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Aims Reliably quantifying event rates in secondary prevention could aid clinical decision-making, including quantifying po-
tential risk reductions of novel, and sometimes expensive, add-on therapies. We aimed to assess whether the
SMART risk prediction model performs well in a real-world setting.

...................................................................................................................................................................................................
Methods and
results

We conducted a historical open cohort study using UK primary care data from the Clinical Practice Research
Datalink (2000–2017) diagnosed with coronary, cerebrovascular, peripheral, and/or aortic atherosclerotic car-
diovascular disease (ASCVD). Analyses were undertaken separately for cohorts with established (>_6 months) vs.
newly diagnosed ASCVD. The outcome was first post-cohort entry occurrence of myocardial infarction, stroke,
or cardiovascular death. Among the cohort with established ASCVD [n = 244 578, 62.1% male, median age
67.3 years, interquartile range (IQR) 59.2–74.0], the calibration and discrimination achieved by the SMART
model was not dissimilar to performance at internal validation [Harrell’s c-statistic = 0.639, 95% confidence
interval (CI) 0.636–0.642, compared with 0.675, 0.642–0.708]. Decision curve analysis indicated that the model
outperformed treat all and treat none strategies in the clinically relevant 20–60% predicted risk range.
Consistent findings were observed in sensitivity analyses, including complete case analysis (n = 182 482; c = 0.624,
95% CI 0.620–0.627). Among the cohort with newly diagnosed ASCVD (n = 136 445; 61.0% male; median age
66.0 years, IQR 57.7–73.2), model performance was weaker with more exaggerated risk under-prediction and a
c-statistic of 0.559, 95% CI 0.556–0.562.

...................................................................................................................................................................................................
Conclusions The performance of the SMART model in this validation cohort demonstrates its potential utility in routine

healthcare settings in guiding both population and individual-level decision-making for secondary prevention
patients.
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Introduction

The current population health approach to the secondary prevention
of atherosclerotic cardiovascular disease (ASCVD) is to offer a range
of well-established interventions, under the assumption that every-
one is at sufficiently high risk that the benefits of the interventions
outweigh their risks and costs.1–3 In contrast, primary prevention risk
management recommendations (where risks and benefits are, on
average, more closely balanced, and absolute benefits smaller) are
focused around using individual absolute risk estimates to guide inter-
vention decisions.3–6 Following the emergence of relatively high cost
novel secondary preventive adjunctive therapies that will not be cost
effective in all secondary prevention cases, and given emerging evi-
dence about the benefits of relatively nuanced selection of patients
for cardiovascular risk modification,7 guidelines increasingly recognize
that secondary prevention may benefit from a similar more individu-
alized approach.8 However, definitions of high-risk ASCVD patients
remain largely qualitative, relying on presence or absence of comor-
bidities.8 The lack of a more individualized quantitative approach lim-
its access to some novel interventions because of uncertainties about
cost-effectiveness.8 For instance, although trial data and guidelines
recommend broad patient groups for proprotein convertase subtili-
sin/kexin type 9 (PCSK9) inhibitor therapy, uncertainties around
cost-effectiveness for individuals hinders their uptake.9,10

Furthermore, when more than one option exists for such patients,
the choice between, for instance, novel anticoagulants such as rivar-
oxaban and additional lipid lowering therapies,11–14 could be further
informed from quantification of risk. The adoption of an individual-
ized approach to secondary prevention among those with ASCVD
has to-date been limited by the lack of validated cardiovascular dis-
ease risk estimation tools for this population.

The SMART risk prediction model—which estimates 10-year risk
of myocardial infarction (MI), stroke, or cardiovascular death—is one
of only two existing models for the general secondary prevention
population for which external validity has been explored,8,15,16 and
the only secondary prevention model for which a calculation tool has
been made available.17 To date, assessment of external validity of the
models for the general secondary prevention population has been
limited largely to trial participants.16 Information about performance
in wider routine care populations is not currently available, but is rec-
ognized as important to effective population health approaches,18

and would aid implementation in practice. We therefore aimed here
to assess the performance of the SMART risk prediction tool in pre-
dicting the 10-year risk of cardiovascular events in a secondary pre-
vention United Kingdom (UK) routine primary care cohort.

Methods

Study design and data sources
Our sample was a historical cohort from the Clinical Practice Research
Datalink (CPRD) GOLD database—a UK primary care database contain-
ing longitudinal patient health record data from 1987 onwards. It is repre-
sentative of the UK primary care-registered population and includes
more than 18 million patients (3 million of whom are currently regis-
tered). Linked Hospital Episode Statistics (HES) and Office for National
Statistics (ONS) mortality data are available for most patients residing in

England. The data are collected during routine general practice activity,
which includes most UK cardiovascular disease prevention activity. The
database has previously been used in both derivation and external valid-
ation of cardiovascular risk prediction tools.19,20

We constructed two cohorts of patients with established ASCVD,
which differed with regard to time since diagnosis. What we refer to as
the ‘primary cohort’ most closely resembles the derivation study co-
hort,15 and includes patients entering the cohort at the first date all of the
following criteria were met: 1 January 2000, first anniversaries of both
database entry and registration with the relevant general practice passed,
age >_18 and <80 years, the 6th month post-first record of clinically mani-
fest ASCVD (full definition in Supplementary material online, eMethods).
We required >_6 months between first record of relevant diagnosis and
cohort entry, as entry into the original SMART derivation study was typic-
ally several months post-diagnosis.15 We considered that these cohorts
would be receiving secondary preventive ASCVD treatments. To add-
itionally test the performance of SMART among those newly diagnosed
with ASCVD, our ‘secondary cohort’ included patients who entered the
cohort 1-week post-diagnosis, if the other above-listed criteria were al-
ready met. In both cohorts, the study exit date was the earliest of: a vas-
cular outcome (as defined below), last data upload, transfer out of
database, death as per ONS records, first recorded receipt of palliative
care treatment, or 31 December 2017. Only patients with linked HES
and ONS data were included. The SMART risk model [which includes
age, gender, history of smoking, diabetes, coronary artery disease, cere-
brovascular disease, aneurysm, peripheral arterial disease, number of
years since diagnosis of vascular disease, systolic blood pressure, high-
density lipoprotein cholesterol (HDL-C), total cholesterol, estimated
glomerular filtration rate (eGFR), and high-sensitivity C-reactive protein
(hsCRP)] and code lists applied in deriving both the cohorts and below
variables are available in the Supplementary material online, eMethods.

