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Abstract 

Background:  Nowadays, multiple omics data are measured on the same samples in 
the belief that these different omics datasets represent various aspects of the underly‑
ing biological systems. Integrating these omics datasets will facilitate the understand‑
ing of the systems. For this purpose, various methods have been proposed, such as Par‑
tial Least Squares (PLS), decomposing two datasets into joint and residual subspaces. 
Since omics data are heterogeneous, the joint components in PLS will contain variation 
specific to each dataset. To account for this, Two-way Orthogonal Partial Least Squares 
(O2PLS) captures the heterogeneity by introducing orthogonal subspaces and better 
estimates the joint subspaces. However, the latent components spanning the joint 
subspaces in O2PLS are linear combinations of all variables, while it might be of inter‑
est to identify a small subset relevant to the research question. To obtain sparsity, we 
extend O2PLS to Group Sparse O2PLS (GO2PLS) that utilizes biological information on 
group structures among variables and performs group selection in the joint subspace.

Results:  The simulation study showed that introducing sparsity improved the fea‑
ture selection performance. Furthermore, incorporating group structures increased 
robustness of the feature selection procedure. GO2PLS performed optimally in terms of 
accuracy of joint score estimation, joint loading estimation, and feature selection. We 
applied GO2PLS to datasets from two studies: TwinsUK (a population study) and CVON-
DOSIS (a small case-control study). In the first, we incorporated biological information 
on the group structures of the methylation CpG sites when integrating the methylation 
dataset with the IgG glycomics data. The targeted genes of the selected methylation 
groups turned out to be relevant to the immune system, in which the IgG glycans play 
important roles. In the second, we selected regulatory regions and transcripts that 
explained the covariance between regulomics and transcriptomics data. The cor‑
responding genes of the selected features appeared to be relevant to heart muscle 
disease.

Conclusions:  GO2PLS integrates two omics datasets to help understand the underly‑
ing system that involves both omics levels. It incorporates external group information 
and performs group selection, resulting in a small subset of features that best explain 
the relationship between two omics datasets for better interpretability.

Keywords:  Integration of Omics data, Dimension reduction, Feature selection, Group 
structure, O2PLS
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Background
With the advancements in high throughput technology, multiple omics data are com-
monly available on the same subjects. To identify a set of relevant related features 
across the omics levels, these datasets need to be integrated and analyzed jointly. 
For statistical integration of omics data, there are several challenges to overcome: 
complex correlation structure within and between omics data, high-dimension-
ality ( p ≫ n , or “large p, small n”), heterogeneity between different omics datasets, 
and selection of relevant features in each dataset. To deal with the first two chal-
lenges, Partial Least Squares (PLS) has been proposed [1, 2]. Dimension reduction is 
achieved by decomposing two datasets X and Y into joint and residual subspaces. The 
joint (low-dimensional) subspace of one dataset represents the best approximation 
of X or Y based on maximizing the covariance of the two. However, by integrating 
two heterogeneous omics datasets, the PLS joint components also contain (strong) 
omic-specific variation. This heterogeneity can be caused by differences (e.g. between 
methylation and glycomics) in size, distribution, and measurement platform. Ignor-
ing these omic-specific characteristics (variation specific to each of the data) in the 
model may lead to a biased representation of the underlying system. Two-way orthog-
onal partial least squares (O2PLS)  [3, 4] was proposed to decompose each dataset 
into joint, orthogonal, and residual subspaces. The orthogonal subspaces in X and Y 
capture variation unrelated to each other, making the joint subspaces better estimates 
for the true relation between X and Y. Hence, O2PLS accounts for the heterogene-
ity of two omics datasets. However, the resulting low-dimensional latent components 
spanning the joint subspaces are linear combinations of all the observed variables. 
Therefore, to select a small subset of relevant features for better interpretation, one 
can impose sparsity on the loadings of the principal components. A straightforward 
approach is to ignore all loadings smaller than some threshold value, effectively treat-
ing them as zero, which can be misleading [5].

Several sparse methods based on PLS have been proposed. Chun and Keleş proposed 
sparse PLS (SPLS)  [6] which fits PLS on a reduced X space, consisting of pre-selected 
X-variables using a penalized regression. Sparse PLS (sPLS) by Lê Cao et al. [7] imposes 
L1 penalty on the singular value decomposition (SVD) of the covariance matrix of X and 
Y, resulting in sparse loading vectors for both datasets. Often it is of interest to select a 
group of features instead of individual features, e.g. features within a gene or a pathway. 
By so doing, one can improve power by identifying aggregate effects of the selected fea-
tures [8–10]. Liquet et al. extended sPLS to group PLS (gPLS) [10], imposing group-wise 
L2 penalties on the loadings of the pre-defined feature groups. It results in group-wise 
sparsity (i.e., features belonging to the same group will always be selected altogether).

