic CpGs cg11066601 and cg03
167407 (Table 2). The associations had generally the
ion Coeffa Direction of effectb p-value FDR adj.pval chr Pos

−−−−− 8.43E–07 0.3622 chr1 1454

+++++ 3.54E–06 0.6184 chr13 4356

+++++ 5.49E–06 0.6184 chr1 1978

−+−−− 6.53E–06 0.6184 chr1 1853

+++++ 9.30E–06 0.6184 chr2 2412

ion Coeff Direction of effect p-value FDR adj.pval chr pos

+++++ 4.14E–06 0.9999 chr13 4356

+++++ 1.36E–05 0.9999 chr1 1978

−−−−− 3.40E–05 0.9999 chr1 474

−−−−− 5.30E–05 0.9999 chr14 1058

−−−−− 5.75E–05 0.9999 chr2 208

ion Coeff. Direction of effect p-value FDR adj.pval chr pos

−−−−− 9.09E–07 0.314 chr1 2017

−−−−− 1.68E–06 0.314 chr19 4270

−−−−− 2.19E–06 0.314 chr2 805

−−−−− 5.23E–06 0.517 chr17 418

+++++ 6.03E–06 0.517 chr11 614

ion Coeff. Direction of effect p-value FDR adj.pval chr pos

−−−−− 1.67E–09 0.001 chr1 1454

−−−−− 2.09E–06 0.448 chr11 686

+++++ 1.17E–05 0.9999 chr21 436

−−−−− 2.81E–05 0.9999 chr2 388

−−−−− 3.34E–05 0.9999 chr1 1853

ein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; SD, standa
sex, BMI, diabetes mellitus, estimated cell count, batch and array position. bDirection of eff
e sign means negative direction of effect, positive sign means positive direction of effect. cA

methylated positions associated with lipids.
same direction of effect in all five geographical loca-
tions. An increase in DNAm level of TXNIP, was
associated with a 4.01 mmol/L decrease in TC level.
DNAm levels of cg03167407, the LHX9, and the
EPSTI1 DMPs were associated with an increase in TC
level ranging from 1.32 to 8.33 mmol/L 9.5% of the
variance in TC concentration was attributable to the top
CpGs (Table 3).

Low-density lipoprotein cholesterol
None of the CpGs associated with LDL-C concen-
tration was epigenome-wide significant at 5% FDR
(Supplementary Fig. S4b). The five CpGs with the
smallest nominal p-values (all p-value <6*10̂–5) were
annotated to the EPSTI1, the LHX9, and to the KLF7
genes, and the intergenic CpGs cg13781819 and cg20
294940 (Table 2). The association had the same di-
rection of effect in all five geographical locations.

A one percent (1%) increase in DNAm level was
associated with around 6.96 mmol/L increase in LDL-C
levels for EPSTI1 and LHX9. For the other three CpGs,
an increase in DNAm was associated with a
3.97–12.12 mmol/L decrease in LDL-C level. The top 5
CpGs contributed 8.3% to the variance in LDL-C (Table 3).
Gene symbolc Gene group Methylation level, % (sd)d

41552 TXNIP 3′UTR 78.53 (6.36)

6902 EPSTI1 TSS1500 8.65 (3.11)

90812 LHX9 Body 29.67 (6.25)

73486 Intergenic 78.69 (11.31)

61657 Intergenic 77.63 (12.99)

Gene symbol Gene group Methylation level, % (sd)

6902 EPSTI1 TSS1500 8.65 (3.11)

90812 LHX9 Body 29.67 (6.25)

69065 Intergenic 88.94 (2.14)

66596 Intergenic 92.38 (1.61)

008052 KLF7 Body 16.88 (6.27)

Gene symbol Gene group Methylation level, % (sd)

09336 NAV1 Body 2.83 (0.82)

1920 Intergenic 11.83 (3.33)

30891 CTNNA2 Body 3.91 (1.46)

56619 DUSP3 TSS1500 4.47 (1.13)

761 IRF7 Body 56.44 (4.35)

Gene symbol Gene group Methylation level, % (sd)

