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Abstract
In this workwe present a framework for robust deep learning-basedVMAT forward dose calculations
for the 1.5TMR-linac. A convolutional neural networkwas trained on the dose of individualmulti-
leaf-collimator VMAT segments andwas used to predict the dose per segment for a set ofMR-linac-
deliverable VMAT test plans. The training set consisted of prostate, rectal, lung and esophageal
tumour data. All patients were previously treated in our clinic withVMATon a conventional linac.
The clinical datawere converted to anMR-linac environment prior to training. During training time,
gantry and collimator angles were randomized for each training sample, while themulti-leaf-colli-
mator shapeswere rigidly shifted to ensure robust learning. AMonteCarlo dose engine was used for
the generation of the ground truth data at 1% statistical uncertainty per control point. For a set of 17
MR-linac-deliverable VMAT test plans, generated on a research treatment planning system, our
method predicted highly accurate dose distributions, reporting 99.7%± 0.5% for the full plan predic-
tion at the 3%/3mmgamma criterion. Additional evaluation on previously unseen IMRTpatients
passed all clinical requirements resulting in 99.0%± 0.6% for the 3%/3mmanalysis. The overall per-
formance of ourmethodmakes it a promising plan validation solution for IMRT andVMATwork-
flows, robust to tumour anatomies and tissue density variations.

1. Introduction

Accurate dose calculations are the cornerstone ofmodern radiation therapy treatmentworkflows. During the
treatment planning phase of a radiotherapy plan optimization cycle, parameters are iteratively adjusted and the
dose is recalculated until converging to a clinically acceptable solution. The desirable resulting plan should
ensuremaximal tumour coveragewhile optimally sparing the adjacent healthy tissue and organs-at-risk (OARs).

Multiple dose calculation engines have been used in treatment planning systems (TPS), withMonte Carlo
(MC) (Rogers 2006) based ones offering the best accuracy bymodelling the full particle transport (Krieger and
Sauer 2005). Thanks to recent computer hardware developments, GPU-basedMC implementations
(GPUMCD) (Hissoiny et al 2011, Jia et al 2011) can offer computationally boosted dose calculations with high
dosimetric accuracy, suitable for both offline and online radiotherapyworkflows.

Recently, hybrid radiotherapy systems that combinemagnetic resonance imaging (MRI)with a linear accel-
erator have been developed and are becomingwidely available. These setups, known asMR-linacs, consist of an
MRI scanner surroundedwith a rotating gantry and can deliver radiationwhile offering high, real-time soft
tissue contrast. The clinical introduction ofMR-linacs (Mutic andDempsey 2014, Raaymakers et al 2017)has
enabled their use in adaptive radiation therapy treatment schemes, where daily anatomical changes can be incor-
porated in the treatment planning process (Winkel et al 2019) and a newplan can be generatedwhile the patient
lies on the treatment couch. The inclusion of this intrafraction information could significantly reduceOAR
dosage and hence radiation-related toxicity (Christiansen et al 2022).

Themost commonly used radiation delivery techniques are Intensity-Modulated Radiation Therapy
(IMRT) (Bortfeld et al 1994) andVolumetric-Modulated Arc Therapy (VMAT) (Otto 2007, Shaffer et al 2010).
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While IMRTuses a step-and-shoot approach, VMATenforces a continuous radiation delivery scheme via a
constantly rotating gantry around the patient, achieving similar target coverage to IMRT (Yu andTang 2011)
and significantly reducing the time patients have to lie on the treatment couch (Palma et al 2010). Yet thus far no
commercial solutions of VMATdelivery using anMR-linac exist, limiting the combination of externalmagnetic
fieldwith arc therapy to research setups (Kontaxis et al 2021).

Naturally,moving towards agile online adaptive treatment requires robust software tools that canmeet the
clinical speed and efficiency challenges (Kontaxis et al 2017). Therefore, contemporary research focuses on auto-
mating various parts of the treatment workflow in order to better serve prospective applications.

