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Abstract

Olaparib, niraparib, rucaparib, and talazoparib are poly (ADP-ribose) polymerase (PARP) inhibitors approved for the treat-
ment of ovarian, breast, pancreatic, and/or prostate cancer. Poly (ADP-ribose) polymerase inhibitors are potent inhibitors of
the PARP enzymes with comparable half-maximal inhibitory concentrations in the nanomolar range. Olaparib and rucaparib
are orally dosed twice a day, extensively metabolized by cytochrome P450 enzymes, and inhibitors of several enzymes and
drug transporters with a high risk for drug—drug interactions. Niraparib and talazoparib are orally dosed once a day with a
lower risk for niraparib and a minimal risk for talazoparib to cause drug—drug interactions. All four PARP inhibitors show
moderate-to-high interindividual variability in plasma exposure. Higher exposure is associated with an increase in toxicity,
mostly hematological toxicity. For talazoparib, exposure—efficacy relationships have been described, but for olaparib, nira-
parib, and rucaparib this relationship remains inconclusive. Further studies are required to investigate exposure—response
relationships to improve dosing of PARP inhibitors, in which therapeutic drug monitoring could play an important role. In
this review, we give an overview of the pharmacokinetic properties of the four PARP inhibitors, including considerations
for patients with renal dysfunction or hepatic impairment, the effect of food, and drug—drug interactions. Furthermore, we
focus on the pharmacodynamics and summarize the available exposure—efficacy and exposure—toxicity relationships.

Key Points 1 Introduction
A relatively new class of targeted anticancer agents are the
poly (ADP-ribose) polymerase (PARP) inhibitors. Poly
(ADP-ribose) polymerase inhibitors primarily inhibit the
catalytic activity of PARP-1 and PARP-2 enzymes, which

The approved poly (ADP-ribose) polymerase inhibitors
olaparib, niraparib, rucaparib, and talazoparib show moder-
ate-to-high interindividual variability in plasma exposure.

Olaparib and rucaparib haYe a high potential for drug- are involved in base excision repair of DNA single-strand
drug interactions, while this risk is lower for niraparib breaks. Poly (ADP-ribose) polymerase inhibition leads to
and minimal for talazoparib. accumulation of single-strand breaks, ultimately resulting

in double-strand breaks (DSBs) [1]. In addition to catalytic
inhibition, PARP inhibitors trap the PARP enzyme-DNA
complex on single-strand breaks resulting in DSBs [2]. Poly
(ADP-ribose) polymerase trapping is considered the major
mechanism of anti-tumor activity [3]. While PARP inhibi-
tion is not effective in healthy cells, as they alternatively

Exposure has been associated with toxicity for all poly
(ADP-ribose) polymerase inhibitors, mainly with hema-
tological toxicity.

Exposure—efficacy relationships have been described
for talazoparib, but remain inconclusive for olaparib,
niraparib, and rucaparib.
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can utilize the functional homologous recombination repair
mechanism for repair of DSBs, it is particularly effective
in cells harboring homologous recombination deficien-
cies (HRD), such as pathogenic breast cancer (BRCA)-1
or BRCA-2 mutations [2]. This concept is called synthetic
lethality: simultaneous loss of function of two or more key
molecules results in cell death, while a deficiency in only
one is not lethal (Fig. 1) [1].

The introduction of PARP inhibitors has accomplished
many breakthroughs in the treatment of ovarian, breast,
pancreatic, and prostate cancer. It improved progression-
free survival (PFS) and quality of life, but there are still
challenges to overcome. Drug resistance and adverse effects
are common and can limit long-term treatment. Poly (ADP-
ribose) polymerase inhibitors are orally administered, given
in a fixed dose, and are substrates for different metabolizing
enzymes and drug transporters [4—7]. Consequently, large
variability in pharmacokinetic exposure between patients is
not exceptional. Low exposure may lead to suboptimal effi-
cacy, while high exposure can cause toxicities. This gives the
opportunity for precision dosing, for example, by therapeu-
tic drug monitoring [8—11]. Indications of PARP inhibitors
are rapidly expanding from monotherapy in patients with
BRCA mutations, to patients with other HRD and no HRD,
to combination therapy with DNA-damaging agents, radia-
tion, targeted therapies, and immunotherapy [1, 12]. In this
review, we aim to summarize the available pharmacokinetic

Fig. 1 Mechanism of action of
poly (ADP) ribose polymerase
(PARP) inhibitors. Single-strand
breaks in DNA are repaired
through base excision repair
mediated by PARP enzymes.
Inhibition of PARP or trap-
ping of PARP on the DNA

by PARP inhibitors, result in
double-strand breaks in DNA.
In normal cells harboring the
homologous recombination
repair mechanism, double-
strand breaks are repaired and
the cell survives. In cells with
an homologous recombination
deficiency (HRD), includ-

ing breast cancer (BRCA) 1
and 2 mutations, this repair
mechanism is absent leading to
accumulation of double-strand
breaks and cell death
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and pharmacodynamic data for the approved PARP inhibi-
tors olaparib, niraparib, rucaparib, and talazoparib.

2 Methods

A comprehensive literature search was performed using
PubMed and EMBASE. The term ‘pharmacokinetics’ was
combined with the different PARP inhibitors and relevant
studies were selected. The snowballing method was used to
find additional relevant studies. The Committee for Medici-
nal Products for Human Use Assessment Reports from the
European Medicines Agency (EMA) and the US Food and
Drug Administration Clinical Pharmacology and Biophar-
maceutics review of niraparib, olaparib, rucaparib, and tala-
zoparib were consulted as well.

3 Pharmacokinetics and Pharmacodynamics
of PARP Inhibitors

Table 1 gives an overview of the EMA-approved PARP
inhibitors and indications. Information on the preclinical
pharmacology of PARP inhibitors is shown in Table 2. The
clinical pharmacokinetics at steady state is summarized in
Table 3. Tables 4 and 5 describes the impact of renal and
hepatic impairment, respectively, and other potential factors
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influencing the pharmacokinetics of PARP inhibitors are dis-
cussed as well. The results of food-effect studies are shown
in Table 6 and drug—drug interaction (DDI) studies are sum-
marized in Table 7. The data and the implications of the
data presented in the tables are further discussed for each
compound.

3.1 Olaparib

Olaparib was the first approved PARP inhibitor by the
EMA in 2014 (Table 1). In study 19, maintenance treatment
of olaparib capsules in patients with platinum-sensitive,
relapsed, high-grade epithelial ovarian cancer, in response
to platinum-based chemotherapy, improved median PFS in
the overall population compared with placebo (8.4 vs 4.8
months; hazard ratio [HR] 0.35 (95% confidence interval
[CI] 0.25-0.49), p < 0.0001) [13]. The greatest benefit was
found in germline (g) or somatic (s) BRCA1/2 mutated
patients [11.2 vs 4.3 months; HR 0.18 (95% CI 0.10-0.31),
p < 0.0001] with a lower benefit for patients with wild-type
BRCA (BRCA variants of unknown significance and no
known or reported BRCA mutation) [7.4. vs 5.5 months; HR
0.54 (95% CI 0.34-0.85), p < 0.0075] [14]. The approved
dose of 400 mg twice a day was the maximum tolerated dose
(MTD) [15]. The high administration burden of the 50-mg
capsules has led to the development of an alternative solid
dispersion tablet formulation (100 and 150 mg). Because
capsules and tablets are not bioequivalent, Study 24 was
performed resulting in an optimal tablet dose of 300 mg BID
[16]. The tablet formulation was approved in 2018 based on
the SOLO2 trial with prolonged PFS in patients using olapa-
rib compared with placebo [19.1 vs 5.5 months; HR 0.30
(95% C10.22-0.41), p < 0.0001] [17]. Approval was granted
regardless of BRCA status, as overall survival in study 19
was prolonged irrespective of BRCA status [HR 0.73 (95%
CI0.55-0.95), p = 0.02138] [18]. Indications expanded to
breast, pancreas, and prostate cancer. The tablet formulation
will mainly be discussed in this review, as capsules are being
phased out of the marked.

