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Abstract
Interleukin (IL)-12 and IL-23 are pro-inflammatory cytokines produced by dendritic 
cells (DCs) and associated with Psoriasis (Pso) and Psoriatic Arthritis (PsA) pathogen-
esis. Tofacitinib, a Janus kinase inhibitor, effectively suppresses inflammatory cas-
cades downstream the IL-12/IL-23 axis in Pso and PsA patients. Here, we investigated 
whether Tofacitinib directly regulates IL-12/IL-23 production in DCs, and how this 
regulation reflects responses to Tofacitinib in Pso patients. We treated monocyte-
derived dendritic cells and myeloid dendritic cells with Tofacitinib and stimulated cells 
with either lipopolysaccharide (LPS) or a combination of LPS and IFN-γ. We assessed 
gene expression by qPCR, obtained skin microarray and blood Olink data and clini-
cal parameters of Pso patients treated with Tofacitinib from public data sets. Our 
results indicate that in DCs co-stimulated with LPS and IFN-γ, but not with LPS alone, 
Tofacitinib leads to the decreased expression of IL-23/IL-12  shared subunit IL12B 
(p40). In Tofacitinib-treated Pso patients, IL-12 expression and psoriasis area and se-
verity index (PASI) are significantly reduced in patients with higher IFN-γ at base-
line. These findings demonstrate for the first time that Tofacitinib suppresses IL-23/
IL-12 shared subunit IL12B in DCs upon active IFN-γ signaling, and that Pso patients 
with higher IFN-γ baseline levels display improved clinical response after Tofacitinib 
treatment.
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1  |  BACKGROUND

Dendritic cells (DCs) are professional antigen-presenting cells that 
form the bridge between innate and adaptive immunity. Myeloid 
dendritic cells (mDCs) are circulating DCs,1 while monocyte-derived 
dendritic cells (moDCs) are tissue-resident DCs that are present at 
the sites of inflammation.2 Activated DCs produce pro-inflammatory 
cytokines that prime naïve T-lymphocytes into specific effector phe-
notypes3,4 and, when undergoing inappropriate chronic activation, 
can drive autoimmunity.5

Some of the pathways by which DCs contribute to chronic 
immune activation are induced by the production of IL-23 and IL-
12.6 The IL-23 cytokine consists of two subunits, IL23A (IL-23p19) 
and IL12B (IL-12p40). The p40 subunit is shared with IL-12, while 
p19 is unique to IL-23. Both IL-12 and IL-23 have an important role 
in the differentiation of naïve T-lymphocytes into T-helper (Th) 
interferon (IFN)-γ-producing Th1 or IL17-producing Th17 cells, 
respectively.7-10

Disorders associated with deregulations of the IL-23/IL-17 and 
IL-12/IFN-γ immune axis include psoriasis (Pso) and psoriatic arthri-
tis (PsA), among others.6 Pso patients display an increased presence 
of inflammatory DCs expressing IL-12 and IL-23 in lesional skin.11 
Similarly, in PsA patients, elevated IL-12 expression is observed in 
serum and synovial fluid.12-14

Treatment of these diseases with Janus kinase (JAK) in-
hibitors  has proven to be effective in recent clinical trials.15 
Specifically, Tofacitinib, an oral small molecule inhibitor target-
ing JAK1, JAK2, JAK3 and, to a lower extent, Tyrosine Kinase 2 
(TYK2)16  significantly reduces psoriatic and arthritic manifes-
tations, while displaying comparable benefit/risk profiles with 
biologicals.17,18

In vitro studies indicate that Tofacitinib suppresses the 
differentiation of Th1 and Th17 cells and the production of 
IFN-γ and IL-17.19,20 A plausible mechanism of action consists 
in the suppression of JAK2/TYK2 activation mediated by IL-12 
and IL-23 binding, which further prevents STAT3 and STAT4 nu-
clear translocation.21 However, Tofacitinib was also shown to 
reduce IL12B and IL23A mRNA levels in Pso lesional skin and 
in imiquimod-treated mice, suggesting a direct role in the reg-
ulation of the upstream cytokines leading to Th1 and Th17 
differentiation.22,23

2  |  QUESTIONS ADDRESSED

Current literature indicates that Tofacitinib suppresses the inflam-
matory cascades downstream IL-12/IL-23, key cytokines in Pso/
PsA development.6 However, whether Tofacitinib is able to sup-
press IL-12/IL-23 production by DCs has not been documented. 
Here, we aimed to investigate whether Tofacitinib is able to regu-
late the expression of IL-12 and IL-23 in DCs, and to determine 
how this regulation can influence responses to Tofacitinib in Pso 
patients.