Artificial intelligence is already awidely explored field in radiation therapy, due to its easy applicability and
the promising outcomes it can offer, such as speed, consistency and robustness. In particular, various deep
learning (DL)-based techniques have been explored for radiation therapyworkflows attempting tomodel the
typically time-consuming dose calculations. Previous approaches havemainly focused on fast dose calculations
forMonte Carlo denoising purposes in radiotherapy (Bai et al 2021,Neph et al 2021), proton dose calculations
(Neishabouri et al 2021), dose predictions fromOAR contours and density information (Kearney et al 2018,
Mashayekhi et al 2022,Qilin et al 2022) and probabilistic dose predictions (Nilsson et al 2021).

While the concept ofDL-based dosemodelling has been explored using a variety ofmethods, not all of these
methods encode particle-transport physics into the network inputs. Our research group has developedDeep-
Dose, aDL framework that closely resembles a conventional dose engine, as its intuitive physics-based inputs
describe different characteristics of the photon transport and thus allow the network to correlatemulti-leaf-
collimator (MLC) segments with 3Ddose deposition. The concept ofDeepDosewas initially explored using
prostate data frompatients treated on a conventional linear accelerator (Kontaxis et al 2020) andwas subse-
quently extended to abdominal tumours for a 1.5TMRI radiotherapy system (Tsekas et al 2021), while success-
fullymodelling the electron-return-effect (ERE) caused by the externalmagnetic field. Nonetheless, themodel
was unable to generalize tomore tumour sites and could not be used to predict VMATdose distributions.

In the present workwe aim to extend theDeepDose framework to performVMATdose calculations. There-
fore, we introduceVMATdata in our training set bymodelling the continuous gantrymotion using static gantry
positions (Otto 2007). Besides, we extend ourmethod tomore tumour sites, including lung cases that are of
particular interest due to their tissue inhomogeneity, which demands that the effects of the transversemagnetic
field on internal air-tissue interfaces are included in our calculations. By using a generalized training scheme,
potential beam angle configuration and anatomical biases are prevented. Our proposedDL framework can per-
form robust dose calculations for both IMRT andVMAT in a 1.5TMR-linac environment.

2.Materials andmethods

2.1.Data preprocessing
A total of 124 patients (42 prostate, 26 rectal, 34 lung and 22 esophageal)were used, previously treated in our
clinic withVMATon a conventional linac. Since noVMAT setup using the ElektaMR-linac exists, in this work
we converted the data to theMR-linac space by approximating the dynamic gantry rotationwith static gantry
positions. This was achieved in a two-step approach: First, partial arcs were approximatedwith static segments
and subsequently theVMATMLC apertures (MLCvmat)were estimated using the physical dimensions of the
MR-linacMLC (MLCmrl).

A partial VMATarc is defined by two consecutive control points that typically cover an angle of a few
degrees. In order to approximate such an arc, half of the totalmonitor units (MU) to-be-deliveredwere assigned
to the starting and the rest to the ending control point. Due to the differences between the SynergyMLCvmat

(Elekta AB, Stockholm, Sweden) and theUnityMLCmrl (Elekta AB, Stockholm, Sweden) in leaf width (5 mm
versus 7.15mm) andMLCdimensions (40 cm× 40 cmversus 22 cm× 57 cm) at isocenter, the leaves had to be
adjusted as following: First, a concentric rectangle corresponding to the newMLCdimensionswas used for
approximating the referenceMLC shape. Then, by averaging the left/right leaf positions of the intersecting
leaves respectively, the new leaf positions were calculated. Finally, the beam energy settingswere adjusted to
match anMR-linac configuration (7MV) and the new planswere compared to the original ones using gamma
analysis for validation purposes.

In order to account for the reduced number of off-centered segments, which arises from the fact that VMAT
plans are typically targeted around the tumour, in contrast to thefixed-isocenter positioning on theMR-linac
that causesmany segments to be off-centered, we introduced randomized shifts in two perpendicular directions
of the beams-eye-view: the leaf travel direction and the direction perpendicular to the leaf travel. For each of the
training segments random shifts were applied in both directions, while ensuring that the segment does not reach
the boundaries of theMLC and that a sufficient number of patient voxels are hit by each segment. The range of
shift for the leaf travel directionwas between−35 and+35 mm, and for the direction perpendicular to the leaf
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travel from−20 to+20 leaves. The threshold of acceptancewe usedwas 100 voxels with a voxel size of 3× 3×
3mm3, thus corresponding to a volume of 2.7 cm3. In addition, randomized gantry aswell as collimator angles
(between 0 and 359 degrees)were assigned to each of the training and validation segments, enabling our frame-
work to be robust to various anatomies and eliminating potential beam configuration biases.