Outcome
Our outcome variable described the first occurrence of MI, stroke (is-
chaemic or haemorrhagic), or cardiovascular death (which includes
deaths due to: MI, congestive heart failure, ischaemic stroke, intracerebral
haemorrhage, ruptured abdominal aortic aneurysm, and sudden cardiac
death) post-cohort entry, as per each patient’s CPRD, HES, or ONS re-
cord. We did not have information regarding non-cardiovascular deaths
associated with cardiovascular procedures, which were included in the
definition of cardiovascular death in the SMART study, but otherwise the
outcome variable was defined as for model derivation.

Risk factors
The predictor variables were formatted in line with the SMART deriv-
ation study,15 using both published and unpublished information from the
model development team. Diabetes mellitus positivity reflected a type 1
or 2 diabetes diagnosis prior to cohort entry, ‘current smoking’ reflected
smoking of any intensity, and history and duration of cerebrovascular,
coronary and peripheral arterial disease, and abdominal aortic aneurysm,
were all defined in relation to the cohort entry date and the diagnostic
criteria and code lists used to define cohort eligibility. Age was also meas-
ured at cohort entry. For smoking status and clinical measurements other
than hsCRP and eGFR, the first recorded measurement after and within
10 years of cohort entry was used in assessment of the primary cohort.
The most recent measurement prior to and within 10 years of cohort
entry was used in assessment of the secondary cohort. Measurements of
eGFR were as per those directly recorded, or estimated based on
recorded creatinine values using the four-variable Modification of Diet in
Renal Disease Study equation,21,22 and the measurement closest to and
within 5 years either side of cohort entry was used. As hsCRP
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measurements are not routinely available in the CPRD, values were
imputed as described below. The other main differences between our
predictor ascertainment methods and those used for the SMART deriv-
ation cohort relate to the timing of measurements.

Additional variables of interest included receipt of lipid modifying ther-
apy, antihypertensive, antiplatelet, and/or anticoagulant treatment at
baseline (any relevant prescription within the preceding 6 months), base-
line body mass index (BMI), and ethnic background. Available BMI meas-
urements were prioritized and used as per the other (non-eGFR) clinical
measurements. The latest CPRD- or HES-recorded ethnicity was identi-
fied and categorized according to the five Level 1 ONS classifications
derived for the 2001 Census.

Statistical analysis
Analyses of the primary and secondary cohorts were undertaken separ-
ately. Baseline characteristics were described and data missingness
explored. Missing smoking, systolic blood pressure, HDL-C, total choles-
terol, and eGFR values, were imputed using multiple imputation, under a
missing at random assumption, with the other predictors included in the
imputation process. For hsCRP, values were imputed using the median
age-group*sex*baseline ASCVD diagnosis-specific values observed in the
original derivation cohort (provided by the study authors—see
Supplementary material online, eTable 1). Where multiple baseline
ASCVD diagnoses were present, the largest of the relevant diagnosis-spe-
cific hsCRP values was used. The below analyses were then undertaken
for each imputed dataset and the results combined using Rubin’s rules.

Patient 10-year cardiovascular event risks were calculated using the
SMART model (equation available in Supplementary material online,
eMethods) and their distribution summarized (Figure 1A). Calibration was
assessed by describing ratios of expected to observed risk, testing the cal-
ibrations,23 examining calibration plots, assessing survival curves for dif-
ferent risk groups, and estimating calibration slope. Discrimination was
assessed using Harrell’s c-statistic. Performance was broadly compared
with that observed for the original validation cohort, and the potential
clinical usefulness of the model was estimated across a range of potential
treatment thresholds in a decision curve analysis that allowed for censor-
ing.24 Sensitivity analyses included complete case analyses involving
patients with full information for all (non-hsCRP) SMART variables, and
analyses with predictor values based on clinical measurements recorded
within 3 years of cohort entry only. RStudio v3.5.1 was used for analysis.

Results

Data availability and cohort
characteristics
There were 244 578 patients from 393 practices included in the pri-
mary cohort, with a median follow-up of 5.25 years [interquartile
range (IQR) 2.15–9.63; 23.3% followed-up for >_10 years], during
which 45 327 outcome events were observed. Observed 10-year
event risks for males and females were 29.1% [95% confidence inter-
val (CI) 28.8–29.4%] and 26.6% (26.2–27.0%), respectively. There
were 136 445 patients from 389 practices included in the secondary
cohort, with a median follow-up of 3.74 years (IQR 1.10–7.76; 14.4%
followed-up for >_10 years). During follow-up, 28 115 outcome
events occurred and observed 10-year event risks for males and
females were 29.6% (95% CI 29.2–30.1%) and 27.9% (27.4–28.4%),
respectively. Among the secondary cohort, 14 865 patients (10.9%)
had events within 6 months of diagnosis.