3.1.1 Preclinical Pharmacology

The in vitro interaction of olaparib with enzymes and trans-
porters is shown in Table 2. Olaparib inhibits the organic
cation transporter (OCT) 2, multidrug and toxin extrusion
protein (MATE) 1 and MATE2K involved in the tubular
secretion of creatinine. Inhibition by olaparib has been
associated with increased creatinine levels without affecting
renal function. Therefore, the creatinine-derived estimated
glomerular filtration rate can underestimate the renal func-
tion and an alternative marker such as cystatin C should be
used to assess renal function [19, 20]. Furthermore, olapa-
rib penetrates the brain in vivo, but is rapidly cleared from

the brain, probably owing to P-glycoprotein (P-gp) efflux
transporters [10].

Olaparib is mainly metabolized by cytochrome P450
(CYP) 3A4/5 with three major metabolites formed (M12,
M15, and M18). Their potency to inhibit growth of BRCA1
mutant cells and PARP-1 is 30-fold, 30-fold, and four-fold
lower, respectively, than olaparib itself [21]. In addition to
being a substrate to CYP3A, olaparib inhibits and induces
CYP3A. The net effect on CYP3A is weak inhibition, pos-
sibly increasing exposure to CYP3A substrates, which
could be important for drugs with a narrow therapeutic
window [22]. In vivo, olaparib exerts single-agent activity
in BRCA1-deficeint and BRCA2-deficient cells, but is less
effective in ovarian and/or breast cancer wild-type models
[10, 23].

3.1.2 Clinical Pharmacokinetics

Steady-state pharmacokinetic parameters of olaparib cap-
sules and tablets are summarized in Table 3. Formulations
of capsules and tablets are not bioequivalent [16]. The 300-
mg tablet formulation with improved bioavailability has a
13% higher mean relative exposure (area under the curve
[AUC]) at steady state than the 400-mg capsule formulation
[24]. Absolute bioavailability has not been investigated, but
is probably low, as olaparib is classified as a Biopharma-
ceutical Classification System (BCS) class IV compound
(low solubility, low permeability) [23]. Mean protein bind-
ing (albumin and alpha-1 acid glycoprotein) is high (89%),
which decreases to 82% at concentrations of >10,000 ng/
mL in vitro [5, 25]. Olaparib has an apparent volume of
distribution of 167 L (capsules) and 158 L (tablets) [23, 26].
Olaparib is metabolized by CYP enzymes with three major
metabolites (M12, M15, and M18) accounting for 9-14%
of plasma radioactivity [23]. Considering preclinical data
(Sect. 3.1.1), the clinical activity of these metabolites is neg-
ligible [21]. Olaparib is hepatically and renally cleared, with
44% (15% unchanged) of the radioactive dose recovered in
urine and 42% (6% unchanged) in feces [25, 27].

3.1.3 Pharmacokinetics in Special Populations

3.1.3.1 Patients with Renal Impairment The impact of
renal impairment on the pharmacokinetics of olaparib
is shown in Table 4. Area under the curve and maximum
concentration (C,,,,) are significantly increased in patients
with renal impairment. Although no increase in adverse
events were observed, higher exposure might eventually
result in increased toxicity, mainly hematological toxicities
[28]. Dose adjustments are required in patients with moder-
ate renal impairment and olaparib is not recommended in
patients with severe renal impairment [28—30]. Dose adjust-
ments during olaparib treatment should be considered care-
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fully, as the creatinine-derived estimated glomerular filtra-
tion rate can underestimate renal function with the risk of
underdosing [20].

3.1.3.2 Patients with Hepatic Impairment The impact
of hepatic impairment on olaparib exposure is shown in
Table 5. Olaparib exposure was not significantly altered
in patients with mild or moderate hepatic impairment and
therefore no dose adjustments are required [31]. Physi-
ologically based pharmacokinetic simulations estimated an
negligible increase in AUC for patients with severe hepatic
impairment [32]. Until a dedicated clinical study is per-
formed, olaparib is not recommended in patients with severe
hepatic impairment [31].

3.1.4 Other Factors Influencing the Pharmacokinetics
of Olaparib

Olaparib exposure was 50% higher in patients with advanced
solid tumors [15, 33] compared with patients having a non-
advanced disease state (patients with breast cancer sched-
uled for elective surgery). This can partly be explained by
the fed versus fasted state, in these studies, but also the dis-
ease state might influence the pharmacokinetics [34]. The
impact of body weight, age, sex, race, serum creatinine,
creatinine clearance, line of treatment, Eastern Cooperative
Oncology Group performance status, and tumor type on the
pharmacokinetics of olaparib was evaluated in two popu-
lation pharmacokinetic models. Only Eastern Cooperative
Oncology Group performance status had a significant effect
on olaparib clearance without a clear biological explanation
[24, 35]

3.1.5 Food Effect

The results of the two food-effect studies are described in
Table 6. A small significant increase in olaparib exposure
was observed when olaparib tablets were administered with
a high-fat meal. The inter-patient variability was not affected
and no important differences between adverse events were
observed under fed/fasted conditions. The current advice is
that olaparib can be administered with or without food [36].

3.1.6 Drug-Drug Interactions

Table 7 gives an overview of the performed DDI studies.
Olaparib is metabolized by CYP3A4, and exposure is signif-
icantly changed when combined with strong CYP3A4 inhib-
itors or inducers [37]. It is advised to reduce the olaparib
tablet dose to 100 and 150 mg BID when co-administered
with strong and moderate CYP3A4 inhibitors, respectively,
if avoidance is not possible. Moderate and strong CP3A4
inducers should be avoided. Furthermore, clinically relevant

interactions between olaparib and CYP3A4 substrates with
a narrow therapeutic index (e.g., cyclosporine, tacrolimus)
occur [32]. However, this was not observed for the CYP3A4
substrates anastrazole and letrozole [38]. Inhibition is proba-
bly weak, as olaparib is an inhibitor and inducer of CYP3A4
with a net effect of weak inhibition (Sect. 3.1.1) [22]. Addi-
tionally, interactions with olaparib as a perpetrator could
occur with substrates to OCT1, OCT2, OATP1B1, OAT3,
MATE]L, and MATE2K (Table 2) [39].

3.1.7 Clinical Pharmacodynamics

3.1.7.1 Exposure Efficacy Inhibition of PARP in periph-
eral blood mononuclear cells is highly variable [34]. Maxi-
mum PARP inhibition (> 90% from baseline) is reached at
doses of > 60 mg BID (capsules) and tumor responses are
observed at doses > 100 mg BID [15, 40].

Dose—efficacy relationships were demonstrated; the
objective response rate (ORR) was 41% versus 22% with
a median PFS of 5.7 months versus 3.8 months in patients
with BRCA-mutated breast cancer receiving 400 mg BID
and 100 mg BID, respectively [41]. A similar result was
observed in patients with BRCA-mutated ovarian can-
cer (ORR: 33% vs 13%, median PFS: 5.8 months vs 1.9
months, for 400 mg BID and 100 mg BID, respectively)
[42].