2.2. Input data preparation
The network inputs followed theDeepDose framework (Kontaxis et al 2020): The segmentmask (containing the
equivalent square area value), the distance from the linac source, the distance from the central beamline, the
radiological depth and density informationwere generated per segment. For the generation of the network
inputs, theMLC apertures were first rasterized using the generated plan files. Then, the segment shapes were ray-
traced through the 3Dpatient anatomy and treatment couch using a submillimeter precision step. Finally, in
order to generate a clinical resolution output, a 3× 3× 3mm3 gridwas exported.

We decided to feed synthetic-CT scans (sCT) as density input to the network to closely resemble the clinical
MR-linac pipeline at our hospital. Following this workflow, the sCTswere generated using a bulk assignment
scheme for the delineated contours per patient. For the ground truth dose calculations, all segments were set to
100MU to ensure a standardized dose output and their dosewas calculated using a research version of
GPUMCD (Hissoiny et al 2011) at 1% statistical uncertainty per segment. An overview of the different network
inputs and the corresponding target dose is presented onfigure 1.

2.3. Evaluation onVMATmrl plans
We tested our network on clinically deliverable VMATmrl plans, generatedwith a research version ofMonaco
TPS (Elekta AB, Stockholm, Sweden), using anMLCmrl configuration and including the presence of 1.5T exter-
nalmagnetic field. All used patient test cases have been previously treated in our clinic withVMATon a conven-
tional linac. The actual clinical prescriptions for each patient, different for each tumour site and stage, were used
for creating theVMATmrl plans. A total of 4 prostate, 4 rectal, 7 lung and 2 esophageal patients planswere
generated, planned using 66 Gy (30 fractions of 2.2Gy), 25 Gy (5 fractions of 5Gy), 48 Gy (4 fractions of 12Gy)
and 20 Gy (5 fractions of 4Gy) respectively.

After generating theVMATmrl plans, theywere approximated using the same data preparation pipeline that
was followed for the training and validation data in order to generate the network inputs. The prepared inputs
were then used to predict the dose distributions for the test patients.

Figure 1.Anoverview of the network inputs (a)–(e) is presented for a prostate segment alongside with the corresponding target dose
(f). PTV, rectum, femur heads, body and couch contours are visible on the 3D volume slices.
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2.4.Dataset
After the preprocessing anddata preparationpipelines, the total of 18 688patient segments (5029prostate, 5226
rectal, 4858 lung and 3575 esophageal)were split into training and validation sets, resulting in16 830 training and
1858 validation segments. For inference, a total of 1437patient segments (432prostate, 506 rectal, 262 lung and
237 esophageal)wereused.Adetailed overviewof the complete data processingworkflow for both training and test
purposes is presented onfigure 2.

2.5. Network
The networkwe used for the dose predictions was a 3DUNet, based on the original architecture (Özgün et al
2016).We adopted the 3DUNet implementation proposed by theNiftynet framework (Gibson et al 2018),
slightlymodified to serve our input/output requirements.

All input grid dimensions were set to 216× 192× 120 in order to include large tumour segments introduced
fromVMATplanning. The grid spacingwas kept to the clinical 3× 3× 3 mm3 and the batch size we usedwas
32.Other choices for hyperparameters included the use of a learning rate of 10−4, an Adamoptimizer and a root
mean squared error loss function. For training, a patch-based approachwas used, with patches of 32× 32× 32
voxels being extracted from the training inputs, without applying zero-padding, while awhole-volume inference
was performed during test time.