Primary cohort baseline characteristics and associated missing data
are summarized in Table 1. A total of 182 482 primary cohort patients
(74.6%) had complete model predictor variable information (with
the exception of hsCRP). Corresponding information for the second-
ary cohort is available in Supplementary material online, eTable 2.
Compared with the original SMART derivation cohort characteris-
tics, our primary cohort had: (i) higher median age (67.3 vs.
60.0 years); (ii) a lower percentage of males (62.1% vs. 74.0%); and
(iii) lower estimated eGFR (66.1 vs. 76.0 mL/min/1.73 m2).
Imputation of hsCRP resulted in a median hsCRP of 2.4 mg/L (IQR
2.1–2.7). Since only medians by sex*age-group*ASCVD cluster were
used to impute hsCRP, this resulted in a compressed value range
compared with that of the derivation cohort (IQR 1.0–4.7).

Model performance: discrimination and
calibration
In the primary cohort, the median 10-year SMART-predicted event
risk was 22% (IQR 14–34%), with a wide distribution of risk (Figure
1A). Calibration plots displaying the observed vs. predicted risks for
groups based on sex*predicted risk decile and sex*age-group are dis-
played in Figure 1B and C, respectively. These show that higher pre-
dicted risks are associated with higher observed risks, though with
slight under-prediction of risks for men across the lower predicted
risk and age deciles. The fitted calibration slopes for men and women
were both 0.78 (95% CI 0.75–0.81). The ratios, by sex, of 10-year
predicted to observed risks across deciles of both predicted risk and
age are shown in Table 2 (v2 >_ 148.31; P < 0.0001).

Table 3 shows risk reclassification based on individual risk scores
(v2 = 1198.03; P < 0.0001). Observed risks fell within the predicted
ranges in all cases except where predicted risk was <10% (observed
risk 12%). This aligns with the mentioned slight under-predictive
power, which could be associated with the different age structures of
our primary cohort vs. the original derivation and validation cohorts.
Population differences may also underlie the larger ratio of those
expected at most risk (>_40% predicted risk) to those expected at
lowest risk (<10%) in our cohort vs. the original SMART cohort
(17.4%/10.3% = 1.69 vs. 13%/18%=0.72). With regard to discrimin-
ation, Harrell’s c-statistic was 0.639 (95% CI 0.636–0.642), which is
not significantly different from the original validation cohort figure
(c = 0.675, 0.642–0.708).15

Clinical utility: decision curve analysis
Figure 1D (top panel) demonstrates the proportion of the population
who would receive treatment for each possible predicted risk thresh-
old, and the proportion of total cardiovascular events covered within
that treated population. Treatment thresholds range from a thresh-
old of 0% (i.e. everyone treated) to 100% (i.e. no one treated). In
describing the ratio of true positives to false positives identified at
each threshold, the difference between the curves for these two
populations provides information about the clinical utility of the
SMART model across all potential thresholds. Our decision curve
analysis [Figure 1D (bottom panel)] compared the SMART model
with treat all and treat none benchmarks. Superior performance to
both alternatives was found in the 20–60% predicted risk range, and
equivalent performance to treat all, but superior to treat none, in the
0–20% predicted risk range.
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..Secondary cohort analysis
The results of our secondary cohort analyses are available in
Supplementary material online, eTables 2–4 and eFigures 1–4. In keep-
ing with its definition as a newly diagnosed cohort, baseline preva-
lence of smoking and cardiovascular risk-modifying therapy use
were, respectively, higher and lower than in the primary cohort.
SMART model performance was relatively weak for this cohort,
with slightly more exaggerated under-prediction of risk, and Harrell’s
c-statistic = 0.559 (95% CI 0.555–0.562).

Sensitivity analysis
The characteristics of those included in the complete case analysis,
and model performance for this cohort, were similar to those
observed for the primary cohort (see Supplementary material online,
eTables 5–7 and eFigures 5–8). Similar results were also obtained
when covariate measurements were restricted to within 3 years of
cohort entry (Supplementary material online, eTables 8–10 and
eFigures 9–12).

Discussion

Among those with established ASCVD, we found that the SMART
model slightly under-predicted risk among lower risk groups, but that
overall model performance was similar to that observed for the ori-
ginal validation cohort.15 Decision curve analysis indicated that the
model could have utility across a range of clinically relevant treatment
thresholds. However, model performance was weaker among those
newly diagnosed with ASCVD.

To date, tools enabling individual vascular event risk estimation for
secondary prevention populations have been of largely academic
interest, and as yet few are routinely used. Several have been devel-
oped for specific subgroups (e.g. those with coronary heart disease
specifically, rather than any ASCVD),19,25–28 and focus on specific out-
comes (e.g. coronary events rather than any ASCVD event), with
many limited to prediction over only 1–2 years.29,30 In some models,
exposures are weighted equally in an ordinal scale (i.e. regardless of
their beta coefficients),31 resulting in variation in risk category thresh-
olds among different trial populations.32 Furthermore, dichotomiza-
tion of continuous traits, although useful for identifying characteristics

Figure 1 Model performance in primary cohort. The top (A) panel displays the distribution of 10-year SMART model-predicted cardiovascular risk
overall and by sex*age decile (bottom). Ten-year SMART model-predicted cardiovascular risks and corresponding Kaplan–Meier observed risks are
displayed by predicted risk decile (B) and age decile (C), for both women (top) and men (bottom). The diagonal lines correspond to a perfect fit. The
top (D) panel displays the percentage of the population who would be treated (dashed line) and percentage of those who would have future cardio-
vascular events covered (solid line) as functions of utilizing the different displayed 10-year predicted risks as treatment thresholds. The top-left corner
corresponds to the ‘treat all’ scenario (treat all individuals with 10-year predicted risk above a 0% threshold), while the bottom-right corner corre-
sponds to the ‘treat none’ scenario (treat only those with a predicted risk of 100%). The bottom (D) panel displays the net benefit of the SMART
model (solid line) against the treat all (dashed) and treat none (dotted) approaches.
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..associated with higher-risk and hence those who derive greater bene-
fits from treatments, do not inherently estimate 10-year event rates
but rather identify high-risk individuals.31 That said, they are recog-
nized in some clinical guidelines as an important tool for identifying
very high-risk ASCVD patients who may benefit, for instance, from
novel more expensive treatment.33 Both approaches to risk estimat-
ing (high risk or 10-year event rates) are valid and perhaps the greatest
challenge is optimizing their utility or their implementation in clinical
practice.