Exposure—efficacy relationships are not very clear. In
patients with prostate cancer (PROfound study, n = 74),
Cox proportional hazard modeling showed no significant
correlation between exposure and PFS [AUC: HR 0.98
(95% CI 0.97-1.00), C,,.«: HR 0.89 (95% CI 0.75-1.02),
minimum concentration: HR 0.77 (95% CI 0.56-1.06)].
However, patient numbers were small [43]. Results from
an exposure-PFS Cox proportional hazard model using data
from patients with solid tumors (n = 410) indicate that 300
mg BID (steady state C,,,, 7.67 ug/mL) is superior to 200
mg BID (C,,,  6.99 ug/mL) [HR 0.96 (95% C10.94-0.99)],
but the difference is small [44]. In summary, the olaparib
dose is related to efficacy, but looking at exposure within the
registered doses, no clear exposure—efficacy relationship has
been demonstrated.

3.1.7.2 Exposure Toxicity Hematological toxicities
were more frequently reported with the 300-mg tablet
formulation compared with the 400-mg capsule formu-
lation [24]. As exposure of the 300-mg tablet formula-
tion is 13% higher, an exposure—toxicity relationship is
apparent.

An exposure—toxicity analysis with data from mul-
tiple clinical trials showed an exposure—toxicity rela-
tionship between the probability of grade 1-4 anemia
and steady-state minimum concentrations (p = 0.001)
and predicted C_,,, (p = 0.013) of the 400-mg capsule

max
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Table 3 Pharmacokinetic parameters at steady state

PARP inhibitor N Dose (mg) T, (h) Cpin (ng/mL) Cax (ng/mL) AUC, ,, (ng/ 1 (h) References
Mean (range) mL*h) ?
Olaparib 6 400BID  2.0(1.5-3.0) 1290 (76%) 7650 (27%) 44,900 (39%) NR [15]
capsules 17 400BID  1.25(1.0-8.0)> 1040 (230-8490) 6360 (3880 41,500 (18,700— 11.9 +4.82° [16]
13,300) 147,000)
10 400BID  1.25(1.0-8.0)> 1860 (530-6670) 5700 (2380— 43,100 (18,100  11.9 + 4.82° [16]
10,9000) 98,600)
5¢ 400BID 2.1(1.5-4.0) NR 5900 (19.7%) 33,300 (22.3%) ¢ 10.7 (3.8-18.9)°  [33]
6 400BID 2.0(1.5-3.0) NR 7900 (26%) 44,000 (38%) NR [25]
4 400BID 2.0 (2.0-3.0)f 1600 (46.1%) 9100 (27.2%) 58,100 (29.4%) NR [128]
Olaparib tablets 17 300BID NR 1840 (340-3830) 9370 (2280- 58,400 (23,100~ NR [16, 25]
(67%) 14,700) (47%) 96,000) (47%)
15¢ 300BID  1.50(0.97-3.00) 800 (118%) 8270 (35.0%) 44,000 (48.4%)  6.52 + 1.35 [129]
6° 300BID  3.00(1.50-3.93) 1290 (157.6%) 8430 (35.05%) 52,340 (68.17%) 9.43 (6.45-14.7)' [130]
29 300BID NR 2000 (89.8%) 9500 (41.5%) 62,100 (51.6%)* NR [38]
Niraparib 10 300QD  3.5(2.04.2) 687 + 303 (44%)" 1399 + 608 21,407 £9168  36.2 +£14.6 [46]
43%)' 43%)'
12¢ 300QD  3.05(29-6.1) NR 2070 (29.3%)! 27,852 (28.6%)"  36.45+ 17.21 [59]
4° 300QD  3.7x1.6 592.3 +138.2 1167 +194.9 19,540 £ 3117 NR [131]
Rucaparib 7 600BID 4 (2.53-10) NR 2420 (45%) 21,400 (61%)™  NR [71]
196 600 BID NR 2026 + 1147 NR NR NR [72]
(57%)
16 600BID  2.5(0.5-3.1) NR 2650 (57%) 25,800 (57%) NR [92]
18 600BID  1.92(0-5.98) NR 1940 (54%) 16,900 (54%)" 12.6 (54%)" [91]
375 600BID NR 1754 + 805 2169 + 890 47,507 £20,436 NR [88]
(46%) (41%) (43%)
Talazoparib 6 1.0QD 1.02 (0.75-2.00) 3.720 + 1.590 21.000 £7.990 202 +54(27%) 50.0+16.6 [99]
(43%) (38%) (33%)
27 1.0QD 2.00 (0.97-6.00) 4.950 (56%) 16.400 (32%) 208 (37%) NR [132]
6 1.0QD 1.03 (0.7-1.9)  3.650 (49%) 32.840 (14%) 244.7 (21%) 50.73 £ 10.1 [133]
(20%)°

AUC area under the plasma concentration—time curve, AUC,_,,, AUC from time zero to the end of the dosing interval (tau), BID twice a day,
C,..x maximum plasma concentration, C,,;,, minimum plasma concentration, CV% percentage coefficient of variation, N number of subjects, NR
time to maximum plasma concentration, QD once a day

not reported, SD standard deviation, t,, elimination half-life, T,,,,,
Variability is reported as + SD, (CV%), (range)

#For olaparib and rucaparib, AUC from 0 to 12 hours, for niraparib and talazoparib AUC from 0 to 24 hours
®Based on 6 patients receiving a single dose of 400 mg

¢Japanese patients

4AUC from 0 to 10 hours

“Based on 6 patients receiving a single dose of 400 mg

Median (range)

£Chinese patients

"Based on 16 patients receiving a single dose of 300 mg

iBased on 7 patients receiving a single dose of 300 mg

iBased on 27 patients

¥Based on 26 patients

ICalculated based the molecular weight of 320.4 g/mol

MBased on 4 patients

"Based on 12 patients

°Based on 6 patients receiving a single dose of 1.0 mg
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Table 4 Impact of renal impairment on the pharmacokinetics of PARP inhibitors

PARP Method Renal impair- PK parameter GLS mean 90% CI  Effecton Advice References
inhibitor ment ratio PK
parameter
Olaparib Clinical Mild Chnax 1.15 1.04-1.27 1 15% No dose adjustments required [28, 29]
tablets study™” AUC, ., 1.24 1.06-1.47 124%
Moderate Criax 1.26 1.06-1.48 126% Decrease the dose to 200 mg
AUC,_, 1.44 1.10-1.89 1 44% BID
PBPK model® Mild Choax 1.04 1.03-1.04 14% No dose adjustments required  [29, 32]
AUC 1.40 1.39-1.40 140%
Moderate Criax 1.09 1.07-1.10 1 9% Decrease the dose to 200 mg
AUC 1.89 1.89-1.90 1 89% BID
Severe Choax 1.11 1.10-1.12 1 11% Olaparib is not recommended
AUC 221 2.19-2.22 1121%
Olaparib PBPK model® Mild Choax 1.21 1.19-124 121% No dose adjustments required  [30, 32]
capsules AUC 1.48 1.44-152 148%
Moderate Criax 1.28 1.26-1.31 128% Decrease the dose to 300 mg
AUC 1.95 1.92-1.98 195% BID
Severe Choax 1.31 1.28-133 131% Olaparib is not recommended
AUC 1.27 225229 127%
Niraparib PopPK Mild Exposure? NR NR And No dose adjustments required [51, 54,
model® Moderate Exposure! NR NR < No dose adjustments required 134
Rucaparib PopPK Mild AUC NR NR 1 15% No dose adjustments required [84, 88]
model® Moderate AUC, NR NR 132% No dose adjustments required
Talazoparib ~ Clinical Mild Choax 1.11 0.74-1.66 <~ No dose adjustments required [107]
study® AUC 112 0.80-1.57 <>
Moderate Choax 1.32 0.89-1.94 <« Decrease the dose to 0.75 mg
AUC 1.43 1.03-1.98 143% QD
Severe Choax 1.89 1.27-2.83 189% Decrease the dose to 0.5 mg
AUC 2.63 1.88-3.69 1163% QD
PopPK Mild CL/F NR NR 1 15% No dose adjustments required [106]
model®
Moderate CL/F NR NR 138% Decrease the dose to 0.75 mg
QD