41552 TXNIP 3′UTR 78.53 (6.36)

07737 CPT1A 5′UTR 13.91 (5.10)

56587 ABCG1 Body 61.22 (3.95)

29104 HNRPLL Body 8.24 (3.75)

73486 Intergenic 78.69 (11.31)

rd deviation; UTR, untranslated region; TSS, transcription start site. aFor M-values,
ect in each of the five sites, represented in order Amsterdam-Berlin-London-Rural
nnotated using UCSC catalogue. dMethylation level calculated as: methylation Beta-
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TC Regress. Coeff. (95% CI) p-value Gene symbol Trait variance (%)

cg19693031 −4.01 (−5.54;–2.48) 7.43E–07 TXNIP 3.5

cg03753191 8.34 (4.75; 11.93) 1.08E–06 EPSTI1 2.7

cg03167407 1.32 (0.68; 1.96) 5.83E–05 Intergenic 2.2

cg11066601 −1.30 (−2.04;–0.57) 1.84E–04 Intergenic 1.6

cg26816907 2.93 (1.23; 4.63) 3.42E–04 LHX9 1.5

LDL-C Regress. Coeff. p-value Gene symbol Trait variance (%)

cg03753191 6.96 (3.9; 10.03) 1.36E–06 EPSTI1 2.6

cg20294940 −12.12 (−17.83;–6.40) 2.88E–05 Intergenic 2.3

cg26816907 2.70 (1.25; 4.15) 1.23E–04 LHX9 1.8

cg23970275 −3.97 (−5.95;–1.99) 1.36E–04 LKLF7 2.0

cg13781819 −6.78 (−10.29;–3.27) 4.92E–04 Intergenic 1.9

HDL -C Regress. Coeff. p-value Gene symbol Trait variance (%)

cg08926253 1.42 (0.75; 2.1) 3.73E–05 IRF7 2.2

cg07622193 −2.53 (−3.83;–1.24) 8.07E–05 Intergenic 0.9

cg05091570 −8.32 (−12.02;–4.61) 2.26E–04 NAV1 2.5

cg00091964 −3.75 (−5.87;–1.63) 2.99E–04 CTNNA2 1.6

cg13767294 −3.78 (−6.53;–1.03) 9.14E–03 DUSP3 1.0

Triglycerides Regress. Coeff. p-value Gene symbol Trait variance (%)

cg19693031 −3.06 (−3.91;–2.22) 1.04E–11 TXNIP 6.2

cg06500161 3.20 (1.92; 4.48) 1.38E–06 ABCG1 3.1

cg17058475 −2.90 (−4.17;–1.62) 1.45E–06 CPT1A 2.5

cg11066601 −0.62 (−1.04;–0.21) 1.21E–03 Intergenic 1.1

cg05697101 −2.04 (−3.63;–0.44) 2.35E–03 HNRPLL 0.8

Model = [lipid] (untransformed) ∼ Beta-value + sex + age + blood cell estimate + technical variables + BMI + diabetes + site. TC, total cholesterol; LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

Table 3: Association between DNA methylation of top differentially methylated positions (independent variable) and lipid concentration (dependent
variable).

Articles
High-density lipoprotein cholesterol
None of the CpGs was significantly associated with
HDL-C concentration at <5% FDR (Supplementary
Fig. S4c). The five CpGs with the smallest nominal p-
values (all p-value ≤6*10̂–6), were annotated to the
NAV1, the CTNNA2, the CFAP97, and the IRF7 genes,
and the intergenic CpG cg07622193 (Table 2). The as-
sociations had the same direction of effect in all five
geographical locations.

An increase in methylation level of the top DMPs
was generally associated with a decrease in HDL-C level
(Table 3), with a 1% increase in DNAm being associated
with a decrease in HDL-C levels up to 8.3 mmol/L. In
contrast, cg08926253 showed a positive association be-
tween DNAm and HDL-C (regression coefficient beta
1.42). Overall, 6.1% of the variance in HDL-C concen-
tration was attributable to the five CpGs with the
smallest nominal p-value.