The appropriateness of any model depends upon the interests of
the patient and clinician. However, there are potential advantages of
a model applicable to all ASCVD subtypes, such as SMART, given the
common pathology of different manifestations of ASCVD and risk of
all associated outcomes regardless of the specific ASCVD diagnosis.
It is likely that patients with a single ASCVD diagnosis will be inter-
ested in their risk of the wider range of relevant outcomes, and whilst

these could be considered using multiple models (where available),
the interpretation would be relatively complicated.

The SMART model was derived from a prospective Dutch,
principally white, cohort. Similar performance was observed
among more ethnically diverse patients enrolled in three global
trials, and now also in a routine UK established ASCVD co-
hort.15,16 Among available models for secondary prevention pop-
ulations, the present findings in a routine care setting suggest the
SMART model is reasonably robust for transfer into electronic
health records for general populations. However, whether the
SMART model is the most favourable for use depends upon the
intended location of use, clinical situation, patient-clinician prefer-
ences, and value judgments on the various model performance
statistics.17 Model ‘performance’ comparisons are not straightfor-
ward, as while some aspects of SMART model performance are
less favourable than those reported for other models, these do

....................................................................................................................................................................................................................

Table 1 Primary cohort baseline characteristics (n 5 244 578)

Risk factor Median/n IQR/% Missing: n (%)

Age 67.3 59.2–74.0 0

Sex (male) 151 888 62.1% 0

Date of cohort entry 01 January 2004 08 June 2000 to 21 May 2009 0

Vascular diseasea 0

Cerebrovascular disease 73 520 30.1%

Coronary heart disease 154 079 63.0%

Peripheral vascular disease 32 459 13.3%

Abdominal aortic aneurysm 7048 2.9%

Years since first vascular event 0

<1 year before enrolment 150 557 61.6%

1–2 years before enrolment 10 098 4.1%

>2 years before enrolment 83 923 34.3%

Current smoking (yes) 48 083 19.7% 24 449 (10.0%)

Diabetes mellitus 38 717 15.8% 0

Systolic blood pressure (mmHg) 140 126–150 12 605 (5.2%)

Total cholesterol (mmol/L) 4.7 4.0–5.6 28 610 (11.7%)

HDL cholesterol (mmol/L) 1.3 1.1–1.6 49 142 (20.1%)

hsCRP (mg/L) NA NA 244 578 (100.0%)

eGFR (mL/min/1.73 m2) 66.1 55.5–77.8 16 334 (6.7%)

BMI (kg/m2) 27.4 24.5–30.8 43 409 (17.7%)

Medication prescribed in the 6

months prior to cohort entrya

0

Lipid-modifying therapy 148 414 60.7%

Antihypertensive 187 052 76.5%

Antiplatelet 168 588 68.9%

Anticoagulant 18 690 7.6%

Ethnicity 13 382 (5.5%)

Asian 5589 2.3%

Black 1985 0.8%

Mixed 557 0.2%

White 220 850 90.3%

Other 2215 0.9%

BMI, body mass index; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; hsCRP, high-sensitivity C-reactive protein; IQR, interquartile range.
aIndividuals can have more than one.
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not necessarily correspond to lower model utility.34 Comparisons
would be best made for particular treatment intentions.

As has become commonplace in primary prevention, a model for
secondary prevention like SMART could help promote shared deci-
sion-making through enabling more precise discussions based on indi-
vidual absolute risk rather than a broad ‘very high risk’ category
which, though useful, provides qualitative rather than quantitative in-
formation.35,36 For the population with established ASCVD, esti-
mates of event rates ‘on-treatment’ could be viewed as estimates of
‘residual risk’ after initial treatment, and thus would be relevant to
guiding optimization of first line interventions for control of tradition-
al risk factors, as well as potential add-on interventions, by helping
quantify potential benefits for patients and physicians.16,37 The
SMART tool could also help with wider resource allocation deci-
sions.18 To date, it has been possible to calculate the cardiovascular
risk thresholds at which a given secondary prevention treatment
would be cost-effective (as defined by the relevant willingness-to-pay
threshold), but not possible to determine which individuals fall above
or below the thresholds. The result of guidelines considering that all
patients with clinical manifestations of ASCVD fall within a general

‘very high risk’ category,36 is that quantitative estimation of benefit/
risk balance of novel therapies is uncertain between, for instance,
two very-high-risk individuals, and access to some interventions may
therefore be limited. The SMART tool could help overcome this
issue, providing a practical framework for estimating 10-year event
rates and thus risk of secondary cardiovascular events. Some practical
examples of individual ASCVD clinical cases, and how the SMART
tool 10-year risk estimates can be used to translate the relative risk
reductions associated with different types of intervention into esti-
mated absolute individual event reductions, are shown in Table 4. As
well as providing estimates of individual event rates, this tool could
be used to estimate the population-based impact of different strat-
egies treating different thresholds of risk (Figure 2). Such approaches
could help inform strategies for novel therapies which may lend
themselves to population-based approaches.18,38 An open-access cal-
culator that can be used to aid comparisons of the benefits of poten-
tial (combinations of) interventions in which an individual may be
interested, is available,39 and is currently being expanded to include
risk reduction estimates for a wide range of specific interventions.