AUC area under the plasma concentration—time curve, AUC, ,, AUC from zero to infinity, AUC,; AUC at steady state, AUC, ,, AUC from 0 to
24 hours, BID twice a day, CI confidence interval, CL/F apparent oral clearance, C . maximum plasma concentration, GLS mean geometric
least-squares mean, NR not reported, PARP poly (ADP-ribose) polymerase, PBPK physiologically based pharmacokinetic, PK pharmacokinetic,
PopPK population pharmacokinetic, QD once a day, 1 indicates increase, | indicates decrease, <> indicates no change

Classification for renal impairment based on the Committee for Medicinal Products for Human Use guidance (CHMP/EWP/225/02 [135]). Nor-
mal renal function: creatinine clearance >80 mL/min; mild renal impairment: creatinine clearance 51-80 mL/min; moderate renal impairment:
creatinine clearance 31-50 mL/min; severe renal impairment: creatinine clearance <30mL/min

bCreatinine clearance calculated according to the Cockcroft-Gault equation

Classification for renal impairment based on the Committee for Medicinal Products for Human Use guidance (EMA/CHMP/83874/2014 [136]).
Normal renal function: creatinine clearance >90 mL/min; mild renal impairment: creatinine clearance 60—89 mL/min; moderate renal impair-
ment: creatinine clearance 30-59 mL/ min; severe renal impairment: creatinine clearance <30 mL/min

9Not specified

°Estimated glomerular filtration rate, calculated using the Modification of Diet in Renal Disease formula

formulation [25]. In addition, an exposure—safety (cat- [300-mg BID capsules (C,,, 7.67 ug/mL), 400-mg BID
egorical adverse events and hemoglobin) model has  capsules (C,,,, 6.99 ug/mL), 200-mg BID tablets (C,,,
been developed using data from multiple clinical trials ~ 6.18 ug/mL)], suggesting a minimal effect of olaparib
(n = 757). The probability of safety events and hemo-  exposure on safety [44].

globin decrease were comparable in all exposure groups
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Table 5 Impact of hepatic impairment on the pharmacokinetics of PARP inhibitors

PARP Method Renal PK parameter ~ GLS 90% CI  Effect on Advice References
inhibitor impairment mean PK
ratio parameter
Olaparib Clinical study* Mild Crax 1.13 0.82-1.56 < No dose adjustment required  [31]
tablets AUC, ., 1.15 0.72-1.93 <
Moderate  C,,,« 0.87 0.63-1.22 < No dose adjustment required
AUC, 1.08 0.66-1.74 <
PBPK model* Mild Crax 1.06 1.05-1.07 1 6% No dose adjustment required ~ [32]
AUC 1.26 1.26-1.28 126%
Moderate  C,,« 0.78 0.77-0.80 | 22% No dose adjustment required
AUC 1.26 1.15-1.32 126%
Severe Crax 0.59 0.58-0.59 | 41% Olaparib is not recommended
AUC 1.06 1.03-1.08 1 6%
Olaparib PBPK model® Mild Crax 1.16 1.15-1.16 1 16% No dose adjustment required ~ [32]
capsules AUC 0.95 0.94-0.97 | 5%
Moderate  C,,« 1.27 1.26-1.28 127% No dose adjustment required
AUC 1.54 1.52-1.56 1 54%
Severe Crax 1.04 1.03-1.06 14% Olaparib is not recommended
AUC 2.20 2.13-2.28 1120%
Niraparib PopPK model®  Mild Exposure® NR NR > No dose adjustment required  [51, 54]
Clinical studyb Moderate Cmax 0.93 0.64-1.36 <> Decrease the dose to 200 mg  [57]
AUC, ., 1.56 1.06-2.30 1 56% QD
Rucaparib PopPK model®  Mild Chin NR NR > No dose adjustment required  [75, 84, 88]
AUC NR NR A
Moderate  C;, NR NR A No dose adjustment required
AUC NR NR 132%
Clinical study® Moderate  C,,,, 0.91 0.61-1.36 <> No dose adjustment required  [87]
AUC,_, 1.45 0.67-3.13 <
Talazoparib Clinical study/ Mild Exposure® and NR NR > No dose adjustment required  [108]
PopPK" CL/F
Moderate  Exposure® and NR NR Aad No dose adjustment required
CL/F
Severe Exposure® and NR NR > No dose adjustment required
CL/F
PopPK model®  Mild CL/F NR NR > No dose adjustment required ~ [106]

AUC area under the plasma concentration—time curve, AUC,_,, AUC from zero to infinity, AUC,; AUC at steady state, CI confidence interval,
CL/F apparent oral clearance, C,,, maximum plasma concentration, GLS mean geometric least-squares mean, NR not reported, PARP poly
(ADP-ribose) polymerase, PBPK physiologically based pharmacokinetic, PopPK population pharmacokinetic, PK pharmacokinetic, 0D once a
day, 1 indicates increase, | indicates decrease, <> indicates no change

#Classification for hepatic impairment based on the Committee for Medicinal Products for Human Use guidance (CHMP/EWP/2339/02) [137].
Mild hepatic impairment: Child-Pugh class A; moderate hepatic impairment: Child-Pugh class B; severe hepatic impairment: Child-Pugh class
C

bClassification for hepatic impairment defined by National Cancer Institute Organ Dysfunction Working Group Criteria criteria [138]
“Not specified

In a retrospective study (n = 27), olaparib exposure was 3.2 Niraparib
significantly associated with early adverse events in patients
with BRCA1/2-mutated ovarian cancer. A trough concentra-  In 2017, niraparib has been approved by the EMA for the
tion of 2500 ng/mL was identified as a threshold that can ~ maintenance treatment of platinum-sensitive, recurrent,
help to guide dose adjustments [11]. high-grade epithelial ovarian cancer regardless of BRCA
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Table 6 Effect of food on the pharmacokinetics of PARP inhibitors after a single dose

PARP inhibi- Condition N Dose ty, (h) Tnax (h) Cpax (ng/mL) AUC . AUC,_., Result meal vs Refer-
tor (mg) (ng xh/mL)  (ng X h/mL) fasted state ences
Olaparib High-fat 31 400 12.20 + 4.53* 4.03 6,070 (45.1%)"64,620 65,440 (64.2%)* | t,34% [139]
capsules meal (2.00-8.03)? (63.3%)* 1 Thax 134%
Hcmax
TAUCO—lasl 22%
TAUC_, 19%
Standard 31 400 15.42 +5.92% 4.00 6,970 (45.9%)°67,710 70,190 (80.5%)* | t,, 16%
meal (1.00-8.00)" (86.4%)° ? Toax 133%
TCmax 10%
TAUCO—last 20%
TAUC_, 21%
Fasted 31 400 18.39 + 6.99° 1.72 (0.92—- 6,350 (40.9%)%58,400 61,060 (78.1%)°
4.05) (75.6%)"
Olaparib High-fat 54 300 11.1 +4.09° 4.00 (1.00-12.0) 5,480 46,000 45,400 (57.1%)° < t, [36]
tablets meal (40.5%) (56.6%)° 1 Thax 167%
lcmax 21%
TAUCO—lasl 8%
TtAUC, ., 8%
Fasted 55 300 12.2 + 5.31F 1.50 (0.50-5.85) 7,000 43,600 43,000 (55.2%)*
(35.0%) (54.3%)"
Niraparib High-fat 15 300 479 +17.5" 8.0 + 4.9 582.1 27,186.4 31,194 (54%)" <, [61]
meal 39%) (52%) T Thax 128%
lCmax 27%
(_)AUcoflasI
<~>AUC_,
Fasted 16 300 50.5+17.9 3.5+ 1.2 803.7 (50%) 28,638.1 29,016.1 (63%)
(63%)
Rucaparib High-fat 26 600 16.8 +9.5% 7.83 (1.5-24.45)959 13,900! (74%) NR <t [91]
meal (73%) T Tax 95%
TCmax 20%
TAUC 4, 38%
Fasted 26 600 18.7 £9.9™ 4.02 (0.53- 819 10,000! (76%) NR
24.83) (84%)
Talazoparib High-fat 18 0.5 113.6 +38.3 4.00 (0.75-5.00)0.996 (22%) 58.215 (19%) 61.065 (19%) <, [102]
meal T T ax 300%
lCmax 46%
HAUCO—]&SI
<>AUC_,