In this work, we propose to extend O2PLS to incorporate sparsity, called Group Sparse 
O2PLS (GO2PLS). GO2PLS obtains sparse solutions by pushing a large number of small 
non-zero weights (or loading values) to zeros, instead of employing hard thresholding 
using arbitrary cut-off values. Therefore, GO2PLS constructs joint low-dimensional 
latent components representing the underlying systems involving both omics levels 
while taking into account the heterogeneity of different omics data, incorporates exter-
nal biological information such as known group structure, and performs variable selec-
tion by imposing group-wise penalties on the loading vectors in the joint subspaces.
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For illustration, we apply GO2PLS to datasets from two studies. Firstly, TwinsUK is 
a population based study [11, 12], where methylation (482K CpG sites) and 22 immu-
noglobulin G (IgG) glycans were measured. A previous research  [13] suggested the 
presence of an indirect influence of methylation on IgG glycosylation that may in part 
capture environmental exposures. We integrate the two omics datasets, aiming to iden-
tify groups of CpG sites affecting IgG glycosylation. In the CVON-DOSIS case-control 
study [14], regulomics (histone modification) and transcriptomics data were measured 
on 13 hypertrophic cardiomyopathy (HCM) patients and 10 controls. Histone modifi-
cation can have an impact on gene expression. Therefore we integrate the two omics 
datasets and identify a small set of regulatory regions and transcripts explaining this 
relationship. Moreover, the extreme imbalance in a high-dimensional setting (33K ChIP-
seq and 15K RNA-seq vs 23 subjects) poses computational challenges. The resulting 
selected features are further studied using gene set enrichment analysis  [15]. Several 
possible scenarios containing these characteristics are designed and investigated in an 
extensive simulation study.

This paper is organized as follows. In the methods section, an overview of O2PLS is 
presented, followed by the formulation of GO2PLS. Via a simulation study, we explore 
the properties of GO2PLS and compare its performance to other competitive methods. 
We then apply GO2PLS to integrate methylation and glycomics in the TwinsUK study 
and regulomics and transcriptomics in the CVON-DOSIS study. We conclude with a 
discussion and possible directions to further extend the method.

Methods
Data description

TwinsUK datasets

Whole blood methylation (using Infinium HumanMethylation450 BeadChip) and IgG 
glycomics (Ultra Performance Liquid Chromatography) data were measured on 405 
independent individuals, among which 392 are females and 13 are males. The age ranges 
from 18 to 81, with a median of 58. The methylation dataset consists of beta values (ratio 
of intensities between methylated and unmethylated alleles) at 482563 CpG sites. CpG 
sites with missing values, on allosomes, or labeled cross-active [16] were removed. We 
kept only the CpG sites on CpG islands or surrounding areas (shelves and shores) that 
mapped to genetic regions. Age, sex, batch effect, and cell counts were corrected for 
using multiple regression. The glycomics dataset contains 22 glycan peaks. These peaks 
were normalized using median quotient (MQ) normalization [17], log-transformed, and 
adjusted for batch effect, age, and sex as well. The remaining 126299 CpG sites were then 
divided into 16892 groups based on their target genes (biological information from the 
UCSC database [18, 19]). No group information was available for the glycomics data.

CVON‑DOSIS datasets

In the CVON-DOSIS study, regulomics and transcriptomics datasets were measured on 
the samples taken from the heart tissues of 13 HCM patients and 10 healthy controls. 
HCM is a heart muscle disease that makes it harder for the heart to pump blood, leading 
to heart failure. The regulomics data were measured using ChIP-seq, providing counts 
of histone modification H3K27ac in 33642 regulatory regions. The transcriptomics 
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data contain counts of 15882 transcripts, measured by RNA-seq. The raw counts of 
regulomics data were normalized with reads per kilobase million (RPKM) to adjust for 
sequencing depth. Transcriptomics data were normalized with counts per million (CPM) 
with effective library size (estimated using the Trimmed Mean of M-values (TMM) 
method in EdgeR R package [20]). Further, both normalized data were log-transformed.