We trained our network for a total of 125 000 iterations (approximately 3 days), before stopping early to
avoid potential overfitting. This corresponds to a total of 238 epochs given our batch size, where the network has
processed 4× 106 image patches. The training of the networkwas performed on aworkstationwith a dual Intel®

Xeon®Gold 6132, 128 GBRAMand anNVIDIA®QuadroGP100 card. TheGPUMCDground truth dose calcu-
lationswere also generated using a singleNVIDIA®QuadroGP100 card.

2.6. Evaluation on IMRTplans
To further prove the generality of ourmethod, we tested our network on a subset of the IMRT test dataset used in
the previousDeepDose version (Tsekas et al 2021). The data we used included abdominal tumours (prostate,
rectal and oligometastatic cases) treated on a 1.5TMR-linac.We expected our currentmethod to perform fairly
well on these cases, since VMAT segments are typicallymore complex than IMRTones and the samemagnetic
fieldwas included in the dose calculations of both datasets. Therefore in this case training the network using
VMATcases could result in accurate dose predictions for IMRT segments as well.

2.7. Robustness evaluation on out-of-training VMATplans
In order to assess the robustness of our network and its potential generalizability tomore tumour sites, we
performed a test on two patient cases that were not included in the training set: one brain and one pancreatic
VMATpatient. Having trained themodel on a highly heterogeneous dataset, evaluation on these out-of-training
examples could provide useful insights on its potential range of application.

Figure 2.Data preparationworkflow for the training (top) and test (bottom) pipeline.
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2.8. Analysis
For the evaluation of ourmethod the dose differences between the predicted and ground truth dose distribu-
tionswere calculated for each test segment, including the voxels within the 10%–100%of the dosemaximum.
Additionally, gamma analysis of the predicted segments for the 1%/1 mm, 2%/2 mmand 3%/3 mmcriteria
respectively was performed.

By summing up all individual predicted segments andweighting themwith their clinicalMUvalues, the total
predicted plan dosewas generated. Then, the dose differences were reported for each of the predicted plans in
the test set for the voxels lyingwithin the 50%–100%of theD1cc and gamma analysis tests were performed. The
gammapass rates for the entire test dataset as well as per individual tumour site were reported. The target and
OAR coveragewere assessed using dose-volume-histograms (DVH).

Furthermore, the accuratemodelling of the EREwas assessed by comparing ground truth and predicted
central segment profiles and an additional quantitative analysis of the EREmodellingwas performed. Due to the
fact that the ERE is evident for severalmillimeters, we decided to use a uniform 1 cm expansion around the
ipsilateral lung contour for all lung test cases.We then reported the voxelwise relative dose differences for all
predicted voxels that belonged to the expanded contours and liedwithin the 50%–100%of theD1cc.

3. Results

3.1.Dose calculation results
Overall, a very good agreementwas observed between the ground truth and the predicted dose distributions for
both the per segment and per plan evaluationmetrics. Different organ structures and regionswith different
tissue density had no impact on the statistical accuracy of the dose predictions of the network. The time needed
on average for dose prediction per segmentwas 1.5 s.

Among all segments, an average dose difference and standard deviation of 0.07%± 1.25% (0.0008± 0.01
Gy)was reported for the voxels within 10%–100%of the dosemaximum. Furthermore, gamma analysis was
performed for all test segments and the reported gamma scores were 79.7%± 7.9%, 96.3%± 4.2% and
99.0%± 2.7% for the 1%/1 mm, 2%/2 mmand 3%/3 mmcriteria respectively.

For the total dose distributions of theVMATmrl patients, highly accurate agreementwas reportedwith aver-
age dose difference of 0.2%± 0.7% (0.2± 0.3Gy). The average gammapass rates were 83.4%± 12.7%,
96.8%± 4.4% and 99.7%± 0.5% for the 1%/1 mm, 2%/2 mmand 3%/3 mmanalysis respectively.

Table 1 summarizes the gamma scores per tumour site for the lung, rectal, prostate and esophageal cases in
the test set for the 1%/1mm, 2%/2mmand 3%/3mmcriteria. Figure 3 presents a central transversal slice of a
predicted dose distribution for aVMATprostate case and the correspondingDVHcompared to the target one.