3  |  E XPERIMENTAL DESIGN

3.1  |  Cell isolation

Peripheral blood mononuclear cells (PBMCs) derived from either 
healthy control blood or buffy coats were separated with Ficoll 
gradient (#17-1440-02, GE Healthcare). Blood was collected fol-
lowing institutional ethical approval. CD1c (BDCA-1)+ mDCs and 
CD14+ monocytes were isolated (Miltenyi Isolation Kit #130-090–
506, #130-050–201) and separated on autoMACS Pro Separator 
according to manufacturer's instructions. Purity was checked by 
flow cytometry on BD LSRFortessa™ (BD Biosciences). Before 
culturing, cells were washed with complete medium consisting 
of RPMI 1640  medium, GlutaMAX™ Supplement (#61870-036, 
ThermoFisher Scientific), 10% Fetal Bovine Serum (Biowest) and 
1% Penicillin-Streptomycin (#15070063, ThermoFisher Scientific). 
mDCs were stimulated on the day of isolation, after they were 
rested for 1 h at 37°C.

3.2  |  Generation of monocyte-derived 
dendritic cells

To generate moDCs, monocytes were cultured at 37°C for 6 days at 
a density of 106 cells/ml in the presence of 500 U/ml IL-4 and 800 U/
ml GM-CSF (#204-IL-50, #215-GM-500, both from R&D Systems). 

TA B L E  1  Sequences of human primers used for qPCR analysis

Gene Sequence (5′ → 3′)

IL12B (IL12p40) Forward
TGCCGTTCACAAGCTCAAGT

Reverse
TGGGTCAGGTTTGATGATGTCC

IL23A (IL23p19) Forward
CAACAGTCAGTTCTGCTTGC

Reverse
GAAGGCTCCCCTGTGAAA AT

IL12A (IL12p35) Forward
AGGGCCGTCAGCAACATG

Reverse
TCTTCAGAAGTGCAAGGGTAAAATTC

CXCL10 Forward
TGAAATTATTCCTGCAAGCCAA

Reverse
CAGACATCTCTTCTCACCCTTCTTT

TNF Forward
TCTTCTCGAACCCCGAGTGA

Reverse
CCTCTGATGGCACCACCAG

RPL35 Forward
CATCTGGGGAAAAGTAACTCG

Reverse
AGCATCACTCGGATTCTGTG

 16000625, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exd.14566 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [25/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



964  |    VINCKEN et al.

Cytokines and medium were refreshed on day 3. On day 6, cells were 
harvested, washed with fresh complete medium and replated at a 
cell density of 106 cells/ml. Cells were left resting overnight at 37°C.

3.3  |  Stimulation of moDCs and mDCs

Immature moDCs and mDCs were pre-treated or not with 1 µg/ml 
Tofacitinib (CP-690550, Selleckchem) or Ruxolitinib (INCB018424, 
Selleckchem) for 30  min. After, cells were stimulated with either 
10  µg/ml Lipoteichoic acid (LTA) (#L2515, Sigma Aldrich), 100  ng/
ml LPS, 1 µg/ml R848 (#tlrl-3pelps, #tlrl-r848, Invivogen), 1000 U/µl 
IFN-α (#CRI003B, Cell sciences) or 1000 U/ml IFN-γ (#14-8319–80, 
eBioscience) for 4 h.

3.4  |  Statistical analyses of in vitro 
experimental data

Statistical analyses of DCs mRNA data were performed using 
GraphPad Prism 8.3 Software. Non-parametric Friedman test 
for paired samples followed by Dunn's multiple comparisons test 

were computed to compare gene expression levels between 0 
and 4  h of stimulation. Values with a p  <  0.05 were considered 
significant.

Details are provided in Appendix S1.

