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A B S T R A C T

The spread of resistant bacteria in hospitals is an increasing problem worldwide. Transfers of patients, who
may be colonized with resistant bacteria, are considered to be an important driver of promoting resistance.
Even though transmission rates within a hospital are often low, readmissions of patients who were colonized
during an earlier hospital stay lead to repeated introductions of resistant bacteria into hospitals. We developed
a mathematical model that combines a deterministic model for within-hospital spread of pathogens, discharge
to the community and readmission, with a hospital–community network simulation of patient transfers
between hospitals. Model parameters used to create the hospital–community network are obtained from
two health insurance datasets from Germany. For parameter values representing transmission of resistant
Enterobacteriaceae, we compute estimates for the single admission reproduction numbers 𝑅𝐴 and the basic
reproduction numbers 𝑅0 per hospital–community pair. We simulate the spread of colonization through the
network of hospitals, and investigate how increasing connectedness of hospitals through the network influences
the prevalence in the hospital–community pairs. We find that the prevalence in hospitals is determined by their
𝑅𝐴 and 𝑅0 values. Increasing transfer rates between network nodes tend to lower the overall prevalence in
the network by diluting the high prevalence of hospitals with high 𝑅0 to hospitals where persistent spread
is not possible. We conclude that hospitals with high reproduction numbers represent a continuous source of
risk for importing resistant pathogens for hospitals with otherwise low levels of transmission. Moreover, high
risk hospital–community nodes act as reservoirs of pathogens in a densely connected network.
1. Introduction

Healthcare-associated infections (HAI) are found to cause substan-
tial burden on population health (Cassini et al., 2016), and infections
with resistant pathogens are responsible for increasing morbidity and
mortality in Europe (Cassini et al., 2019). In recent years, increased
levels of resistance in Enterobacteriaceae, especially plasmid mediated
resistance via ESBLs, has sparked concern and led to intensified inter-
vention efforts. Difficulty in designing effective interventions is due to
the asymptomatic nature of colonization with resistant bacteria and
to the variety of transmission routes. Since it is hard to assess the
relevance of a specific transmission route and to determine the efficacy
of a particular intervention to limit the spread of HAI (Pham et al.,
2019), mathematical modelling has been used to understand the key
driving factors of HAI transmission and to assess the impact of specific
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interventions or bundles of various intervention strategies (Grundmann
and Hellriegel, 2006; van Kleef et al., 2013).

As hospitals are not closed populations, the in- and outflow of
patients from the hospitals are likely to play an important role in HAI
transmission dynamics. The majority of patients who are discharged
from a hospital go back to the community, and few are referred to
other hospitals. Since not all patients returning to the community are
decolonized, the community acts as a reservoir. Sporadic outbreaks
inside hospitals may occur due to readmission of individuals colonized
during preceding hospital admissions (Robotham et al., 2007). In a
modelling study of the interaction between hospital and community
transmission (Cooper et al., 2004), the authors showed that frequent
readmissions of colonized patients into a hospital from a community
reservoir can lead to sustained transmission of resistant pathogens even
if within-hospital transmission alone is not sufficient for persistent
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spread of the pathogen. The authors introduced the concept of the
single admission reproduction number 𝑅𝐴, which denotes the number
of secondary cases produced by a colonized patient during his entire
admission period in the hospital. This number may be different from
the basic reproduction number 𝑅0, which denotes the total number
f secondary cases produced by a patient during his entire period of
olonization, which could comprise several hospital admissions. From
hese definitions it is clear that 𝑅0 ≥ 𝑅𝐴, and we can have the situation
hat 𝑅0 > 1, while 𝑅𝐴 < 1. In their paper (Cooper et al., 2004),
ooper et al. gave several estimates for 𝑅𝐴 for methicillin resistant
taphylococcus aureus (MRSA) based on data, which are all below 1.
imilarly, in Gurieva et al. (2017), the authors provide estimates for
𝐴 for antibiotic resistant Enterobacteriaceae in intensive care units, all
f which are also below 1.