Two‑way orthogonal partial least squares (O2PLS)

Let X and Y be two data matrices with the number of rows equal to the sample size N 
and the number of columns equal to the dimensionality p and q, respectively. Let the 
number of joint, X-orthogonal (unrelated to Y) and Y-orthogonal components be K  , Kx 
and Ky , respectively, where K  , Kx and Ky are typically much smaller than p and q. The 
O2PLS model decomposes X and Y as follows:

The relation between X and Y is captured through the inner relation between T and U,

In this model, the scores are: T (N × K ), U (N × K ), T⊥ (N × Kx), U⊥ (N × Ky). 
They represent projections of the observed data X and Y to lower-dimensional sub-
spaces. The loadings, W (p× K ), C (q × K ), P⊥ (p× Kx), Q⊥ (q × Ky), indicate rela-
tive importance of each X and Y variable in forming the corresponding scores. Further, 
E (N × p), F (N × q), H (N × K ), H̃ (N × K ), represent the residual matrices.

In O2PLS, estimates of the joint subspaces are obtained by first filtering out the 
orthogonal variation. The filtered data matrices X̃ and Ỹ  are constructed as follows:

where T⊥,U⊥ are estimates for the orthogonal subspaces, and IN is identity matrix of size 
N. For more details see [3]. The joint parts maximize the covariance between the joint 
scores T = X̃W  and U = Ỹ C . Here, W and C consist of loading vectors ( w1, . . . ,wK  ) 
and ( c1, . . . , cK  ), which can be found as the right and left singular vectors of the covari-
ance matrix Ỹ⊤X̃ [4]. Calculating and storing Ỹ⊤X̃ of dimension q × p can be cumber-
some for high dimensional omics data. Therefore we consider the following optimization 
problem sequentially for components k = 1, . . . ,K :

where parameters wk , ck are the loading vectors of the k-th joint components and X̃k , Ỹk 
are the filtered data matrices after k − 1 times of deflation. This can be solved efficiently 
using the Nonlinear Iterative Partial Least Squares (NIPALS)  [21] algorithm, which 
starts with random initialization of the X-space score vector t and repeats a sequence of 
the following steps until convergence:

(1)
X = TW⊤ + T⊥P

⊤
⊥ + E,

Y = UC⊤ + U⊥Q
⊤
⊥ + F .

(2)
U = TBT +H ,

T = UBU + H̃ .

(3)
X̃ = (IN − T⊥(T

⊤
⊥T⊥)

−1T⊤
⊥ )X ,

Ỹ = (IN −U⊥(U
⊤
⊥U⊥)

−1U⊤
⊥ )Y ,

(4)max
�ck�2=1,�wk�2=1

c⊤k Ỹ
⊤
k X̃kwk ,
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In step 1 and 4, Yk and Xk are projected onto the X-space score vector t and the Y-space 
score u to get the loading vectors ck and wk . The loading vectors are then unitized (step 
2 and 5) and used to calculated the new scores u and t. Convergence of the algorithm is 
guaranteed. A detailed description and proof of optimality of the O2PLS algorithm can 
be found in [3, 4].

While standard cross-validation (CV) over a 3-dimensional grid is often used to 
determine the optimal number of components K  , Kx , and Ky , the procedure is not 
optimal for O2PLS, since there is not a single optimization criterion for all three 
parameters. As in  [4], we use an alternative CV procedure that first performs a 
2-dimensional grid search of Kx and Ky , with a fixed K  , to optimize prediction per-
formance of T → U  and U → T  . Then a sequential search of optimal K  is conducted 
to minimize the sum of mean squared errors (MSE) of prediction concerning X → Y  
and Y → X .

Group sparse O2PLS (GO2PLS)

GO2PLS extends O2PLS by introducing a penalty in the NIPALS optimization on the 
filtered data X̃  and Ỹ  . This penalty encourages sparse, or group-sparse solutions for 
the joint loading matrices W and C, leading to a subset of the original features corre-
sponding to non-zero loading values being selected in each joint component.

Briefly, we introduce an L1 penalty on each pair of joint loading vectors. The optimi-
zation problem for the k-th pair of joint loadings ck , wk is:

where �c, �w are penalization parameters that regulate the sparsity level. The optimiza-
tion problem (6) can be solved [22] by iterating over the k-th pair of joint loadings,

where t = X̃kwk and u = Ỹkck . Here, S(·) is the soft thresholding operator: 
S(a, const) = sgn(a)(|a| − const)+ ( const ≥ 0 is a non-negative constant, (x)+ equals to 
x if x > 0 and equals to 0 if x ≤ 0).