Strengths and limitations
The strengths of this study include the large sample sizes and use of
samples likely to be reasonably representative of the relevant UK
populations. Although a retrospective study, outcome reliability is
likely to be relatively strong. The outcomes were hard endpoints, the
ONS mortality data are generally considered high quality, and UK
general practitioners are incentivized to record MI and stroke occur-
rences using standard coding practices.40

The main limitations of the study are the missing data and data
quality issues associated with use of routine data. Predictor measure-
ment methods and standards will vary across the cohort, and some
predictors were not routinely measured at baseline. As we could
only crudely impute hsCRP data, and were required to accept vari-
ability in ‘baseline’ measurement timings, there was potential for
model performance to be lower in our cohort than at derivation.

....................................................................................................................................................................................................................

Table 2 Ratios, by sex, of 10-year predicted to observed risks by 10-year predicted risk score decile and by observed
age decile, as well as Chi-square calibration test results

Decile Risk decile—Men Risk decile—Women Age decile—Men Age decile—Women

1 0.64 0.74 0.63 0.71

2 0.71 0.83 0.70 0.90

3 0.75 0.86 0.75 0.86

4 0.74 0.92 0.79 0.90

5 0.83 0.90 0.85 0.95

6 0.84 0.90 0.87 1.01

7 0.88 0.99 0.89 0.99

8 0.92 1.02 0.98 1.07

9 0.98 1.06 1.03 1.01

10 1.14 1.19 1.03 1.06

v2a v2 = 1048.42 (P < 0.0001) v2 = 352.60

(P < 0.0001)

v2 = 901.33

(P < 0.0001)

v2 = 148.31 (P < 0.0001)

Decile 1, lowest predicted risk or lowest age decile. Ten-year predicted risks are defined as within-decile SMART-derived risk averages.
aCalibration test from Demler et al.23

.................................................................................................

Table 3 Ten-year predicted risk range, corresponding
Kaplan–Meier observed risks, Chi-square calibration
test results, and count and corresponding percentage of
the sample within each range

10-year predicted risk (%) Observed risk (%) n (%)

<10 12 25 132 (10.3)

10 to <20 19 86 483 (35.3)

20 to <30 28 55 912 (22.9)

30 to <40 36 34 501 (14.1)

>_40 49 42 550 (17.4)

v2a = 1198.03 (P < 0.0001).
aCalibration test from Demler et al.23

External validation of the SMART prediction tool in a real-world setting 659
D

ow
nloaded from

 https://academ
ic.oup.com

/eurjpc/article/29/4/654/6308229 by U
U

 U
trecht/U

niversity Library U
trecht user on 27 M

ay 2022



..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

T
ab

le
4

Il
lu

st
ra

ti
v
e

c
a
se

s
u

si
n

g
in

d
iv

id
u

a
l
d

a
ta

to
e
st

im
a
te

p
o

te
n

ti
a
l
ri

sk
re

d
u

c
ti

o
n

a
ss

o
c
ia

te
d

w
it

h
tw

o
d

if
fe

re
n

t
th

e
ra

p
e
u

ti
c

in
te

r
v
e
n

ti
o

n
s

fo
r

p
a
ti

e
n

ts
w

it
h

S
M

A
R

T
1
0
-y

e
a
r

p
re

d
ic

te
d

ri
sk

s
o

f
2
0

%
,
4
0

%
,
o

r
v
a
ri

e
d

P
a
ti

e
n

t
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

N
on

-H
D

L
ch

ol
es

te
ro

l(
m

m
ol

/L
)

2.
79

3.
26

2.
95

3.
07

2.
89

2.
61

2.
79

3.
20

3.
49

3.
49

3.
49

3.
49

3.
49

H
D

L
ch

ol
es

te
ro

l(
m

m
ol

/L
)

0.
51

7
0.

51
7

0.
49

1
0.

69
8

0.
64

6
0.

69
8

0.
69

8
0.

51
7

0.
74

9
0.

64
6

0.
46

5
0.

51
7

0.
64

6

T
ot

al
ch

ol
es

te
ro

l(
m

m
ol

/L
)

3.
31

3.
77

3.
44

3.
77

3.
54

3.
31

3.
49

3.
72

4.
24

4.
13

3.
95

4.
01

4.
13

A
ge

(y
ea

rs
)

63
.6

57
.0

62
.6

46
.1

74
.7

71
.0

72
.1

72
.0

73
.4

62
.3

69
.0

57
.1

77
.0

Se
x

M
al

e
M

al
e

Fe
m

al
e

M
al

e
Fe

m
al

e
Fe

m
al

e
Fe

m
al

e
M

al
e

Fe
m

al
e

M
al

e
M

al
e

Fe
m

al
e

M
al

e

C
ur

re
nt

sm
ok

in
g

st
at

us
N

o
Y

es
N

o
Y

es
N

o
Y

es
Y

es
N

o
N

o
N

o
N

o
N

o
N

o

Sy
st

ol
ic

BP
(m

m
H

g)
11

4
15

0
14

0
13

0
16

5
14

8
15

0
16

0
17

0
15

6
16

0
14

5
11

0

D
ia

be
te

s
m

el
lit

us
Y

es
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

C
or

on
ar

y
he

ar
t

di
se

as
e

Y
es

Y
es

Y
es

N
o

N
o

N
o

Y
es

Y
es

Y
es

N
o

N
o

Y
es

Y
es

C
er

eb
ro

va
sc

ul
ar

di
se

as
e

N
o

N
o

N
o

Y
es

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

Y
es

A
bd

om
in

al
ao

rt
ic

an
eu

ry
sm

N
o

N
o

N
o

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Pe
ri

ph
er

al
va

sc
ul

ar
di

se
as

e
N

o
N

o
N

o
N

o
Y

es
Y

es
N

o
N

o
N

o
N

o
Y

es
N

o
N

o

Y
ea

rs
si

nc
e

A
SC

V
D

—
—

2.
2

—
11

.8
—

12
.6

14
.5

23
.9

4.
5

7.
5

—
21

.5

eG
FR

(m
L/

m
in

/1
.7

3
m

2
)