Triglycerides
DNAm levels of cg19693031, were significantly associ-
ated with triglyceride concentrations at an epigenome-
wide level (Supplementary Fig. S4d). This CpG is
located in the 3’ UTR of the TXNIP gene. The other four
CpGs with the smallest p-values were not epigenome-
www.thelancet.com Vol 89 March, 2023
wide significantly associated, but all had a nominal
p-value of <4*10̂–5. These CpGs were annotated the
CPT1A, the ABCG1, and the HNRPLL genes, and
intergenic CpG cg11066601 (Table 2). The associations
had the same direction of effect across all five
geographical locations. 1% higher DNAm levels of the
ABCG1 DMP was associated with a 3.20 mmol/L in-
crease in triglyceride levels. The DNAm levels of the
other CpGs were associated with lower levels of tri-
glycerides, ranging from −0.62 mmol/L for cg11066601,
to −3.06 mmol/L for the TXNIP DMP. The combined
effect of the top five CpGs explained 11.0% of the vari-
ance in triglyceride concentration (Table 3).

Replication and transferability
For TC, DMPs were only reported in the study by Cronjé
et al. and showed a significant association of DNAm of
the TXNIP gene in South African Batswana (Table 4).
LDL-C was significantly associated with DNAm of
EPSTI1 in African American and European populations,
as was cg13781819 in African Americans. For HDL-C,
none of the five top DMPs could be replicated in the
independent cohorts including participants from South
Africa Batswana, African Americans or Europeans
(Table 4). For triglycerides, TXNIP was replicated in all
7
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TC CpG chr Pos Gene South African African American European

Regress.Coeff. p-value Regress.Coeff. p-value Regress.Coeff. p-value

cg19693031 chr1 1.45E+08 TXNIP −3.49E–04 0.013 NA NA NA NA

cg03753191 chr13 43566902 EPSTI1 −1.45E–04 0.253 NA NA NA NA

cg26816907 chr1 1.98E+08 LHX9 −2.90E–04 0.116 NA NA NA NA

cg03167407 chr2 2.41E+08 Intergenic 1.37E–04 0.697 NA NA NA NA

cg11066601 chr1 1.85E+08 Intergenic NA NA NA NA NA NA

LDL-C CpG chr pos Gene Regress.Coeff. p-value Regress.Coeff. p-value Regress.Coeff. p-value

cg03753191 chr13 43566902 EPSTI1 −1.57E–04 0.304 5.70E–05 0.003 1.80E–05 0.025

cg26816907 chr1 1.98E+08 LHX9 −2.32E–04 0.300 1.87E–05 0.355 1.31E–05 0.332

cg13781819 chr1 47469065 Intergenic −5.65E–05 0.427 −2.30E–05 0.034 −1.48E–05 0.119

cg20294940 chr14 1.06E+08 Intergenic 9.48E–06 0.894 −3.39E–06 0.435 −4.47E–06 0.279

cg23970275 chr2 2.08E+08 KLF7 1.00E–04 0.396 −2.59E–05 0.087 −2.13E–05 0.074

HDL-C CpG chr pos Gene Regress.Coeff. p-value Regress.Coeff. p-value Regress.Coeff. p-value

cg05091570 chr1 2.02E+08 NAV1 −4.35E–05 0.549 7.92E–04 0.3 −7.90E–05 0.803

cg07622193 chr19 42701920 Intergenic −1.38E–04 0.515 −0.002 0.2 −0.001 0.059

cg00091964 chr2 80530891 CTNNA2 −9.74E–05 0.536 −2.91E–04 0.7 7.53E–04 0.086

cg13767294 chr17 41856619 DUSP3 7.68E–05 0.125 0.001 0.1 9.98E–04 0.008

cg08926253 chr11 614761 IRF7 −6.00E–05 0.908 0.003 0.2 3.93E–04 0.819

Triglycerides CpG chr pos Gene Regress.Coeff. p-value Regress.Coeff. p-value Regress.Coeff. p-value

cg19693031 chr1 1.45E+08 TXNIP −0.048 3.94E–05 −0.03 3.19E–24 −0.02 1.38E–18

cg17058475 chr11 68607737 CPT1A −1.70E–04 0.979 −0.01 7.19E–06 −0.01 1.49E–13

cg06500161 chr21 43656587 ABCG1 0.013 0.305 0.02 1.55E–13 0.02 1.01E–24

cg05697101 chr2 38829104 HNRPLL 0.002 0.539 −7.96E–04 0.348 4.24E–04 0.195

cg11066601 chr1 1.85E+08 Intergenic NA NA 7.37E–04 0.863 −0.002 0.436

In bold, DMPs replicated in independent cohort at a nominal p-value <0.05. TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein
cholesterol.