To perform group selection, we impose group-wise L2 penalty on the joint load-
ing vectors. Let X̃  and Ỹ  be partitioned into J (J ≤ p) and M (M ≤ q) groups, 
respectively. The submatrices X̃ (j) and Ỹ (m) ( j = 1, . . . , J ; m = 1, . . . ,M ) contain the 
j-th and m-th group of variables, with corresponding loading vectors w(j) (of size pj ) 
and c(m) (of size qm ). The optimization problem for the k-th pair of loading vectors 
ck = (c

(1)

k

⊤
, . . . , c

(M)

k

⊤
)⊤ and wk = (w

(1)

k

⊤
, . . . ,w

(J )
k

⊤
)⊤ can be written as follows:

(5)
1)ck =

Ỹ⊤
k t

t⊤t
, 2)�ck�2 → 1, 3)u = Ỹkck ,

4)wk =
X̃⊤
k u

u⊤u
, 5)�wk�2 → 1, 6)t = X̃kwk .

(6)max
�ck�2=1,�wk�2=1

c⊤k Ỹ
⊤
k X̃kwk + �c�ck�1 + �w�wk�1,

(7)ck =
S(Ỹ⊤

k t, �c)∥∥∥S(Ỹ⊤
k t, �c)

∥∥∥
2

, wk =
S(X̃⊤

k u, �w)∥∥∥S(X̃⊤
k u, �w)

∥∥∥
2

,
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where the last two terms are reformulations of the unit norm constraints on ck and wk , 
with φc and φw being the Lagrangian multipliers. The effective penalization parameters 
on each group ( �c, �w ) are adjusted by the square root of the group size to correct for 
the fact that larger groups are more likely to be selected. This optimization problem can 
be solved using block coordinate descent (for details, see Additional file 1). The solution 
takes the form:

The X̃-variables within the j-th group will have non-zero weights if 
∥∥∥X̃ (j)⊤

k u
∥∥∥
2
 (i.e., the 

contribution of the whole group to the covariance) is larger than the size-adjusted penal-
ization parameter √pj�w . In the same way, the Ỹ -variables within the m-th group will be 
assigned non-zero loading values if 

∥∥∥Ỹ (m)⊤

k t
∥∥∥
2
>

√
qm�c.

Note that when all the groups have size 1, the summation of group-wise L2 penalties is 
equivalent to an L1 penalty on the unpartitioned loading vector and individual features 
will be selected (i.e., (8) reduces to (6)). In this specific case, to avoid confusion, we call 
the method Sparse O2PLS (SO2PLS). When the penalization parameters �w = �c = 0 , 
GO2PLS becomes to O2PLS. If the number of orthogonal components Kx = Ky = 0 , 
GO2PLS, SO2PLS, O2PLS are equivalent to gPLS, sPLS, and PLS, respectively.

The k-th pair of joint loadings are orthogonalized with respect to the previous k − 1 
loading vectors. Let π be an index set for selected variables in wk . The orthogonalization 
is achieved by first projecting w(π)

k  onto span{w(π)
1

, . . . ,w
(π)

k−1
} , and then subtracting this 

projection from w(π)

k  . When the previous k − 1 components do not select any variable in 
π , span{w(π)

1
, . . . ,w

(π)

k−1
} is actually a zero subspace and no orthogonalization is needed.

To determine the optimal sparsity level, it is more convenient and intuitive to focus 
on the number of selected X̃ , Ỹ  groups (donote hx , hy , respectively). If prior biological 
knowledge does not already specify certain hx and hy , cross-validation can be used to 
search for combinations of hx and hy that maximize the covariance between each pair of 
estimated joint components Cov(t̂, û) . Similar to LASSO [23], the “one-standard-error-
rule” [24] can be applied to obtain a more stable CV result. The GO2PLS algorithm is 
described below:

(8)

min

c
(m)
k ,w

(j)
k




−
J�

j=1

M�

m=1

c
(m)

k

⊤
Ỹ
(m)⊤

k X̃
(j)
k w

(j)
k

+ �c

M�

m=1

√
qm

���c(m)

k

���
2
+ �w

J�

j=1

�
pj

���w(j)
k

���
2

+φc

�
M�

m=1

���c(m)

k

���
2

2
− 1

�
+ φw




J�

j=1

���w(j)
k

���
2

2
− 1








,

(9)

c
(m)

k =

(∥∥∥Ỹ (m)⊤

k t
∥∥∥
2
−√

qm�c

)

+

2φc

∥∥∥Ỹ (m)⊤

k t
∥∥∥
2

Ỹ
(m)⊤

k t,

w
(j)
k =

(∥∥∥X̃ (j)⊤

k u
∥∥∥
2
−√

pj�w

)

+

2φw

∥∥∥X̃ (j)⊤

k u
∥∥∥
2

X̃
(j)⊤

k u.
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Simulation Study
We evaluate the performance of GO2PLS in two scenarios. First, we investigate the abil-
ity to select the relevant groups under various scenarios, focusing on the joint subspace, 
where the group selection takes place. Second, we compare the performance of GO2PLS 
and SO2PLS with other methods: O2PLS, PLS, sPLS, and gPLS. We investigate joint 
score estimation, joint loading estimation, and feature selection performances.