4  |  RESULTS

4.1  |  Treatment with Tofacitinib does not reduce 
IL23A and IL12B mRNA expression in TLR4-activated 
DCs

Consistent with previous findings,24 we observed that the mRNA ex-
pression of IL-23p19 (IL23A), IL-12p40 (IL12B) and IL-12p35 (IL12A) 
in both mDCs and moDCs is induced by TLR2, TLR4 and TLR7/8 
activation(Figure S1A–C). TLR4 was previously found upregulated in 
Pso PBMCs25 and skin.26,27 Additionally, serum and epidermal ex-
pression of S100A8 and S100A9, TLR4  ligands contributing to ke-
ratinocyte hyperproliferation, were found to be significantly higher 
in Pso patients in comparison with healthy controls.28 Therefore, we 
chose TLR4 activation by LPS as a model to mimic DC activation in 
Pso blood (Table 1).

F I G U R E  1  Cytokine gene expression in LPS-stimulated DCs treated with Tofacitinib. (A-B) Gene expression of IL12B, IL12A and IL23A 
subunits (A) and TNF (B) in mDCs (n = 10). (C-E) IL12B, IL12A and IL23A subunits (C), TNF (D) and CXCL10 (E) in moDCs (n = 12). mDCs and 
moDCs were pre-treated or not with Tofacitinib for 30 min and stimulated with LPS for 4 h. Gene expression was measured by real-time 
qPCR and represented as relative expression (2−∆CT). Lines connect individual donors. Significance was determined by Friedman's test 
followed by Dunn's multiple comparisons test
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In LPS-stimulated mDCs and moDCs pre-treated with Tofacitinib, 
we could not observe a reduction in the expression of IL23A, IL12B 
and IL12A (Figure 1A,C). Surprisingly, the expression of TNF, another 
key cytokine playing a role in Pso pathogenesis and suppressed by 
Tofacitinib in vivo,22 was also not suppressed by Tofacitinib in LPS-
stimulated DCs (Figure 1B,D). We could confirm that Tofacitinib ef-
ficiently blocks the JAK/STAT signaling in these cells, as determined 
by the suppression of control CXCL10 expression in paired samples 
(Figure 1E). We further demonstrated that lack of downregulation of 
IL-12/IL-23 cytokines in LPS-stimulated DCs also occurs in the pres-
ence of the JAK1/JAK2 inhibitor Ruxolitinib (Figure S2), thus it is not 
solely attributed to Tofacitinibs mode of action.

4.2  |  Co-stimulation with LPS and IFN-γ leads to 
reduced expression of IL12B mRNA in DCs treated 
with Tofacitinib

Previously, Bechera et al. reported that JAK1 inhibition in moDCs 
suppresses IL-23 and IL-12 expression when cells are stimulated with 
a combination of nickel sulphate, a TLR4 agonist, and IFN-γ.29 We 
thus investigated the effects of LPS and IFN-γ stimulation on mDCs 

and moDCs pre-treated with Tofacitinib. Co-stimulation of DCs 
with LPS and type II IFN-γ led to a significant reduction of IL12B, 
IL12A, TNF and CXCL10  mRNA expression upon Tofacitinib treat-
ment (Figure  2A–D). Conversely, co-stimulation with type I IFN-α 
did not lead to similar modulatory effects in these cells (Figure S3). 
These data indicate that an active type II, but not type I, IFN signal-
ing in DCs is required for the suppression of IL12B and other pro-
inflammatory cytokines by Tofacitinib.

4.3  |  Psoriasis patients with higher IFN-γ levels 
display reduced IL-12 expression and skin severity 
score after Tofacitinib treatment

To test the relevance of IFN-γ stimulation in the suppression of 
IL-12 by Tofacitinib, we analysed publicly available data of Pso pa-
tients before and after Tofacitinib treatment to assess whether 
higher baseline levels of IFN-γ could predict lower IL-12 production 
and improved Psoriasis Area and Severity Index (PASI) score after 
Tofacitinib treatment.