Table 4: Replication of the top differentially methylated positions per lipid trait in South African, African American and European descent populations.
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three ethnic groups. Additionally, CPT1A and ABCG1
were replicated in African American and European
descent populations.

The transferability of lipid DMPs identified in pre-
vious EWAS to our study population of Ghanaians was
generally low (Supplementary Table S3). Overall, trans-
ferability was higher for HDL-C than for LDL-C and
triglycerides. Transferability from African Americans to
Ghanaians was 14% (1/7 CpGs) for HDL-C, 60% (3/5)
for LDL-C, and 9% (4/43 CpGs) for triglycerides.
Transferability was even lower from Europeans to our
Ghanaian sample with 1% (1/69 CpGs) for HDL-C, 0%
(0/15) for LDL-C, and 5% (4/86 CpGs) for triglycerides.
CpGs reported in South African Batswana did not
transfer to our study population.

Sensitivity analysis
Location of residence
For most DMPs, we observed a significant trend in
mean methylation level from rural Ghana to urban
Ghana to Europe. Across all lipid traits, most of the
DMPs were highest methylated in rural Ghana, followed
by urban Ghana and Europe, whereas a few showed an
opposite trend (Fig. 1a-d). The largest difference was
seen for the TXNIP and KLF7 genes, with around 5%
lower methylation levels in Europe than in rural Ghana
(Fig. 1a and b).

Excluding participants with diabetes mellitus
Effect sizes for the top DMPs per lipid trait remained
generally the same after excluding participants with
diabetes mellitus (Supplementary Table S4).

Biological relevance
Gaphunter identified one DMP with a gap in Beta-value
distribution of the intergenic CpG cg03167407 associ-
ated with TC concentration. This DMP did not show any
association with SNPs in the GoDMC database. The
mean methylation levels of the top DMPs for lipid traits
from the RODAM study were in line with the methyl-
ation levels as reported in the iMETHYL database
(Supplementary Table S5). Generally, for those loci that
expression data were available for in iMETHYL, low
methylation levels of CpGs annotated to the gene body
were associated with low gene expression, whereas high
methylation in the gene body was associated with high
gene expression. The DNA methylation levels in blood,
however, did differ from levels reported in subcutane-
ous and visceral adipose tissue, and in liver tissue as
reported in the EWAS toolkit. The pathway enrichment
www.thelancet.com Vol 89 March, 2023
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Fig. 1:Methylation levels for top differentially methylated positions stratified associated lipids, stratified by location of residence, for TC
(a), LDL-C (b), HDL-C (c), and triglycerides (d). Median methylation level with interquartile range (IQR) in percentage, calculated by Beta-
value*100.
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analysis for TC showed enrichment for glutamine
biosynthesis, Rho GDP dissociation inhibitor, and actin
cytoskeleton signalling pathways. For LDL-C, pathways
involved in calcium pathway signalling, and nitric oxide
synthase signalling were enriched. Pathway enrichment
analysis of HDL-C showed enrichment for the nicotin-
amide adenine dinucleotide (NAD) biosynthesis pa-
thway. For triglycerides, pathways involved in the
lipopolysaccharide/interleukine-1 (LPD/IL-1) inhibition
of the retinoid X receptor (RXR), RXR activation, mito-
chondrial L-carnitine shuttle, and pyroptosis signalling
were enriched.