We additionally evaluated the performance of ourmethod on IMRT segments by comparing it to our pre-
vious network version and obtained comparable results. For the total of 15 IMRT inference patients used (5
oligometastatic, 5 prostate and 5 rectal) an average gammapass rate of 99.0%± 0.6%per patient planwas repor-
ted for the 3%/3 mmcriterion, while the previousDeepDose network, trained on abdominal IMRT segments,
achieved a score of 99.3%± 0.7% for the same gamma analysis.

Finally, the performance of our networkwas tested on twopreviously unseenVMAT tumour cases, one
brain and one pancreatic patient. Ourmethod passed all clinical requirements for both cases, reporting 97.3%
and 99.8% respectively for the 3%/3 mmcriterion.

3.2. EREmodelling
Our network predictionswere able to effectively capture the ERE effect, caused by the presence ofmagnetic field
in the ground truth dose distributions. Figure 4(a)presents a predicted lungVMAT segment and onfigure 4(b)
the corresponding predicted central dose profile is compared to the target one. The ERE effect is evident close to
air-tissue interfaces, where dose increase spikes occur. Such examples are the lung tissue boundaries and the
locationwhere the beam exits the patient body.

By analyzing and reporting the voxelwise relative dose differences of the voxels belonging to the expanded
ipsilateral lung contours for all lung test patients (7 cases)we obtained an average of 0.3%± 0.2%.

Table 1.Dose prediction accuracy per tumour site.

3%/3mm 2%/2 mm 1%/1mm

Lung 99.6% ± 0.7% 99.0% ± 2.0% 94.6% ± 7.6%

Rectal 99.7% ± 0.2% 91.4% ± 6.1% 67.9% ± 7.3%

Prostate 99.9% ± 0.1% 99.0% ± 0.4% 84.2% ± 2.9%

Esophagus 99.3% ± 0.1% 95.4% ± 1.2% 73.8% ± 4.0%
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4.Discussion

In this work, we presented a robustDL-based dose engine for VMATdose calculations on theMR-linac. By
training a convolutional neural network on a large set of anatomical tumour cases, highly accurate dose predic-
tions for a test set ofMR-linac-deliverable VMATpatient planswere demonstrated, while dose variations caused
by the 1.5T externalmagnetic fieldwere accuratelymodelled. Additionally, convincing dose calculationswere
demonstrated for a set of previously unseen IMRT tumour cases.

The robustness of ourmethod largely lies on training our network usingmulti-site data, covering thus a
broad range of anatomies. In particular, we introduced tumour cases in the thoracic (lung and esophageal) and
pelvic (prostate and rectal) region, including soft tissue, bony structures as well as air cavities. In addition, VMAT
treatment planning typically results to segments of a higher number and complexity compared to IMRT. Thus,
training our network on a few thousands of these diverse segment shapes resulted in an increase of the range of
operation of ourmethod, while the further addition of a 1.5Tmagnetic field fully simulates a hybridMRI radio-
therapy environment where arc therapy can be supported. The trainedmodel was able to predict highly accurate
dose distributions for a set of VMAT test plans, generated using a researchTPS.Moreover, the performance of
ourmethodwas successfully benchmarked against the previousDeepDosemodel on a set of IMRT segments.

In addition, ourDLmodel demonstrated prediction robustness across different tumour sites and regions
with density variations. High dosimetric agreementwas observed for all test patients for the 3%/3 mmand

Figure 3.PredictedVMATprostate plan for a test patient.

Figure 4.Modelling of the electron return effect for a lungVMAT segment.
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2%/2 mmcriteria, including the challenging lung cases, with a few exceptions for the 1%/1 mmcriterion,
mainly caused by some rectal and esophageal cases. Nonetheless, we believe that no systematic error exists in the
model predictions on these tumour sites and further analysis of the prediction accuracy using the stricter 1%/

1 mmcriterion is considered to be future work.Moreover, the quantitative analysis of the EREmodelling
revealed excellent agreement of the predicted and target dose distributionswithin the expanded contours of the
ipsilateral lungs, where the ERE ismostly evident.