In the first scenario, we set the number of variables in X and Y to be p = 5000 and 
q = 20 , respectively. There are 10 groups of variables in X with non-zero loading values. 
The first 5 groups have group sizes of 100, 50, 20, 5, and 1, respectively, in which all the 
variables have loading values equal to 1. The remaining 5 groups are of size 10, with 
loading values of variables equal to 5. Note that large loading values are assigned to the 
latter 5 groups to make the detection of the first 5 groups more difficult. The remaining 
variables have zero loading values and are divided into groups of size 10. All the Y-varia-
bles have the same loading values and are not grouped. The sample size N is set to 30. 
We simulate both data matrices with 1 joint component (T and U from Equation 1 are 
both standard normally distributed and have correlation 1). We perform 1000 simula-
tion runs and record the number of the runs GO2PLS selected relevant groups; we com-
pute the proportion of each truly relevant group (with non-zero loadings) being selected 
across the simulation runs (number of times being selected divided by 1000). The group 
importance measurement 

∥∥∥X (j)⊤U
∥∥∥
2
/
√
pj  , that determines whether a group is selected 

or not is recorded for the first 5 groups (with loading value 1) to investigate the stability 
of the selection procedure.

In the second scenario, we vary the sample size N from 30 to 600, and set p = 20,000 
and q = 10,000 , mimicking the dimensionality of the CVON-DOSIS datasets. Both X- 
and Y- variables are evenly divided into 1000 groups. For each joint component, we 
select 50 relevant groups and assign non-zero loadings to the variables contained in 
them. Within each group, variables have the same loading values: 1 for the first group, 
2 for the second,..., and 50 for the last relevant group. We set the number of joint 
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components K = 2 and the number of orthogonal components Kx = Ky = 1 . The 
scores T ,T⊥,U ,U⊥ from Equation  1 are generated from normal distributions with 
zero mean. The relationship between the joint scores is represented by U = T +H  , 
where H accounts for 20% of the variation in U. The noise matrices E, F are generated 
from normal distributions with zero mean and variance such that the variance of the 
noise matrix accounts for a proportion α ( 0 < α < 1 ) of the variance of the data 
matrix (i.e., α = Var(E)/Var(X) = Var(F)/Var(Y) ). The ratio of the variance of the 
orthogonal components to the variance of the joint components ( σ 2

T⊥/σ
2
T  ), and noise 

level α are varied. For evaluating the accuracy of the joint score estimation, we com-
puted R2

T̂T
= 1−

∑
(T̂ − T )2/

∑
T 2 and R2

T̂ Û
= 1−

∑
(Û − T̂ )2/

∑
Û2 , which quan-

tify how well the true parameter T and the estimated Y-joint component Û  can be 
explained by the estimated X-joint component T̂  . The performance of feature selec-
tion and the accuracy of estimated loadings are evaluated by true positive rate (TPR 
= TP/(TP+FN), where TP = True Positive, FN = False Negative) and W⊤Ŵ  , which 
represents the cosine of the angle between the estimated loading vector and the true 
one. The performances of all methods are evaluated on an independent test dataset of 
size 1000. For each setting, 500 replications are generated.

An overview of scenario settings is presented in Tables  1,  2. To make a clearer 
comparison of the behavior across all the methods, we use the optimum values for 
the tuning parameters (number of components and number of relevant variables or 
groups).

Table 1  Settings of Scenario 1 to study the performance of selecting relevant groups

The selection proportion is the number of times a relevant group being selected divided by the number of simulation runs. 
The 

∥∥∥X (j)⊤U
∥∥∥
2

/
√
pj  is a measurement of group importance. It provides more information on the stability of the group 

selection procedure. We simulate groups with varying sizes to investigate the influence of group size on the group selection 
performance of GO2PLS

Measure

Selection proportion; 

∥∥∥X (j)⊤U
∥∥∥
2√

pj

p; q 5000; 20

relevant group sizes 100; 50; 20; 5; 1

N 30

noise level α [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Table 2  Settings of Scenario 2 to compare the performances regarding joint score estimation, joint 
loading estimation, and feature selection