67
.7

71
.0

54
.1

71
.5

78
.6

48
.4

59
.9

75
.3

30
.9

85
.7

54
.2

53
.1

91
.1

hs
C

R
P

(m
g/

L)
im

pu
te

d
2.

0
2.

3
2.

1
4.

5
3.

4
3.

4
2.

7
2.

5
2.

7
2.

0
2.

4
2.

5
2.

5

SM
A

R
T

10
-y

ea
r

pr
ed

ic
te

d

ba
se

lin
e

ri
sk

(%
)

20
.0

20
.0

20
.0

20
.0

40
.0

40
.0

40
.0

40
.0

75
.7

23
.8

45
.4

18
.1

61
.7

A
dd

iti
on

of
ri

va
ro

xa
ba

n

Pr
ed

ic
te

d
10

-y
ea

r
ri

sk

an
d

95
%

C
I

15
.2

(1
3.

2–
17

.2
)

15
.2

(1
3.

2–
17

.2
)

15
.2

(1
3.

2–
17

.2
)

15
.2

(1
3.

2–
17

.2
)

30
.4

(2
6.

4–
34

.4
)

30
.4

(2
6.

4–
34

.4
)

30
.4

(2
6.

4–
34

.4
)

30
.4

(2
6.

4–
34

.4
)

57
.5

(5
0.

0–
65

.1
)

18
.1

(1
5.

7–
20

.5
)

34
.5

(3
0.

0–
39

.0
)

13
.8

(1
1.

9–
15

.6
)

46
.9

(4
0.

7–
53

.1
)

A
bs

ol
ut

e
ri

sk
re

du
ct

io
n

(%
)

4.
8

4.
8

4.
8

4.
8

9.
6

9.
6

9.
6

9.
6

18
.2

5.
7

10
.9

4.
3

14
.8

A
dd

iti
on

of
a

PC
SK

9
M

A
b

Es
tim

at
ed

re
du

ct
io

n
in

no
n-

H
D

L
ch

ol
es

te
ro

l(
m

m
ol

/L
)

1.
40

1.
63

1.
47

1.
54

1.
45

1.
30

1.
40

1.
60

1.
74

1.
74

1.
74

1.
74

1.
74

Pr
ed

ic
te

d
10

-y
ea

r
ri

sk

an
d

95
%

C
I

15
.5

(1
5.

0–
15

.9
)

14
.8

(1
4.

3–
15

.3
)

15
.2

(1
4.

8–
15

.7
)

15
.1

(1
4.

6–
15

.5
)

30
.6

(2
9.

7–
31

.5
)

31
.4

(3
0.

6–
32

.2
)

30
.9

(3
0.

0–
31

.7
)

29
.7

(2
8.

8–
30

.7
)

54
.8

(5
2.

9–
56

.7
)

17
.2

(1
6.

6–
17

.8
)

32
.9

(3
2.

7–
34

.0
)

13
.1

(1
2.

7–
13

.6
)

44
.7

(4
3.

1–
46

.2
)

A
bs

ol
ut

e
ri

sk
re

du
ct

io
n

(%
)

4.
6

5.
2

4.
8

5.
0

9.
4

8.
6

9.
1

10
.3

20
.9

6.
6

12
.5

5.
0

17
.0

T
he

ta
bl

e
sh

ow
s

ba
se

lin
e

cl
in

ic
al

in
fo

rm
at

io
n

an
d

as
so

ci
at

ed
SM

A
R

T
pr

ed
ic

te
d

ri
sk

s
fo

r
13

pa
tie

nt
s.

Pa
tie

nt
s

1–
4

ha
ve

a
pr

ed
ic

te
d

ri
sk

of
20

%
,P

at
ie

nt
s

5–
8

a
pr

ed
ic

te
d

ri
sk

of
40

%
,a

nd
Pa

tie
nt

s
9–

13
va

ri
ab

le
pr

ed
ic

te
d

ri
sk

s,
bu

t
co

m
m

on
le

ve
ls

of
no

n-
H

D
L

ch
ol

es
te

ro
l(

no
n-

H
D

L-
C

;3
.4

9
m

m
ol

/L
).

T
he

an
tic

ip
at

ed
ab

so
lu

te
ri

sk
re

du
ct

io
ns

(A
R

R
)

th
at

w
ou

ld
be

as
so

ci
at

ed
w

ith
us

e
of

ri
va

ro
xa

ba
n

[w
he

re
th

e
re

la
tiv

e
ri

sk
re

du
ct

io
n

(R
R

R
)

is
a

fix
ed

pr
op

or
tio

n
of

gl
ob

al
ri

sk
]a

or
a

PC
SK

9
in

hi
bi

to
r

at
m

ax
im

al
do

se
,w

he
re

re
la

tiv
e

ri
sk

re
du

ct
io

n
de

pe
nd

s
up

on
th

e
ba

se
lin

e
ch

ol
es

te
ro

ll
ev

el
s

an
d

th
er

ef
or

e
va

ri
es

co
ns

id
er

ab
ly

be
tw

ee
n

in
di

vi
du

al
s,

ar
e

al
so

sh
ow

n.
T

he
es

tim
at

ed
A

R
R

s
as

so
ci

at
ed

w
ith

us
e

of
PC

SK
9

in
hi

bi
to

rs
re

qu
ir

e
kn

ow
le

dg
e

of
th

e
pr

e-
tr

ea
tm

en
t

lip
id

pr
ofi

le
as

tr
ea

tm
en

t
ef

fe
ct

s
ar

e
es

tim
at

ed
ba

se
d

on
R

R
R

pe
r

un
it

ab
so

lu
te

ch
ol

es
te

ro
lr

ed
uc

tio
n.