Fasted 18 05g 116.7+31.9 1.00(0.50-1.52)1.849 (41%) 59.694 (19%)

62.551 (18%)
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Table 6 (continued)

AUC area under the plasma concentration—time curve, AUC_,,, AUC from zero to 24 hours, AUC, ;,, AUC from zero to the last measurable
timepoint, AUC,_, AUC from zero to infinity, C,,, maximum plasma concentration, CV% percentage coefficient of variation, N number of

subjects, NR not reported, PARP poly (ADP-ribose) polymerase, SD standard deviation, #,, elimination half-life, 7,

time to maximum plasma

> Y max

concentration, 1 indicates increase, | indicates decrease, <> indicates no change

Data are presented as mean (CV%) for C,,
“Based on 27 patients

"Based on 29 patients

“Based on 28 patients

9Based on 30 patients

“Based on 51 patients

fBased on 54 patients

£Based on 52 patients

"Based on 14 patients

It nax 15 presented as mean + SD
iBased on 15 patients

¥Based on 11 patients
1AUCOJ%’m based on 19 patients

status (Table 1). In the phase III NOVA trial, niraparib main-
tenance treatment resulted in a prolonged median PFS in the
gBRCA-mutated cohort [21.0 vs 5.5 months; HR 0.27 (95%
CI10.173-0.410), p < 0.001], the cohort with an HRD defi-
ciency [12.9 vs 3.8 months; HR 0.38 (95% CI 0.243-0.586),
p < 0.001], and the non-gBRCA-mutated cohort [9.3 vs 3.9
months; HR 0.45 (95% CI 0.338-0.607), p < 0.001] [45].
The approved dose of 300 mg once a day (QD) was the MTD
with fatigue, pneumonitis, and thrombocytopenia as dose-
limiting toxicities [46]. Niraparib was additionally approved
in 2020 as maintenance treatment following first-line plati-
num therapy based on the PRIMA trial with prolonged PFS
in the overall niraparib population [13.8 vs 8.2 months; HR
0.62 (95% C10.50-0.76), p < 0.001] [47].

3.2.1 Preclinical Pharmacology

In Table 2, the in vitro interaction of niraparib with enzymes
and transporters is summarized. Niraparib has the potential to
cause off-target effects on the cardiovascular and central nerv-
ous systems, as it inhibits the neuronal dopamine, norepineph-
rine, and serotonin transporters. Except for the inhibition of
MATE-1 and MATE-2 and being a substrate to P-gp and breast
cancer resistance protein (BCRP), niraparib is no substrate to,
or inhibitor of other important enzymes or transporters [48].
In vivo, niraparib treatment resulted in tumor regres-
sion in a BRCA-1 mutant mouse xenograft model [49], as
well as BRCA wild-type models [10]. Although niraparib
is substrate of P-gp and BCRP, it is able to permeate the
blood-brain barrier with sustainable brain exposure in mice.
The high permeability might overcome the transporter-
mediated efflux of niraparib [10, 49]. Concentrations in
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AUC i and AUC,,_,, as median (range) for t,

max and mean + SD for t,,,

tumor tissue (subcutaneous breast and ovarian cancer xeno-
graft models) three times higher than in plasma have been
reported. However, niraparib also has the unfavorable prop-
erty of distributing into the bone marrow where platelets are
generated [10, 49].

3.2.2 Clinical Pharmacokinetics

Table 3 shows the steady-state pharmacokinetic parameters
of niraparib. Niraparib is classified as a BCS class II com-
pound (low solubility, high permeability) with a high bio-
availability and protein binding (73% and 83%, respectively).
It has a high volume of distribution of 1220 L and prefer-
ably distributes into red blood cells with a blood-to-plasma
ratio of 1.6 [48, 50-52]. The intra-individual variability in
exposure is 36.9%, which has been determined in a popula-
tion pharmacokinetic (PopPK) model [48, 51]. Metabolism
mainly takes place by carboxylesterases with M1 as the
main metabolite. M1 undergoes glucuronidation by uridine
5'-diphospho-glucuronosyltransferase to form M10. The M1
and M10 metabolites are inactive. Niraparib and its metabo-
lites are eliminated by hepatic and renal routes, with 32%
and 40% of total administered dose being recovered in feces
and urine, respectively [51, 53].

3.2.3 Pharmacokinetics in Special Populations

3.2.3.1 Patients with Renal Impairment The effect of
renal impairment on the pharmacokinetics of niraparib was
investigated in a PopPK model (Table 4). As no differences
were observed in exposure between patients with a normal,
mild, and moderate renal function, no dose adjustments are
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required [51, 54]. The effect of severe renal impairment
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below its pKa of 9.95 [51]. Co-administration of niraparib
with substrates to MATE-1 or MATE-2 (e.g., metformin)
could potentially result in increased plasma concentrations
of the co-administered drug [48].

3.2.7 Clinical Pharmacodynamics

3.2.7.1 Exposure Efficacy In patients, efficacious PARP
inhibition (> 90% inhibition of PARP in tumor tissue)
was reached at doses of 80 mg/day and above and durable
responses measured by Response Evaluation Criteria in
Solid Tumors (RECIST) were observed at doses of 60 mg/
day [46, 62]. Dose—efficacy relationships were investigated
using data from two clinical trials. In the retrospective anal-
ysis of the NOVA safety population (n = 553), PFS was sim-
ilar in patients using 100, 200, and 300 mg/day in gBRCA-
mutated and non-gBRCA-mutated patients. However, dose
modifications (80%) and interruptions (73%) were common
[58]. This is in line with the results of the QUADRA study
(n = 463). Clinical benefit rate (ORR), disease control rate,
and clinical benefit rate at 24 weeks (CBR24) was similar
between patients receiving a mean niraparib dose of < 200
mg/day (8%, 58%, and 19%, respectively) and patients
receiving > 200 mg/day (7%, 39%, and 15%, respectively)
[63].

A pharmacokinetic model was developed using phase
I and IIT data (NOVA trial, n = 512) to investigate expo-
sure—efficacy relationships. A trend towards increased
PFS with increased exposure (AUC) was observed in the
non-gBRCA group [11.5 vs 7.5 months; HR 0.70 (95%
CI 0.49-0.99)], while this relationship was absent in the
gBRCA group [> 15.7 vs 15.9 months; HR 0.91 (95% CI
0.54-1.52)] [48, 64]. More research should be conducted
to investigate a possible exposure—efficacy relationship, as
these data are inconclusive.