R2
T̂ T

 and R2
T̂ Û

 quantify the joint score estimation performance; TPR measures the feature selection performance; W⊤Ŵ  
quantifies the joint loading estimation performance. The dimensions and number of relevant features are set based on the 
CVON-DOSIS study. Sample size N, the relative strength of orthogonal signal ( σ 2

T⊥/σ
2

T  ), and noise level α are varied

Methods GO2PLS; SO2PLS; O2PLS; gPLS; sPLS; PLS

Measure R2
T̂ T

 , R2
T̂ Û

 , TPR, W⊤Ŵ

p; q 20000; 10000

relevant p; q 1000; 500

N [30, 100, 200, 300, 600]

σ 2
t⊥/σ

2
t

[1/5, 1/3, 1/2, 1, 2, 3, 5]

noise level α [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
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Results of simulation study

Scenario 1

Figure 1 shows the selection proportion for each relevant group under each noise level. 
Compared to smaller groups, the proportion for larger groups is higher at low to moder-
ate ( α < 0.7 ) noise levels, and shows robustness against increasing noise. When the 
noise level is very high ( α > 0.8 ), the method loses power to detect relevant group of any 
size, particularly, of larger size. Figure  2 shows the density of the group importance 
measurement 

∥∥∥X (j)⊤U
∥∥∥
2
/
√
pj  for the first 5 relevant groups with different group sizes 

under 3 different noise levels. The vertical dotted lines indicate the average threshold 
given the correct number of relevant groups. Since a group will be selected if exceeds the 
threshold, the total area on the right side of the threshold under each density curve 
equals the selection proportion for the corresponding group. The measurement for 
larger relevant group shows higher precision at all noise levels. The threshold increases 
along with the noise.

Scenario 2

The performance of the joint score estimation is compared focusing on the difference 
between methods with orthogonal parts (GO2PLS, SO2PLS, O2PLS) and their counter-
parts without the “O2” filtering (gPLS, sPLS, PLS). The top row of Fig. 3 shows the per-
formance measured by R2

T̂T
 & R2

T̂ Û
 under N = 30 , α = 0.1 and varying relative 

orthogonal signal strength from one fifth to five times of the joint signal. In the left 
panel, R2

T̂T
 of the various methods is depicted, representing how well the joint compo-

nent T̂  captured the true underlying T. Overall, penalized methods performed better 
than non-penalized ones, especially when the orthogonal variation is relatively small. 
PLS performed poorly compared to O2PLS, when the orthogonal variation exceeds the 
joint variation. As the orthogonal variation further increases, performances of sPLS and 
gPLS deteriorated, while SO2PLS and GO2PLS were less affected. In the right panel, 
R2

T̂ Û
 is presented, an estimate of the true parameters R2

TU , capturing correlation of T and 
U. Across different settings, O2PLS-based methods performed better, especially when 
the orthogonal variation is large.

Fig. 1  Simulation Scenario 1: Selection proportion of relevant groups with different sizes under varying 
noise. The proportion for larger groups is higher at low to moderate ( α < 0.7 ) noise levels, and shows 
robustness against increasing noise
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The bottom row of Fig. 3 shows the score estimation performance under fixed rela-
tive orthogonal signal strength of 1, α = 0.1 , and varying sample size N from 30 to 
600. Penalized methods performed better compared to non-penalized methods in 
general, when the sample size is small. Regardless of the sample size, O2PLS-based 
methods outperformed PLS-based methods.

Lastly, we present the results of GO2PLS, SO2PLS, and O2PLS with regard to fea-
ture selection and estimation of joint loadings. Results of PLS-based methods are 
not included since the performances of gPLS, sPLS, and PLS in this regard are very 
similar to GO2PLS, SO2PLS, and O2PLS, respectively. In Fig. 4, the top row shows 
the TPR and W⊤Ŵ  under N = 30 and varying noise levels α from low to high. At 
all noise levels, GO2PLS had higher TPR than SO2PLS and O2PLS, and performed 

Fig. 2  Simulation Scenario 1: Density plot of estimated group importance measurement 
∥∥∥X (j)⊤U

∥∥∥
2

/
√
pj   for 

each group size under 3 different noise levels. The vertical dotted red line is the average threshold. When the 
measurement of a group is larger than the threshold, the group is selected. The total area on the right side of 
the threshold under each density curve equals to the selection proportion for the corresponding group. The 
less the density curve spreads out, the more stable is the estimate
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robustly against increasing noise. Regarding W⊤Ŵ  , GO2PLS outperformed the other 
two as well. In the bottom row, when increasing sample size at a fixed noise level of 