b
T

he
as

so
ci

at
ed

ro
w

s
in

th
e

ta
bl

e
di

sp
la

y
th

e
es

tim
at

ed
im

pa
ct

of
PC

SK
9

tr
ea

tm
en

t
on

no
n-

H
D

L-
C

le
ve

ls
(5

0%
R

R
R

)c
an

d
ho

w
th

is
tr

an
sl

at
es

in
to

ab
so

lu
te

re
du

ct
io

n
of

no
n-

H
D

L-
C

(c
on

st
an

t
fo

r
a

gi
ve

n
ba

se
lin

e
ch

ol
es

te
ro

ll
ev

el
),

an
d

ab
so

lu
te

ca
rd

io
va

sc
ul

ar
ri

sk
re

du
ct

io
n

(v
ar

ia
bl

e
ev

en
w

he
re

ba
se

lin
e

ch
ol

es
te

ro
ll

ev
el

s
ar

e
th

e
sa

m
e,

if
th

e
ba

se
lin

e
ca

rd
io

va
sc

ul
ar

ri
sk

di
ffe

rs
).

Fo
r

Pa
tie

nt
s

9–
13

w
ith

id
en

tic
al

no
n-

H
D

L-
C

le
ve

ls
(3

.4
9

m
m

ol
/L

),
10

-y
ea

r
pr

ed
ic

te
d

ri
sk

s
va

ry
be

tw
ee

n
18

.1
%

an
d

75
.7

%
,d

ep
en

di
ng

up
on

ad
di

tio
na

lf
ac

to
rs

.T
hu

s
if

a
m

on
oc

lo
na

la
nt

ib
od

y
to

PC
SK

9
w

er
e

ad
de

d,
al

th
ou

gh
th

e
no

n-
H

D
L-

C
re

la
tiv

e
ri

sk
re

-
du

ct
io

n,
an

d
ab

so
lu

te
H

D
L-

C
re

du
ct

io
n,

w
ou

ld
be

co
ns

ta
nt

fo
r

ea
ch

pa
tie

nt
,t

he
ab

so
lu

te
ov

er
al

lc
ar

di
ov

as
cu

la
r

ri
sk

be
ne

fit
w

ou
ld

de
pe

nd
up

on
th

e
SM

A
R

T
ba

se
lin

e
pr

ed
ic

te
d

ri
sk

an
d

co
ul

d
ra

ng
e

fr
om

5.
0%

to
20

.9
%

.I
n

co
nt

ra
st

,a
tr

ea
tm

en
t

su
ch

as
ri

va
ro

xa
ba

n
w

ou
ld

be
as

so
ci

at
ed

w
ith

a
co

ns
ta

nt
ov

er
al

lc
ar

di
ov

as
cu

la
r

ri
sk

R
R

R
of

ab
ou

t
24

%
(i.

e.
th

is
w

ou
ld

no
t

de
pe

nd
up

on
a

sp
ec

ifi
c

ba
se

lin
e

cl
in

ic
al

m
ea

su
re

m
en

t)
,a

nd
ab

so
lu

te
ca

rd
io

va
sc

ul
ar

ri
sk

re
du

ct
io

ns
w

ou
ld

be
es

tim
at

ed
to

ra
ng

e
fr

om
4.

3%
to

18
.2

%
.W

e
ha

ve
ch

os
en

th
e

ex
am

pl
es

of
ri

va
ro

xa
ba

n
an

d
PC

SK
9

in
hi

bi
to

rs
to

de
m

on
st

ra
te

ho
w

th
e

ca
rd

io
va

sc
ul

ar
ri

sk
ef

fe
ct

s
of

in
te

rv
en

tio
ns

th
at

do
an

d
do

no
t

de
pe

nd
on

ba
se

lin
e

va
ri

ab
le

m
ea

su
re

m
en

ts
ca

n
be

es
tim

at
ed

fr
om

an
in

-
di

vi
du

al
gl

ob
al

ca
rd

io
va

sc
ul

ar
ri

sk
es

tim
at

e.
T

he
pr

in
ci

pl
es

ca
n

be
ge

ne
ra

liz
ed

to
an

y
(p

ha
rm

ac
ol

og
ic

al
,l

ife
st

yl
e,

so
ci

al
,o

r
ot

he
r)

ri
sk

fa
ct

or
fo

r
w

hi
ch

th
e

re
la

tiv
e

ri
sk

re
du

ct
io

n
as

so
ci

at
ed

w
ith

in
te

rv
en

tio
n

ha
s

be
en

de
sc

ri
be

d,
so

lo
ng

as
th

e
re

le
va

nt
ba

se
lin

e
m

ea
su

re
m

en
ts

ar
e

av
ai

la
bl

e,
w

he
re

re
le

va
nt

.
a T

he
re

la
tiv

e
ri

sk
re

du
ct

io
n

w
as

es
tim

at
ed

to
be

24
%

[h
az

ar
d

ra
tio

=
0.