We furthermore evaluated our trainedmodel on two previously unseenVMAT tumour sites. For this pur-
pose one brain and one pancreatic patient were used. The predicted dose distributions of both these out-of-
training examples passed our clinical requirements.While the pancreatic case was rather expected to pass the
test, as it lies within the abdominal regionwhich is well represented in the training set, the brain casewas expec-
ted to performworse. Nonetheless, the results on this small number of cases are purely presented as an indica-
tion of robustness of our approach. Further network training on new, out-of-training tumour sites will be
needed for expanding the range of operation of ourmethod, however we believe that our approach is easily
generalizable tomore tumour sites.

The feasibility of accurate dose calculations using theDeepDosemethodwas proven for different clinical
environments (with- andwithout externalmagnetic field), tumour sites (prostate, rectum, lung, esophagus,
oligometastases, pancreas, cervix), deliverymodalities (IMRT andVMAT) and beam energies (7MV, 10MV).
We therefore believe that we have provided enough evidence supporting the robustness of our framework aswell
as its potential applicability on different radiotherapy systems, such as a 0.35T (Mutic andDempsey 2014), yet
re-training of the networkwill be required for different linac data andmagnetic fields.

While the generality of ourmethodwas proven, there are still issues concerning its speed that need to be
addressed in the future. VMATplans typically consist of hundreds of control points, each of which has to be
represented by one segment using our approach and forwhich a full input preparation is needed. In our current
implementation the input grid size was increased compared to the previous publication (Tsekas et al 2021) in
order tofit some largeVMAT segments and consequently the inference time grew respectively. A full 3D seg-
ment dose prediction using our framework takes on average 1.5 s, while the average time needed for the genera-
tion of the network inputs for each segment is 5.5 s. On the contrary, less than one second is needed for the
forward dose calculation of a single segment using the gold-standard solution ofGPUMCD (3% statistical
uncertainty per segment). Therefore, we acknowledge that ourmethod is not yet ready for a clinical introduction
in an onlineworkflow.

Futureworkwill focus on attempting to accelerate ourDL-based dose calculations by performing both soft-
ware- and hardware related upgrades. Potential software improvements could include the use of differentDL
frameworks or tensor representations. Further optimization could be achieved by reducing the number of
inputs required by ourmodel.While input exploration of theDeepDose framework has already been performed
(Kontaxis et al 2020) and the use of all five inputs proved to result in the best network performance, amore
thorough investigation of different input combinations is needed. Also, generatingmasked ray-traced inputs,
contrary to the current full 3D grids used, would drastically reduce our data preparation time. Ideally future
implementations will focus on performing full plan 3Ddose predictions, reducing thus the time currently nee-
ded for thewhole plan calculations that rely on the summation of individual segment dose distributions. Addi-
tional network improvements could also focus on including full density information instead of synthetic CT
scans.However, the inclusion of full CTs as network inputs is expected to require longer training of the network
due to the voxel-by-voxel density variations. Finally, as far as hardware speed-up is concerned, upgrading the
GPU card is expected to improve the inference speed of our network.

We demonstrated that our standaloneDL-based dose engine has the potential to be used for clinical-grade
dose calculations. A potential short-term goal would be its use as a secondary dose check for plan verification
purposes, given the fact that it can be robust to different anatomies of both IMRT andVMATdata and it is less
critical on speed.Nonetheless, the clinical introduction of a new framework prerequires extensive quality assur-
ance (QA) and risk analysis.We plan to study theQAworkflowof ourmethod in futurework.

5. Conclusion

Weproposed a genericDL-based dose engine able to function in a hybridMRI-radiotherapy environment and
performhighly accurate forward dose calculations for a variety of IMRT andVMATplans. Network robustness
was achieved by randomizing gantry and collimator angles aswell asMLC segment positions during training.
The trainedmodel was used to generate convincing 3Ddose predictions for a set of test patients, passing all our
clinical requirements.We believe that our approach is robust and can be sped up to be useful in onlinework-
flows for planQApurposes for a variety of tumour sites and deliverymodalities.
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