Likewise, Smith et al. (2004, 2005) showed that the prevalence
n a hospital may remain on a constant level owing to admissions
f colonized individuals from the community, other hospitals, and
ong-terms care facilities. In another modelling study, Robotham et al.
2006) investigated the link between hospital and community in terms
f the effect of surveillance and infection. All these studies provide
vidence for the importance of patient movements between hospitals,
ong-term care facilities and the communities (catchment populations).

In the past decade, the role of patient movements between hospitals
as been studied, and patient transfers between hospitals have been
isualized as networks, e.g. in the Netherlands (Donker et al., 2010,
012), the United Kingdom (Ciccolini et al., 2013; Donker et al., 2017),
rance (Nekkab et al., 2017), and the USA (Huang et al., 2010).
lthough patient referral network studies provide useful insights on
athogen spread between hospitals, the role of hospital catchment
reas (community served by a specific hospital) in pathogen spread
s not well studied. The aim of the current work is to combine a
imple model of patient exchange between hospital and community
ith a network of patient flows between network nodes. We formulate
deterministic SIS-type model (susceptible–infectious–susceptible), for
ithin-hospital spread and combine it with a process of readmission
nd discharge to a community, in which no transmission takes place.
ased on datasets provided by two German health insurance compa-
ies, the patient movement network is then formed by a collection
f hospital–community pairs (HC-pairs). We estimate single admission
eproduction numbers 𝑅𝐴 per hospital based on average length of stay
er hospital. Then, we simulate the spread of pathogen through the
etwork of connected hospitals, where hospital sizes and patient flows
re quantified from the datasets. Our aim is to gain insight into how the
revalence in the entire system is governed by transmission dynamics
n the HC-pairs. Moreover, we study how connection in a network of
ospitals influences the prevalence in hospital–community pairs.

. Basic deterministic model for unconnected hospitals

We formulate a susceptible–infectious–susceptible (SIS) model for
he spread of infection within a single hospital and extend it by mod-
lling the role of discharge to and admission from the community.
he model is a simplified version of the model introduced by Cooper
t al. (2004) to describe the role of readmissions on dynamics of
ospital infections. It should be noted here that in this work we do
ot distinguish between colonization and infection, but use the terms
nterchangeably.

The variables of the model are defined as fractions of the population
s follows: susceptible individuals in the hospital 𝑆, colonized individ-
als in the hospital 𝐼 , susceptible individuals in the community 𝑉 , and

colonized individuals in the community 𝑊 . We assume that pathogen
transmission takes place only in the hospital, and only the susceptible
individuals during their hospital stay are exposed to colonized individ-
uals in the hospital. Parameter 𝛽 is the transmission rate, and colonized
individuals in hospital and in community clear their colonization at the
same rate 𝛾. Patients are discharged at rate 𝛼 and readmitted at rate
2
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𝜖. Furthermore, we assume that patients are screened at admission,
and if they are found positive, they are decolonized with probability
0 ≤ 𝜎 ≤ 1. They then enter the hospital as susceptible.

Note that the community defined in our model only contain individ-
uals who have been discharged from the hospital. The model does not
describe a complete community with demographic in- and outflow and
with individuals who have not been admitted to hospital. Therefore,
the model is not suitable to model transmission of infection in the
community.

The differential equation model is as follows:
𝑑𝑆
𝑑𝑡

= −𝛽 𝐼
𝐼 + 𝑆

𝑆 − 𝛼𝑆 + 𝛾𝐼 + 𝜖𝑉 + 𝜎𝜖𝑊 ,

𝑑𝐼
𝑑𝑡

= 𝛽 𝐼
𝐼 + 𝑆

𝑆 − 𝛼𝐼 − 𝛾𝐼 + (1 − 𝜎)𝜖𝑊 , (1)

𝑑𝑉
𝑑𝑡

= 𝛼𝑆 − 𝜖𝑉 + 𝛾𝑊 ,

𝑑𝑊
𝑑𝑡

= 𝛼𝐼 − 𝜖𝑊 − 𝛾𝑊 .