76
;9

5%
co

nfi
de

nc
e

in
te

rv
al

(C
I),

0.
66

–0
.8

6]
ba

se
d

on
th

e
C

O
M

PA
SS

tr
ia

l.1
1

b
A

bs
ol

ut
e

C
V

D
ri

sk
re

du
ct

io
n

(%
)

es
tim

at
ed

fr
om

a
16

.9
%

re
la

tiv
e

ri
sk

re
du

ct
io

n
pe

r
m

m
ol

/L
no

n-
H

D
L-

C
de

ri
ve

d
fr

om
th

e
C

ho
le

st
er

ol
T

re
at

m
en

t
T

ri
al

is
ts

’C
ol

la
bo

ra
tio

n
da

ta
(s

ee
Su

pp
le

m
en

ta
ry

m
at

er
ia

lo
nl

in
e,

eT
ab

le
11

).
c A

50
%

re
du

ct
io

n
in

ba
se

lin
e

no
n-

H
D

L-
C

w
as

as
su

m
ed

ba
se

d
on

a
co

ns
er

va
tiv

e
es

tim
at

e
of

th
e

O
SL

ER
,F

O
U

R
IE

R
,a

nd
O

D
Y

SS
EY

LO
N

G
T

ER
M

tr
ia

ls
,1

2–
1
4

w
hi

ch
us

ed
th

e
m

ax
im

al
do

se
s

of
tw

o
di

ffe
re

nt
PC

SK
9

in
hi

bi
to

rs
.

660 A.J. McKay et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurjpc/article/29/4/654/6308229 by U
U

 U
trecht/U

niversity Library U
trecht user on 27 M

ay 2022

https://academic.oup.com/eurjpc/article-lookup/doi/10.1093/eurjpc/zwab093#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.Although we did not observe this, it is still the case that model per-
formance could be altered by more ‘complete’ data, but relatively un-
likely that data more in keeping with derivation dataset
measurement standards would lead to lower performance. The im-
putation of hsCRP and its reliability is especially limited for some
clusters, e.g. those <40 years old, for which counts were small in
the original derivation and validation cohorts, as well as our primary
cohort. Despite the limitation of absent hsCRP data, model per-
formance was similar to that reported for the original validation co-
hort, which included full information on all covariates, thus
supporting robustness to imputation. Moreover, in two further
cohorts the model has performed well without hsCRP data.16,41

Therefore, while hsCRP is useful, the model appears to be clinically

useful with imputation of this data as needed. Additionally, the im-
putation step provides some imputed information regarding hsCRP,
although obviously limited. Complete case analyses provided sup-
port regarding the impact of imputation more generally. Similarly,
analyses using covariate measurements made within 3 years of co-
hort entry showed outcomes comparable to those obtained in the
less restrictive primary analysis. Future work could build on the
present approach, by embedding the SMART risk score into clinical
trials, to ascertain quantitative risk thresholds and, by comparison,
treatment benefits. This could help improve future guidelines from
being largely qualitative (binary) decision-making systems to more
precision and personalized based medicine. This could better
aid implementation of novel therapies, where health economic

Figure 2 Estimated impact of potential interventions for patients with SMART 10-year predicted risks above 20% and non-HDL-cholesterol above
2.6 mmol/L. The top row of plots displays the distribution of 10-year SMART model-predicted cardiovascular risk by baseline non-HDL-C for n = 244
490 patients, which excludes those with baseline non-HDL-C levels above 11 mmol/L, presented as: (A) a 3D histogram including the number of
patients; (B) a 3D histogram including the natural log of the number of patients; and (C) a heatmap showing what would be seen when looking at (A)
directly from above, which helps to see the numbers behind the tall bins of the histogram. In order to identify differences between low numbers and
zeros, white bins in the plots represent exact zero values. The bottom row of plots contains the distribution of estimated 10-year cardiovascular event
risks in the study population upon treating those with non-HDL-C above 2.6 mmol/L and 10-year SMART model-predicted cardiovascular risk above
20% (n = 107 371; 43.92%) with a PCSK9 inhibitor at maximal dose. This row also presents: (A) a 3D histogram including the number of patients; (B) a
3D histogram including the natural log of the number of patients; and (C) a heatmap, again emphasizing the number of patients represented in (A).
Treatment effects are estimated based on relative risk reduction (RRR) per unit absolute cholesterol reduction,a with the second row of plots demon-
strating the estimated impact of PCSK9 treatment on non-HDL-C levels (50% RRR)b and how this translates into absolute reduction of non-HDL-C
(constant for a given baseline cholesterol level), and absolute cardiovascular risk reduction (variable even where baseline cholesterol levels are the
same, if the baseline cardiovascular risk differs). The plots show a shift away from high-cholesterol and high 10-year cardiovascular risk to lower chol-
esterol and lower 10-year cardiovascular risk, representing steeper 3D histograms.
aAbsolute CVD risk reduction (%) estimated from a 16.9% relative risk reduction per mmol/L derived from the Cholesterol Treatment Trialists’ Collaboration data

(see Supplementary material online, eTable 11). bA 50% reduction in baseline non-HDL-C was assumed based on a conservative estimate of the OSLER, FOURIER,

and ODYSSEY LONG TERM trials,12–14 which used the maximal doses of two different PCSK9 inhibitors.
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..evaluations based on average risk have led to a reluctance to imple-
ment many therapies.

Conclusions

For patients with established ASCVD, the SMART model offers a reli-
able tool for assessment of 10-year residual risk in routine clinical
care settings. This tool can aid personalized informed decision-mak-
ing by offering clinicians, patients, and policy-makers an additional
tool to help decide to whom to offer novel therapies.

Supplementary material

Supplementary material is available at European Journal of Preventive
Cardiology online.
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