3.2.7.2 Exposure Toxicity In the phase I dose-escalation
trial, hematological toxicities were more often observed at
higher doses and seemed dose proportional [46]. The inci-
dence of nausea, thrombocytopenia, and fatigue was 74%,
61%, and 59%, respectively, in patients using the recom-
mended dose of 300 mg/day in the phase III NOVA trial
(n = 367) [45]. The incidence was significantly lower in
patients initiating niraparib at 200 mg/day (16%, 14%, and
24% respectively) in a real-world cohort (n = 153) [65].
Furthermore, 66.5% of the patients in the phase III NOVA
trial needed a dose reduction and 68.9% had dose interrup-
tions. Dose reductions reduced the incidence of grade 3 and
4 thrombocytopenia, anemia, and neutropenia [45, 66].

A PopPK model was developed to investigate expo-
sure-response relationships using data from the NOVA

trial. Exposure (AUC, C,,,,, minimum concentration) was

significantly associated with any grade of thrombocytope-
nia and other hematologic and non-hematologic treatment-
emergent adverse events [67].

In addition, patients with a low bodyweight (< 77 kg)
or low platelet counts (< 150.000/mL) at baseline had a
higher risk of grade > 3 thrombocytopenia (35% vs 12%)
[58]. Bodyweight was correlated with higher exposure (C,,,
and AUC) [59] and it is recommended to start with a dose of
200 mg/day for patients with a bodyweight < 77 kg and/or
baseline platelets of < 150.000/mL [58, 59]. This individual-
ized dosing strategy was further investigated in the PRIMA
trial (n = 733) [47, 68] and NORA trial (n = 177) [69], with
safety being significantly improved while efficacy not being
affected. This was confirmed in two real-life cohorts [62,
67]. In summary, data clearly show a relationship between
the dose and exposure of niraparib and toxicity.

3.3 Rucaparib

In the ARIEL2 study and study 10, rucaparib treatment
of patients with g/sBRCA-mutated platinum-sensitive,
relapsed, high-grade ovarian cancer resulted in an ORR,
complete response, and partial response of 53.8%, 8.5%, and
45.3%, respectively, leading to the accelerated first approval
of rucaparib in 2016 (Table 1) [71-73]. The recommended
dose of 600 mg BID was selected based on toxicity and
clinical activity with no MTD [71]. Additional approval
was granted for the maintenance treatment of platinum-
sensitive, relapsed, high-grade ovarian cancer regardless of
BRCA status with a prolonged median PFS in the BRCA
group [16.6 vs 5.4 months; HR 0.23 (95% CI1 0.16-0.34), p
< 0.0001], HRD group [13.6 vs 5.4 months; HR 0.32 (95%
CI 0.24-0.42), p < 0.0001], and total group [10.8 vs 5.4
months; HR 0.36, (95% CI 0.30-0.45), p< 0.0001] [74].

3.3.1 Preclinical Pharmacology

Table 2 shows the in vitro interaction of rucaparib with
enzymes and transporters. Rucaparib inhibits many enzymes
and transporters, causing a high risk for DDIs in patients
(Sect. 3.3.6). Inhibition of the renal transporters OCT2,
MATE-1, and MATE-2K have been related to an increase
in creatinine levels without affecting renal function [19, 20].
Furthermore, the antagonistic activity towards the non-selec-
tive sigma receptor and several kinases [75] are likely to
cause off-target side effects (e.g., increase in cholesterol),
but are unlikely to exert anti-tumor activity [76].
P-glycoprotein and BCRP are restricting oral availability
and brain accumulation in mice, causing tumor resistance
and limiting the use against brain metastasis [77]. Despite
limited brain penetration in glioblastoma xenografts [78],
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antitumor activity was still observed in an intracranial
BRCA1-mutated model [79].

3.3.2 Clinical Pharmacokinetics

Steady-state pharmacokinetic parameters of rucaparib are
shown in Table 3. Rucaparib is a BCS class IV compound
(low solubility and low permeability). Bioavailability is
low (36%) with a concentration-independent protein bind-
ing of 70.2% in vitro [80]. Rucaparib has a mean volume
of distribution of 211 L [81] and preferentially distributes
into red blood cells with an average blood-to-plasma ratio
of 1.83 [80]. Rucaparib is extensively metabolized by CYP
enzymes (Table 2), undergoing phase I and phase II reac-
tions with M324 as the major metabolite. M324 is 30 times
less potent compared with rucaparib and mainly eliminated
by the kidneys. In a mass balance study, the mean recovery
of the administered dose was 17.4% and 71.9% for urine and
feces, respectively (7.6% and 63.9% unchanged) [82, 83].

3.3.3 Pharmacokinetics in Special Populations

3.3.3.1 Patients with Renal Impairment The effect of renal
impairment on the pharmacokinetics of rucaparib is sum-
marized in Table 4. Although exposure of rucaparib was
slightly higher in patients with mild and moderate renal
impairment, no dose adjustments are required because the
side effects and efficacy were not affected [84]. In patients
with severe renal impairment or in patients undergoing dial-
ysis, rucaparib is not recommended [7, 75, 85]. However,
rucaparib therapy was safe in a single patient with dialysis-
dependent renal failure using trough concentrations for dose
optimization [86]. Therefore, therapeutic drug monitoring
might be useful in patients with severe renal impairment or
patients undergoing dialysis.

3.3.3.2 Patients with Hepatic Impairment The effect of
hepatic impairment on rucaparib exposure is shown in
Table 5. No dose adjustments are required in patients with
mild or moderate hepatic impairment, but the advice is to
monitor patients for adverse events [75, 84, 87, 88]. Until
the effect of severe hepatic impairment is investigated, ruca-
parib is not recommended in patients with severe hepatic
impairment [7].

3.3.4 Other Factors Influencing Pharmacokinetic
Parameters

Bodyweight [75, 89], body mass index, race, alpha-1 acid
glycoprotein, and age have no significant effect on pharma-
cokinetic parameters of rucaparib [75]. Efficacy and safety
were similar in age subgroups, indicating no effect of age
on rucaparib pharmacokinetics [90]. Steady-state exposure
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(AUC) at 600 mg BID was not different between CYP2D6
phenotypes (poor metabolizers, n = 9; intermediate metab-
olizers, n = 71; normal metabolizers, n = 76; ultra-rapid
metabolizers, n = 4) or CYP1A2 phenotypes (normal metab-
olizers, n = 28, hyper-inducers, n = 136). Therefore, no dose
adjustments are needed [84].

3.3.5 Food Effect

The results of the food-effect study are summarized in
Table 6. A high-fat meal delays the time to C,,, and
increases the AUC and C,,,, significantly. This was con-
firmed in a PopPK model with an increase in bioavailability
from 32.7 to 51.7% when rucaparib was taken with a high-
fat meal [84]. Food might increase intestinal solubility, as
rucaparib is poorly water soluble. The increase in exposure
is clinically insignificant because pharmacokinetic variabil-
ity is not reduced and efficacy and safety are acceptable [91].
Therefore, rucaparib can be taken with or without food.

3.3.6 Drug-Drug Interactions

The results of DDI studies are summarized in Table 7. Ruca-
parib is extensively metabolized by CYP enzymes; however,
CYP1A2 or CYP2D6 inhibitors did not impact rucaparib
exposure. As rucaparib is metabolized by CYP3A4, the
effect of strong CYP3A4 inhibitors and inducers should be
explored [75]. Concomitant use of proton pump inhibitors
showed no meaningful effect on rucaparib pharmacokinet-
ics [85].