e refer to this model as SIVW. The terms of these equations are
ttributed to the following phenomena: term

(

𝛽 𝐼
𝐼+𝑆

)

𝑆 to the coloniza-
tion of susceptible patients, term 𝛼𝑆, 𝛼𝐼 to the discharge of susceptible
and colonized patients, terms 𝜖𝑉 , 𝜖𝑊 to the admission of susceptible
and colonized population, respectively, term 𝜎𝜖𝑊 to the screening and
further decolonization of colonized population on admission, term (1−
𝜎)𝜖𝑊 to the admission of colonized population who are not successfully
decolonized, and 𝛾𝐼 , 𝛾𝑊 to the spontaneous clearance of colonization.

All variables denote fractions of the population, so 𝑆+𝐼+𝑉 +𝑊 = 1.
Let 𝐻 = 𝑆 + 𝐼 denote the fraction of individuals in the hospital and
𝐶 = 𝑉 +𝑊 the fraction of individuals in the community.

2.1. Steady states and basic reproduction number

Calculating the steady states of (1) we get

𝑊 ⋆ = 𝛼𝐼⋆

𝜖 + 𝛾
and 𝑉 ⋆ = 1

𝜖

(

𝛼𝑆⋆ +
𝛾𝛼

𝜖 + 𝛾
𝐼⋆

)

, (2)

while the proportion of the population in hospital at steady state is
given by

𝐻⋆ = 𝑆⋆ + 𝐼⋆ = 𝜖
𝛼 + 𝜖

. (3)

Thus, the disease-free steady state of (1) has the form

𝐸0 =
( 𝜖
𝜖 + 𝛼

, 0, 𝛼
𝜖 + 𝛼

, 0
)

(4)

and it exists for all values of the parameters.
In addition, using formula for 𝑊 ∗ (2) and inserting (3) into the

quation for 𝐼 leads to

⋆ = 𝜖
(𝛼 + 𝜖)

(𝛾 + 𝛼)
𝛽

(1 − 𝑞) , (5)

here

=
(1 − 𝜎)𝜖𝛼

(𝜖 + 𝛾)(𝛼 + 𝛾)
, 0 ≤ 𝑞 < 1, (6)

describes the probability that an individual who left the hospital being
colonized is still colonized at the next admission into hospital. Now 𝐼⋆

can be calculated as 𝐻⋆ − 𝑆⋆ obtaining

𝐼⋆ = 𝜖
𝛼 + 𝜖

(

1 −
𝛾 + 𝛼
𝛽

(1 − 𝑞)
)

. (7)

To have a positive steady state of (1) first we need to ensure
positivity of 𝑆⋆ that is 𝑞 < 1. On the other hand for 𝐼⋆ > 0 we
additionally need

𝑅0 ∶=
𝛽

(𝛾 + 𝛼)

(

1
1 − 𝑞

)

> 1. (8)

This result for 𝑅0 makes sense intuitively, because 𝛽∕(𝛾 + 𝛼) is the
number of secondary infections produced by an infectious individual
from ClinicalKey.com by Elsevier on March 09, 2021.
opyright ©2021. Elsevier Inc. All rights reserved.
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during one stay in hospital, and the last term describes the sum of
probabilities of still being colonized at any admission to hospital:

1 + 𝑞 + 𝑞2 +⋯ =
∞
∑

𝑖=0
𝑞𝑖 = 1

1 − 𝑞
.

ften 𝑅0 is called the basic reproduction number, and in case of
odels with single infected compartment it is the expected number

f secondary cases produced in a completely susceptible population
y a typical infectious individual, and it equals to the product of the
nfection rate and the mean duration of the infectious period. For
ore complex models, having several infected compartments, the basic

eproduction number can be defined as the number of new infections
roduced by a typical infectious individual in a whole population in
disease-free steady state. It can be analytically calculated, for details

ee e.g. van den Driessche and Watmough (2002), yielding formula (8).
On the other hand, the reproduction number for one hospital ad-

ission is defined as

𝐴 ∶=
𝛽

𝛾 + 𝛼
. (9)

Clearly, the screening at admission can reduce the basic reproduction
number 𝑅0, i.e. when 𝜎 → 1, 𝑞 goes to zero, cf. Eq. (6). For 𝜎 = 1, we
get 𝑅0 = 𝑅𝐴. This implies that if 𝑅𝐴 > 1, screening at admission cannot
revent persistent spread of pathogen within the hospital.