Fig. 3  Simulation Scenario 2: comparison of joint score estimation performance, under varying relative 
orthogonal signal strength (top row), and varying sample size (bottom row). On the Y-axis, R2

T̂ T
 (left) and R2

T̂ Û
 

(right) are the coefficient of determination of regressing T on T̂  , and Û on T̂  , respectively, quantifying the joint 
score estimation performances. Boxes show the results of 500 repetition

Fig. 4  Simulation Scenario 2: comparison of feature selection and joint loading estimation performance, 
under varying noise level (top row), and varying sample size (bottom row). On the Y-axis are the True Positive 
Rate (left) and W⊤Ŵ (right), which is the cosine of the angle between the estimated loading vector Ŵ and 
the true one W. Boxes show the results of 500 repetition
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0.5, the variance appeared to decrease and the performances of all the methods con-
verged. Overall, GO2PLS outperformed others.

Application to data
We demonstrate SO2PLS and GO2PLS on datasets from two distinct studies. In the 
TwinsUK study, our aim is to integrate methylation and glycomics data and identify 
important groups of CpG sites underlying glycosylation. In the CVON-DOSIS study, 
we integrate regulomics and transcriptomics data and select a subset of genes and 
regions that drive their relationship.

TwinsUK study

We performed GO2PLS on the data with 1 joint, no methylation-orthogonal, and 3 
glycomics-orthogonal components based on 5-fold cross-validation. We set the spar-
sity parameters to select the top 100 groups in the methylation and kept all the 22 gly-
can variables. The selected CpG groups from GO2PLS were mapped to their targeted 
genes for interpretation.

We performed gene set enrichment analyses on the selected genes using the Topp-
Gene Suite [25]. The results appeared to be related to immune response. We listed the 
most significant molecular function, biological process, and pathway in Table 3 (the 
full list of significant results can be found in Additional file 2).

An extra analysis was performed using another grouping strategy, where we 
grouped 55531 CpG sites that map to the promoter region (0-1500 bases upstream of 
the transcriptional start site (TSS)) of a gene to 14491 groups based on their targeted 
genes. We applied GO2PLS and selected 100 groups. Note that the sizes of these 
groups became smaller since many CpG sites in gene bodies are excluded. Enrich-
ment analysis did not result in significant results.

Table 3  TwinsUK study: top results of gene set enrichment analysis

The “pValue” column shows the p-value of each annotation derived by random sampling of the whole genome; the 
“FDR B&H” column provides the false discovery rate (FDR) analog of the p-value after correcting for multiple hypothesis 
testing [26, 27]. Complete list can be found in Additional file 2



Page 13 of 18Gu et al. BMC Bioinformatics          (2021) 22:131 	

CVON‑DOSIS study

We applied SO2PLS on the regulomics and transcriptomics datasets, with 2 joint and 1 
orthogonal components for each omics dataset. In each pair of the joint components, 
1000 regulomics and 500 transcriptomics variables were selected. We then further iden-
tified the genes corresponding to the promoter regions where the selected 1000 histone 
modification locates (using ± 10K window from the transcription start site of the gene). 
These genes are of interest since they are likely to be related to epigenetic regulation 
of gene expression. Genes corresponding to the selected transcripts were also identi-
fied. These gene sets identified from each joint component of the two omics data were 
investigated separately using gene set enrichment analysis. The top results were listed in 
Table 4. The Gene Ontology (GO) enrichment analysis of the selected genes and regions 
showed terms related to HCM that were also found previously [28]. Due to the presence 
of the case-control status in both omics levels, we expect the joint components related 
to the disease. Plotting the joint scores of the two datasets showed a separation between 
HCM cases and controls (Fig. 5). For a comparison of score plots of PCA, PLS, O2PLS, 
and SO2PLS, please see Additional file 3.

Discussion
Statistical integration of two omics datasets is becoming increasingly popular to gain 
insight into underlying biological systems. O2PLS is a method that integrates two het-
erogeneous datasets and takes into account omic-specific variation. The resulting joint 
and orthogonal components are linear combinations of all variables, making interpreta-
tion difficult. To introduce sparsity and identify relevant groups, GO2PLS incorporates 
biological information on group structures to perform group selection in the joint sub-
space. Depending on the group size, such an approach may also lead to a higher selec-
tion probability of relevant features. We performed an extensive simulation study and 
showed that O2PLS-based methods generally outperformed PLS-based methods regard-
ing joint score estimation when orthogonal variation was present in the data. Since PLS 
does not take into account orthogonal parts, the joint components also include part of 