In addition, dose adjustments should be considered for
CYP1A2, CYP2C9, and CYP3A4 substrates with a narrow
therapeutic window when administered with rucaparib [92].
Rucaparib had a marginal effect on digoxin exposure, but
the effects could be underestimated, as digoxin is not the
most selective P-gp probe [75, 93, 94]. Rucaparib weakly
increased exposure to oral contraceptives and rosuvasta-
tin. As hormone levels vary widely between individuals, it
is unlikely that efficacy is affected and toxicity increased.
Although no dose adjustments are recommended for rosuv-
astatin, attention should be used in case of genetic polymor-
phisms in genes for BCRP and when extrapolating to other
BCRP substates [95]. Furthermore, there is a high potential
for DDIs when rucaparib is co-administered with substrates
of MATE-1, MATE2-1, OCT1, and OCT2 (e.g., metformin)
(Table 2) [75].

3.3.7 Clinical Pharmacodynamics

3.3.7.1 Exposure Efficacy Mean PARP inhibition in periph-
eral blood lymphocytes in patients was > 90% and not dose
dependent between doses of 92 mg QD and 600 mg BID
[96]. A PopPK model was developed using data from Study
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10 and ARIEL2 to explore exposure—efficacy relationships
in patients with BRCA-mutated ovarian cancer (n = 121).
The AUC averaged by the actual dose received over time
was correlated with an investigator radiologist review-
assessed RECIST response in the subgroup of platinum-
sensitive recurrent disease (n = 75, p = 0.017). Other effi-
cacy endpoints were not correlated. Sample size was small,
thus no definite conclusion can be drawn [89, 97].

3.3.7.2 Exposure Toxicity In patients taking the recom-
mended dose of 600 mg BID in the phase I/Il ARIEL2
study and study 10, adverse events were common and fre-
quently led to dose reductions (69%) and treatment interrup-
tions (64%) [71]. In addition, dose-limiting toxicities were
reported in patients receiving doses above 480 mg BID,
while doses below were well tolerated [96].

In an exposure—safety analysis with data from Study 10
and ARIEL2 in patients with BRCA-mutated ovarian cancer
(n =393), Caxss Was associated with grade >2 creatinine
(p < 0.001), grade >3 alanine aminotransferase (p = 0.033),
grade >3 aspartate aminotransferase (p = 0.027), fatigue
(p = 0.029), platelet decrease (p = 0.04), and a maximum
hemoglobin change from baseline (p < 0.001) [89, 97]. The
rise in creatinine levels is likely a result of inhibition of renal
transporters without an impacting renal function [55]. These
results indicate a relationship between exposure and toxicity.

3.4 Talazoparib

Talazoparib approval was granted in 2019 by the EMA for
the treatment of gBRCA-mutated, human epidermal growth
factor receptor-2 negative metastatic breast cancer (Table 1).
In the phase III EMBRACA trial, talazoparib treatment
resulted in a significantly longer median PFS [8.6 vs 5.6
months; HR 0.54 (95% CI 0.41-0.71), p < 0.001] and a
higher ORR (62.6% vs 27.2%; OR 5.0, p < 0.001) compared
with standard therapy [98]. The approved dose of 1.0 mg QD
was also the MTD [99].

3.4.1 Preclinical Pharmacology

In Table 2, the in vitro interaction of talazoparib with
enzymes and transporters is summarized. Talazoparib is
the most potent catalytic PARP inhibitor with the highest
trapping potency [100-102]. It inhibits tankyrase 1 and
tankyrase 2 (PARPSa and b) causing an anti-cancer and
anti-fibrotic effect, but also the induction of bone loss with
increased osteoclasts [103]. Talazoparib has no effect on
enzymes and transporters, but is a substrate to P-gp and
BCRP. This is confirmed in vivo, with 1.9 times and 15
times higher plasma and brain concentrations, respectively,
in P-gp and BCRP knockout mice [102].

3.4.2 Clinical Pharmacokinetics

Pharmacokinetic parameters of talazoparib at steady state
are described in Table 3. Talazoparib is a BCS class II or IV
compound (low solubility, moderate permeability) with an
estimated bioavailability of at least 55% based on a mass bal-
ance study and protein binding of 74% (in vitro) [104, 105].
The apparent volume of distribution is 420 L [102, 104]
with no preferable distribution into red blood cells [105].
Metabolism of talazoparib is minimal and the major route
of elimination is renal excretion. Mean recovery of the total
administered dose is 68.7% (54.6% unchanged) in urine and
19.7% (13.6% unchanged) in feces [104, 105].

3.4.3 Pharmacokinetics in Special Populations

3.4.3.1 Patients with Renal Impairment The effect of renal
impairment on the pharmacokinetics of talazoparib is sum-
marized in Table 4. Dose adjustments are recommended for
patients with moderate or severe renal impairment, as clear-
ance is decreased [106] and exposure significantly increased
[107].

3.4.3.2 Patients with Hepatic Impairment

The effect of hepatic impairment on talazoparib exposure
is shown in Table 5. No effect of mild, moderate, or severe
hepatic impairment was observed on talazoparib pharma-
cokinetics. Therefore, no dose adjustments are required
[106, 108].

3.4.4 Other Factors Influencing Pharmacokinetic
Parameters

The effect of several covariates on the pharmacokinetics of
talazoparib was explored by a PopPK model. Age, sex, and
body weight had no clinical relevant effect on talazoparib
exposure. Talazoparib clearance was 24.7% higher and expo-
sure approximately 20% lower in Asian patients compared
with non-Asian patients. P-glycoprotein and BCRP poly-
morphisms are ethnicity dependent with a higher frequency
of single nucleotide polymorphisms in Asian individuals
compared with white individuals. This might contribute to
the lower exposure in Asian individuals, but no dose adjust-
ments are recommended, as 1 mg QD is the MTD [106].

3.4.5 Food Effect
The effect of food on talazoparib pharmacokinetics is
shown in Table 6. A high-fat meal delays the time to C,,,

and decreases the C,,,, significantly, but does not influence
the extent of absorption [102]. These findings are consistent
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with a PopPK analysis where the absorption rate is decreased
(Ka) without any change in the extent of absorption (F1)
[106]. In conclusion, talazoparib can be taken with or with-
out food.

3.4.6 Drug-Drug Interactions

Table 7 summarizes the results of DDI studies. Concomitant
use of potent P-gp inhibitors increases bioavailability and
exposure of talazoparib significantly. Therefore, a reduced
dose of 0.75 mg is advised when talazoparib is co-admin-
istered with potent P-gp inhibitors. Gastric-reducing agents
had no effect on talazoparib exposure, which was expected
based on the pH-independent solubility [106, 109]. As tala-
zoparib is a substrate to BCRP, the effect of BCRP inhibitors
cannot be excluded and should be further investigated.

3.4.7 Clinical Pharmacodynamics

3.4.7.1 Exposure Efficacy Talazoparib shows a dose-
dependent and exposure-dependent PARP activity in
peripheral blood mononuclear cells with sustained PARP
inhibition at and above doses of 0.6 mg/day [99]. Exposure—
efficacy relationships were demonstrated in the EMBRACA
and ABRAZO trials. In the EMBRACA trial (n = 281), the
time-varying average talazoparib concentration (C,,, [t0
account for dose modifications]) was significantly associ-
ated with longer PFS [110]. Dose reductions resulted in a
trend towards a marginally less favorable PFS outcome com-
pared with patients without dose reductions. However, dose
reductions itself could lead to a shorter PFS, but it could
also be a marker of worse prognosis and therefore a shorter
PFS [111]. An exposure—efficacy analysis using data from
the phase I ABROZO trial (n = 81) found a trend towards a
higher ORR with higher exposure, but no relationship with
PFS. However, patient numbers were small [112]. These
data suggest an exposure—efficacy relationship is apparent.