From blood protein Olink data (GSE13​6435) obtained from 
266 psoriasis patients, we found that IL-12 levels were significantly 

F I G U R E  2  IL12B gene expression is 
suppressed by Tofacitinib in the presence 
of IFN-γ in LPS-stimulated mDCs and 
moDCs. (A, B) Gene expression of IL12B, 
IL12A, IL23A (A) and TNF and CXCL10 (B) 
in mDCs (n = 12). (C-D) Gene expression 
of IL12B, IL12A and IL23A (C) and TNF 
and CXCL10 (D) in moDCs (n = 13). mDCs 
and moDCs were pre-treated or not with 
Tofacitinib for 30 min and stimulated 
with a combination of LPS and IFN-γ 
for 4 h. Gene expression was measured 
by real-time qPCR and represented as 
relative expression (2−∆CT). Lines connect 
individual donors. Significance was 
determined by Friedman's test followed 
by Dunn's multiple comparisons test
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966  |    VINCKEN et al.

F I G U R E  3  Patients with higher basal IFN-γ display higher basal IL-12 levels and have a significant reduction in IL-12 levels when treated 
with Tofacitinib (A) Normalized Protein eXpression (NPX) of IL-12 protein levels in the blood of Pso patients before and after 4 weeks 
treatment with either Tofacitinib (n = 134) or Etanercept (n = 125). (B) NPX of baseline blood IFN-γ protein levels for patients treated 
with Tofacitinib or Etanercept. Treatment groups were divided by the mean IFN-γ expression to define IFN-γ high or low patients. (C) 
NPX of baseline IL-12 protein levels per treatment group for IFN-γ high or low patients. (D) Delta decrease of IL-12 (ΔIL-12) after 4 weeks 
of treatment with either Tofacitinib or Etanercept for IFN-γ high or low patients. Significance was determined by the Kruskal-Wallis test 
followed by Dunn's multiple comparisons test. Series matrix data derived from public database GSE13​6435. (E) Gene expression of IL12B 
after 0, 4 and 12 weeks of Tofacitinib treatment in whole lesional psoriatic skin (n = 9) compared to paired non-lesional skin. (F) Delta 
decrease of IL12B mRNA in relation to baseline IFN-γ mRNA in lesional psoriatic skin after 12 weeks of Tofacitinib treatment (n = 9). Data 
from patient 10021001 was only available until 4 weeks of treatment. Series matrix data derived from public database GSE69967
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reduced after 4 weeks of Tofacitinib treatment, while more modestly 
reduced after 4  weeks of Etanercept treatment (Figure  3A). IL-23 
was not determined in this assay.30 We further assessed the baseline 
IFN-γ levels in the two treatment groups and defined IFN-γ-high and 
IFN-γ-low patients (Figure 3B). We found that patients with higher 
IFN-γ levels at baseline also displayed higher IL-12 levels (Figure 3C). 
By calculating the difference in IL-12 levels between 4 week treat-
ment and baseline (ΔIL-12), we identified that patients with higher 
IFN-γ levels better benefited from Tofacitinib, but not Etanercept, 
treatment in terms of suppression of IL-12 levels (Figure 3D). To ac-
count for the low expression of circulating IFN-γ, we performed a 
principal component analysis (PCA) to identify IFN-γ-clustering pro-
teins (Table  S1). We found that a higher IFN-signature at baseline 
was related with a better reduction in PASI scores after 12 weeks of 
treatment with Tofacitinib (unstandardized B = −2.701, p = 0.033, 
95%CI [−5.177, −0.226]). Conversely, in Pso patients treated for 
12  weeks with Etanercept, an improved PASI outcome related to 
higher IFN-signature was not observed (unstandardized B = 0.331, 
p = 0.735, 95%CI [−1.606, 2.268]) (Figure S4).

From skin microarray data (GSE69967) obtained from 9  pso-
riasis patients, IL12B mRNA levels were reduced in lesional skin of 
Tofacitinib-treated Pso patients (Figure 3E), as previously described.22 
Given the low number of patients in this study, we could only observe 
a trend for lower ΔIL-12 expression in individuals with higher IFN-γ 
at baseline (Figure S5). However, higher basal IFN-γ levels correlated 
with a greater reduction of IL12B mRNA (decrease of 0.015 IL12B 
units per higher IFN-γ unit on average, p  =  0.039, 95%CI [−0.029, 
−0.001]) (Figure 3F). Baseline characteristics are provided in Table S2.