Fig. 5  CVON-DOSIS study: SO2PLS joint score plots of regulomics (left) and transcriptomics (right). HCM 
patients and controls were plotted in different colors. Ellipses are the 95% confidence regions of each group
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Table 4  CVON-DOSIS study: Gene set enrichment analysis results

Results from the gene set enrichment analysis using ToppGene on the selected genes and regions. In the upper two tables, 
the first joint regulomics and transcriptomics component is shown, respectively. The lower two tables are about the second 
joint components. Complete list can be found in Additional file 2
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the orthogonal variation. Further, when the sample size was small or the noise level was 
high, penalized methods appeared to be much less prone to overfitting than non-penal-
ized methods. This suggests that results based on GO2PLS are likely to be generaliz-
able when applied to new datasets. Concerning feature selection, adding external group 
information led to higher TPR, and larger groups of relevant features had a higher pro-
portion of being detected under a moderate noise level. We then applied GO2PLS to the 
TwinsUK study, where we selected 100 target genes comprising of CpG sites that are 
most related to IgG glycosylation. The results of the enrichment analysis on the selected 
genes showed GO-terms involving the immune system in which the IgG glycans play 
important roles. In the CVON-DOSIS study, we integrated regulomics and transcrip-
tomics and identified 1000 regulatory regions and 500 transcripts, and mapped them to 
genes. Further analysis of the selected gene sets showed enrichment for terms related 
to heart muscle diseases. Moreover, the implementation of GO2PLS is computationally 
fast and memory efficient. It relies on an algorithm based on NIPALS that does not store 
large matrices of size p× q when performing the group-penalized optimization. A regu-
lar laptop (8G RAM, quad-core 2.6 GHz) was able to run GO2PLS on omics data from 
both case studies.

The group information should be chosen together with domain experts based on the 
research question and biological knowledge. For example, in our TwinsUK data applica-
tion, we aimed to identify the genes comprising of CpG sites, rather than the individual 
CpG sites. Therefore, we grouped CpG sites in the same genetic region. Furthermore, 
the biological knowledge that close-by CpG sites tend to function together supported 
the choice of grouping. Different grouping information leads to a changed definition of 
groups, consequently the selected groups will have a different interpretation. In the same 
example of the TwinsUK study, extra analysis using smaller groups led to no significant 
results in the enrichment analysis, supposedly due to weaker aggregated group effects. 
When group information is not available, or the research goal is to identify individual 
features (e.g., in our CVON-DOSIS data application), SO2PLS can be used.

In the CVON-DOSIS study, Plotting the first two joint components showed two dis-
tinct classes corresponding to the case-control status. This might be expected since the 
analysis was conditional on case-control status, yielding a correlation between the two 
omics datasets. This phenomenon is well known in regression analysis of secondary 
phenotypes [29], but not well studied in PLS type of methods. This is a topic of future 
research. Often omics data are collected to study their relationship with an outcome 
variable or to predict an outcome variable. To this end, our approach has to be extended 
to incorporate the outcome variable. Such an approach might also lead to a more sparse 
solution since the selected features have to be correlated among the two omics datasets 
and the outcome variable. Further extensions of GO2PLS are to incorporate more than 
two omics datasets to represent the actual biological system even better.

Finally, it is possible to extend the GO2PLS algorithm to a probabilistic model. Extend-
ing latent variable methods to probabilistic models is not new. PCA was extended to 
Probabilistic PCA in [30], and Probabilistic PLS (PPLS) [31] was proposed to provide a 
probabilistic framework for PLS. It has been shown that the probabilistic counterpart 
has a lower bias in estimation and is robust to non-normally distributed variables [31]. 
More importantly, the probabilistic model will allow statistical inference, making it 
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possible to interpret the relevance and importance of features in the population, and 
facilitating follow-up studies. These extensions of GO2PLS will be suited for various 
studies with more complicated designs.

Conclusions
In this article, we proposed GO2PLS to integrate two omics data by estimating joint 
latent components. GO2PLS takes into account heterogeneity between different omics 
levels by including orthogonal components for each dataset. The method utilizes known 
group information among the features to select relevant groups of features, by imposing 
group-wise penalties in the joint subspace. Alternatively, the method can also choose 
features at the individual level. This flexibility facilitates investigation into different 
research questions. Our simulation study showed that GO2PLS behaved robust against 
noise and outperformed competing methods in terms of accuracy of joint score estima-
tion, joint loading estimation, and feature selection. We applied GO2PLS to the data-
sets from two studies with distinct designs and showed that the results were biologically 
interpretable. To conclude, GO2PLS is a robust and flexible method for integrating two 
omics datasets and selecting important groups of features.
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