Discussion
In this EWAS on lipid components in West African
populations, we identified one epigenome-wide signifi-
cant DMP associated with triglycerides (cg19693031
annotated to the TXNIP gene). We found that DNAm
levels of DMPs annotated to theTXNIP, NAV1, CPT1A,
and ABCG1 genes did contribute substantially to the
variance in plasma TC, LDL-C, HDL-C, triglyceride
concentrations. We were able to replicate our findings in
independent cohorts of South African Batswana, African
American, and European descent. Additionally, candi-
date DMPs identified in African American and Euro-
pean populations were transferable to Ghanaians in our
study, but not from South African Batswana to Gha-
naians. Mean DNAm levels for the top DMPs were
generally lower in Ghanaians residing in Europe than in
urban or rural Ghana.

Our findings suggest that TXNIP methylation is
associated with plasma lipids across populations,9,10

including West Africans who have a generally more
favourable lipid profile than other populations. DMP
cg19693031, located in the 3′UTR of the TXNIP gene,
was epigenome-wide significantly associated with fasting
triglyceride concentration in Ghanaians, and explained
6.2% of the variation in triglyceride levels. In African
American and European ancestry populations, this DMP
has previously been linked to triglyceride and lipid
metabolism,25,26 as well as to other cardiometabolic traits
such as weight,27 blood glucose,13 blood pressure,28 and to
BMI in a previous RODAM EWAS study.12 The TXNIP
gene encodes for the thioredoxin interacting protein,
which is primarily involved in inflammatory, metabolic
and apoptotic processes,29 and plays an important role in
the development of diabetes, by influencing insulin
production and beta-cell apoptosis.30 The role of TXNIP
in lipid metabolism was clearly demonstrated in mouse
models, in which TXNIP deficient mice have increased
levels of plasma lipids and triglycerides.31 Additionally,
TXNIP inhibition is a potential target in the treatment of
metabolic disorders,29 whichmight be interesting in light
of epigenetic regulation of the TXNIP gene.

For the TC, LDL-C, and HDL-C, we did not find
epigenome-wide significant DMPs. However, we do
believe that the top DMPs are potentially relevant
associations, as they have previously been described in
the regulation of lipids, weight, and glucose meta-
bolism. For instance, for HDL-C, DNAm of cg00091964
annotated to the CTNNA2 gene has been reported to be
associated with TC and LDL-C26 and genetic variation in
the CTNNA2 gene has been associated with HDL-C,32

BMI33–36 and coronary heart disease37 in multi-ethnic
populations. In line with our findings DMP
cg17058475 (CPT1A) and cg06500161 (ABCG1) have
been linked to triglycerides and to lipid profile in gen-
eral, BMI, and blood pressure.25,26,28 For LDL-C, the KLF7
gene has been linked to BMI,33,38,39 inflammation,40 and
subcutaneous adipose tissue41 in European origin pop-
ulations. Additionally, the pathway enrichment analysis
showed that our top DMPs were involved in pathways of
energy and lipid metabolism, transport and biosynthesis
of lipids and cholesterol, and nitric oxide synthase
signalling.42–48 Furthermore, the direction of effect and
the strength of the associations were similar across all
five geographical locations. This shows that despite
different contextual factors, similar DMPs are at play in
lipid metabolism. Moreover, lipids (independent vari-
able) were not only associated with DNAm (dependent
variable), but the methylation levels of the top DMPs
(independent variable) were also significantly associated
with lipid concentrations (dependent variable). There-
fore, to confirm our findings, future research should
aim for a larger sample size allowing more statistical
power to detect epigenome-wide significant effects.

We were able to replicate findings from Ghanaians in
independent cohorts including South African Batswana,
African American, and European descent populations,
which supports that these DMPs (TXNIP, CPT1A,
ABCG1, EPSTI1) are potentially relevant in the patho-
genesis of dyslipidaemia and are universal across
different ancestral groups. In contrast, the transferability
of DMPs associated with lipid traits in South African
Batswana, African American, and European origin pop-
ulations to our Ghanaian study population was generally
low, but especially limited for the findings in the South
African populations. This implies the possible popula-
tion specificity of these results, which are either based on
genetic or environmental differences. Because of the
large genetic diversity in SSA, it can be assumed that
South African Batswana men are genetically different
from Ghanaian population in genes regulating lipids or
epigenetics,49 thereby making findings less generalisable
between different ethnic populations in SSA. In contrast,
admixed African Americans have up to 75% shared
ancestry with West Africans,50 and show a large per-
centage of European ancestry,51 thereby increasing the
transferability of findings from African American to
Ghanaians. Likewise, Ghanaian migrants residing in
Europe share a more similar environment with African
Americans and Europeans, whereas environmental fac-
tors differ between South African Batswana in South
Africa, and Ghanaian migrants in Europe and non-
www.thelancet.com Vol 89 March, 2023
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migrants in Ghana, thereby affecting the transferability
of findings between ethnicities.