5  |  CONCLUSIONS AND PERSPEC TIVES

The accumulating knowledge that IL-23 and IL-12 play a key role in 
the initiation and maintenance of several inflammatory diseases, 
such as Pso and PsA,6 led to the development of multiple selec-
tive therapeutic agents that target either specific cytokines or their 
downstream inflammatory events.31  Tofacitinib is the first JAK-
inhibitor registered for the indication of Pso and has shown prom-
ising results in clinical trials.32 Studies have shown that multiple 
immunoregulatory pathways, such as STAT1/STAT3 in Pso skin and 
NF-κB in PsA synovial fibroblasts, are targeted by Tofacitinib.22,33,34 
However, whether Tofacitinib suppresses IL-12 and IL-23 directly, or 
rather indirectly through general immune suppression, has not yet 
thoroughly been studied.35

To answer this research question, we made use of mDCs and 
moDCs as representative models for systemic and localized inflam-
mation.36 We observed that both cell types increased the expres-
sion of IL23A and IL12B after TLR4 stimulation, in line with previous 
studies.24,35,37 The stimulation with IFN-γ, a direct activator of the 
JAK/STAT-pathway, did not induce the expression of these cyto-
kines, while potently inducing CXCL10, a known IFN-inducible gene 
(Figure S1B).

Upon LPS activation, we found that Tofacitinib was not able to 
suppress IL23A and IL12B mRNA expression in neither mDCs nor 
moDCs. A similar observation was reported earlier in a model of al-
lergic contact dermatitis by Bechara et al.29 These results indicate 
that the presence of IFN-γ is needed for Tofacitinib to efficiently 
reduce IL12B expression in DCs.

Unlike IL12B, IL23A expression was not potentiated by 
LPS+IFN-γ stimulation, nor reduced by Tofacitinib. In fact, IL23A 
expression was decreased upon stimulation with LPS+IFN-γ, as 
compared with LPS alone (Figure S6). Combined LPS+IFN-γ stim-
ulation in DCs was previously shown to promote IL23A mRNA 
degradation, while enhancing IL12A and IL12B mRNA stabiliza-
tion.38 Thus, these findings indicate that IL-12 and IL-23 could be 
differentially regulated by Tofacitinib in DCs.38,39 However, as pre-
viously documented by Bechara et al., the overall IL-23 protein pro-
duction is reduced by JAK inhibition as a result of the significant 
suppression of the IL-23  subunit IL12p40.29 As such, Tofacitinib 
could still play a significant role in reducing IL-23 production, de-
spite transiently inducing IL23A mRNA expression.

A differential response to Tofacitinib was observed in DCs 
stimulated with type I or type II IFN. Type II IFN-γ signals through 
JAK1/JAK2, which in turn promote STAT1 homodimers and inter-
feron regulatory factor (IRF)1/IRF8 complexes.40,41 Conversely, 
type I IFN-α and IFN-β signal through JAK1/TYK2, which lead to 
STAT1/STAT2 heterodimers associating with IRF9.42 Indeed, IRF1 
and IRF8 are potently induced upon LPS+IFN-γ co-stimulation, in 
comparison with LPS stimulation alone.40,43  Thus, it is plausible 
that Tofacitinib-dependent suppression of IL12B expression re-
quires inflammatory events triggered by type II, but not type I IFN 
signaling, such as modulation of IRF1/IRF8 transcription factors. 
From the skin data set, we could identify a distinct expression of 
IRF1/IRF8 in paired lesional and non-lesional samples of Pso pa-
tients and a reduced expression in lesional skin after Tofacitinib 
treatment (Figure S7).

In whole lesional Pso skin, we found that higher basal levels of 
IFN-γ correlated with a greater reduction in IL12B after 12 weeks 
of Tofacitinib treatment. Additionally, from whole blood data, we 
observed that Pso patients with higher IFN-signature at basal lev-
els displayed a better decrease in IL-12 after Tofacitinib, but not 
Etanercept, treatment which was accompanied by a significant re-
duction in PASI score.

Overall, our findings imply a novel role for IFN-γ in eliciting IL12B 
suppression by Tofacitinib in DCs. These results can be relevant for 
diseases characterized by IFN-γ involvement and aid to predict ther-
apeutic responses to Tofacitinib in Pso patients.
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