3.4.7.2 Exposure Toxicity An exposure—safety analysis
was performed with pooled data from the EMBRACA (n
= 285) and ABRAZO trials (n = 82). Patients above the
median exposure (C,, ) experienced more events of ane-
mia and thrombocytopenia. In the final Cox proportional
hazard model, a higher C,,,, was associated with a higher
risk for anemia and thrombocytopenia and there was a trend
towards a higher log-transformed C,, , and risk for neutro-
penia [111, 113]. These results indicate an exposure—toxic-
ity relationship.
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4 Discussion

We provided an overview of the (pre)-clinical pharmacol-
ogy, clinical pharmacokinetics, and clinical pharmacody-
namics of the four approved PARP inhibitors. This review
reveals that PARP inhibitors have overlapping characteristics
and unique properties as well. While all four PARP inhibi-
tors are potent inhibitors of PARP enzymes with comparable
half-maximal inhibitory concentration values, they differ in
their PARP-trapping potency. Talazoparib has the most rigid
structure with two chiral centers, which likely accounts for
its potent trapping ability (50-100 times higher) compared
with olaparib, niraparib, and rucaparib [103]. Cytotoxic-
ity of PARP inhibitors as a single agent is correlated with
PARP trapping and not with catalytic inhibition of PARP
[114, 115]. Talazoparib shows the greatest PARP trapping
potency, which is also correlated with increased toxicity in
normal cells. Therefore, the MTD of talazoparib is much
lower than other PARP inhibitors [116, 117]. Furthermore,
the approved dose of talazoparib is in the range of the half-
maximal inhibitory concentration for PARP inhibition,
and therefore the only PARP inhibitor showing a dose-
dependent and exposure-dependent inhibition of PARP in
peripheral blood mononuclear cells. Unbound steady-state
concentrations of olaparib, niraparib, and rucaparib exceed
the half-maximal inhibitory concentration for PARP inhi-
bition, which probably means that maximal PARP inhibi-
tion is reached at doses far below the recommended dose
in patients.

Interestingly, olaparib and niraparib have similar catalytic
activities and cytotoxicity against BRCA mutant cells and
xenograft models [114], but niraparib is more efficacious
in BRCA wild-type models [10]. This is also observed in
patients with BRCA wild-type ovarian cancer, with a 5.4-
month improvement in PFES for niraparib [45] compared with
1.9 months for olaparib. [14]. BRCA wild-type cells might
require higher concentrations of the PARP inhibitor than
BRCA-mutated cells, which explains the greater efficacy of
niraparib; niraparib concentrations in wild-type tumors in
mice were ten times higher compared with olaparib at thera-
peutic and comparable doses [118]. Initially, PARP inhibi-
tor treatment was restricted to BRCA-mutated patients. As
BRCA wild-type patients with HRD-positive tumors and
no mutations in homologous recombination repair genes
also benefit from PARP inhibitor treatment (but to a lesser
extent), indications are expanding. It becomes more clear
that biomarkers beyond BRCA, like other deficiencies in
homologous recombination repair, play a role in the suscep-
tibility to PARP inhibitors [119, 120].
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Olaparib and rucaparib are substrates and inhibitors of
several enzymes and transporters. Both PARP inhibitors
increase creatinine without affecting renal function and have
a high risk for DDIs. Niraparib has less effect on enzymes
and transporters and the contribution of talazoparib is mini-
mal. This can be an advantage for patients with comorbidi-
ties using multiple drugs. All four PARP inhibitors are sub-
strates of the P-gp efflux transporter causing interactions
and limiting the brain penetration. However, niraparib is
classified as a BSC II compound with a high permeability
that might (partly) overcome the P-gp-mediated efflux that
could justify its use in the case of brain metastasis.

Poly (ADP-ribose) polymerase inhibitors differ in the way
they are metabolized and excreted. While olaparib and ruca-
parib are metabolized by CYP enzymes, metabolism of nira-
parib is mainly mediated by carboxylesterase enzymes and
metabolism of talazoparib is minimal. Poly (ADP-ribose)
polymerase inhibitors are hepatically and renally cleared
with no preferred route for olaparib and niraparib and the
liver being the main route of excretion for rucaparib and the
kidneys for talazoparib. Dose adjustments are necessary in
patients with renal dysfunction for olaparib and talazoparib
and for niraparib in patients with hepatic impairment.

Exposure is dose proportional for all PARP inhibitors,
except for olaparib capsules because of limited solubility.
The improved tablet formulation increased bioavailability
and decreased the high administration burden. Niraparib
and talazoparib have convenient long half-lives allowing
QD dosing while olaparib and rucaparib have shorter half-
lives and are dosed BID. All PARP inhibitors are classified
as BCS class II or IV compounds with low solubility [23,
48,75, 121]. This might contribute to the moderate-to-high
interindividual variability in exposure; however, exposure is
not drastically affected by intake with food.

While a PARP exposure—efficacy relationship is present
for talazoparib, this relationship remains inconclusive for
olaparib, niraparib, and rucaparib. Average unbound steady-
state concentrations of rucaparib at the recommended dose
of 600 mg BID are much higher than the required exposure
for durable anti-tumor response in preclinical models [75]
and exceed the half-maximal effective concentration for
cytotoxicity. Based on these data and because dose find-
ings of targeted anti-cancer agents are still mostly based on
toxicity, rather than efficacy, the optimal dose of rucaparib
might be lower than the current recommended dose. How-
ever, further clinical studies should investigate and confirm
efficacy at lower dose levels.

Although PARP inhibitors have the same mechanism of
action, they differ in their toxicity profile. Rucaparib has the
most reported adverse drug reaction, which could be expected
based on its many off-target effects (Table 2) [122]. Hyper-
cholesterolemia is specific for rucaparib mediated through
off-target kinase inhibition [76]. Hypertransaminasemia

has been reported for rucaparib and niraparib and less for
olaparib [123]. Niraparib is the only PARP inhibitor causing
hypertension, due to off-target inhibition of neuronal dopa-
mine, norepinephrine, and serotonin transporters, increasing
neurotransmitters with inotropic effects on the heart. These
neurotransmitters are involved in the psychiatric and nervous
system disorders as well, which explains the association with
niraparib. Gastrointestinal adverse events are very common
and a class effect of PARP inhibitors. Furthermore, hema-
tological toxicities, such as anemia, thrombocytopenia, and
neutropenia are frequently reported and an on-target class
effect. PARP-1 trapping is not only related to cytotoxicity
in cancer cells with HRD, but also drives bone marrow tox-
icity [124]. Additionally, inhibition of PARP-2 is directly
related to anemia, due to impaired differentiation of erythroid
progenitors and a shortened lifespan of erythrocytes [125].
Awareness of the delayed adverse events of myelodysplas-
tic syndrome and acute myeloid leukemia is important, as
these adverse events can be lethal and occur after several
months [126]. Niraparib has the highest number of reported
hematological toxicities followed by rucaparib and olapa-
rib, related to the volume of distribution [123]. Dose reduc-
tions and treatment interruptions occurred frequently with
niraparib, but efficacy was not affected [58]. Therefore, the
recommended dose of 300 mg/day is possibly higher than
necessary for sufficient efficacy, especially for gBRCA-
mutated patients, and lower doses of niraparib might be jus-
tified. While BRCA status is predictive for efficacy, it is not
related to toxicity [127]. Higher exposure is associated with
an increase in efficacy for talazoparib and with an increase in
hematological toxicities for all PARP inhibitors and thereby
might be a rationale for therapeutic drug monitoring.

5 Conclusions

Poly (ADP-ribose) polymerase inhibitors are valuable
anticancer agents with rapidly expanding indications. The
understanding of the overlapping and unique pharmacoki-
netic and pharmacodynamic properties of PARP inhibitors
can guide the choice of the PARP inhibitor, support treat-
ment optimization, and improve clinical outcomes.
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