Previous findings from the RODAM study showed
lower levels of HDL-C and higher levels of tri-
glycerides in participants residing in rural Ghana,
compared to those living in the other locations, and
these differences were independent of common risk
factors for dyslipidaemia.17 In this light, our finding of
differences in methylation levels of CpGs between
participants living in different geographical locations
is interesting. Although we were not able to establish
whether these differences in methylation levels are
biologically relevant, it does highlight the importance
of studying gene-environment interaction in different
settings as DNAm is highly dynamic and potentially
context-specific.

Dyslipidaemia is strongly related to obesity and dia-
betes.52 This interrelatedness is also demonstrated by the
observation that DMPs associated with triglycerides have
previously been reported in EWAS on diabetes and
obesity in the same Ghanaian study population.12,13 To
rule out the potential interacting effects of obesity and
diabetes, we adjusted our regression models for these
factors. Additionally, in sensitivity analysis, we excluded
participants with diabetes, which did not impact the ef-
fect size or direction of effect of the association. This
indicates that the reported DMPs are potentially involved
in lipid metabolism, independent of obesity and diabetes.

The findings of this EWAS study on lipids in a West
African population add to our knowledge of epigenetic
associations with lipids in diverse populations. Highly
standardised data collection across all five geographical
locations allowed us to compare DNAm profiles in
migrant and non-migrant Ghanaians, thereby assessing
the impact of migration on DNAm. Additionally, we
were able to perform the EWAS separately per
geographical location before meta-analysing the find-
ings, thereby minimising the confounding effect of
unknown contextual factors on our results. Even though
this study included the largest sample size of a West
African population to date, our statistical power to detect
epigenome-wide significant DMPs is assumed to be
limited. Future studies should aim for a larger sample
size, and more EWAS in different SSA populations can
contribute to replication and pooling of the results.
Because genotyping data were not available, we were not
able to adjust our analysis for ancestry principal com-
ponents. However, as 90% of our study population was
of a single ethnolinguistic group (Akan) who have been
shown to be genetically homogenous,53 it is unlikely that
our findings have been significantly affected by popu-
lation stratification. We assessed DNAm extracted from
whole blood samples. Even though lipids are a blood-
based trait, methylation patterns can differ in target
tissue where metabolism occurs, e.g. in adipocytes or
hepatocytes, as our results from the EWAS Toolkit an-
alyses showed. We conducted a cross–sectional
www.thelancet.com Vol 89 March, 2023
association study, and conclusions related to the causal
relation between DNAm and plasma lipid concentration
should therefore be drawn with caution. For instance,
Mendelian randomisation studies have shown lipid
levels to be influenced by DNAm,54 but also that DNAm
can influenced lipid levels.9 A longitudinal study design
could help to establish temporality and direction of
effect.

In conclusion, we identified one epigenome-wide
significant DMP associated with triglycerides (TXNIP)
and several other lipid-associated DMPs (CPT1A,
ABCG1) in this cohort of Ghanaians, loci which are also
associated with lipids in populations of different
ancestry. Several other identified CpGs are potentially
relevant in lipid metabolism in Ghanaians but further
work needs to be done to investigate their association
with the observed favourable lipid profile of West Afri-
can populations. Future studies including larger sample
size, longitudinal study design, as well as translational
studies - including different tissues and gene expression
- can enlarge our pathophysiological understanding of
dyslipidaemia among West African populations, thereby
informing targeted strategies to curb the rising preva-
lence of dyslipidaemia in SSA populations.
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