.2. Stability of steady states and model dynamics

To analyse system (1) we rewrite it using 𝑉 = 1 − 𝑆 − 𝐼 −𝑊

𝑑𝐼
𝑑𝑡

= 𝛽𝑆 𝐼
𝐼 + 𝑆

− 𝛼𝐼 − 𝛾𝐼 + (1 − 𝜎)𝜖𝑊 ,

𝑑𝑊
𝑑𝑡

= 𝛼𝐼 − 𝜖𝑊 − 𝛾𝑊 , (10)
𝑑𝑆
𝑑𝑡

= −𝛽𝑆 𝐼
𝐼 + 𝑆

− 𝛼𝑆 + 𝛾𝐼 + 𝜖(1 − 𝑆 − 𝐼 −𝑊 ) + 𝜎𝜖𝑊 .

Theorem 2.1. For 𝑅0 < 1 steady state 𝑒0 = (0, 0, 𝑆̄) to system (10) is
locally asymptotically stable, while for 𝑅0 > 1 it is unstable.

Proof. The Jacobian matrix for a disease-free steady state 𝑒0 = (0, 0, 𝑆̄)
to system (10), where 𝑆̄ = 𝜖∕(𝛼 + 𝜖) reads

𝐽 (𝑒0) =
⎡

⎢

⎢

⎣

𝛽 − 𝛼 − 𝛾 𝜖(1 − 𝜎) 0
𝛼 −(𝜖 + 𝛾) 0

−𝛽 − 𝜖 + 𝛾 −𝜖(1 − 𝜎) −(𝛼 + 𝜖)

⎤

⎥

⎥

⎦

(11)

and thus the considered characteristic equation has the following form

det
(

𝐽 (𝑒0) − 𝜆𝐼
)

=

− (𝛼 + 𝜖 + 𝜆)
(

𝜆2 + 𝜆(𝜖 + 2𝛾 + 𝛼 − 𝛽) + (𝛾 − 𝛽)𝜖 + 𝛾(𝛼 − 𝛽 + 𝛾) + 𝛼𝜖𝜎
)

= 0. (12)

Clearly, for 𝑅0 > 1 inequality 𝛽(𝜖 + 𝛾) > (𝜖 + 𝛾)(𝛼 + 𝛾) − (1 − 𝜎)𝛼𝜖 holds
and 𝑒0 = (0, 0, 𝑆̄) is a saddle point.

For 𝑅0 < 1 and 𝛼 − 𝛽 > 0, we have 𝜖 + 2𝛾 + 𝛼 − 𝛽 > 0 and (12) has
only one real negative root and the real parts of the remaining roots
are negative. On the other hand, for 𝑅0 < 1

(𝛾 − 𝛽)𝜖 + 𝛾(𝛼 − 𝛽 + 𝛾) + 𝛼𝜖 ≥ (𝛾 − 𝛽)𝜖 + 𝛾(𝛼 − 𝛽 + 𝛾) + 𝛼𝜖𝜎 > 0

holds implying that

𝛾(𝛼 − 𝛽 + 𝛾 + 𝜖) + 𝜖(𝛼 − 𝛽) > 0.

So for 𝛼−𝛽 < 0, we have 𝛼−𝛽+𝛾+𝜖 > 0. Hence, again (12) has only one
real root and the real parts of the remaining roots are negative yielding
local asymptomatic stability of 𝑒0 = (0, 0, 𝑆̄). ■

Theorem 2.2. For 𝑅0 = 1 we observe a forward bifurcation for
system (10).
3
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Proof. In general, due to the complex expressions, the investigation
of the local stability of the endemic steady state is not an easy task.
However, to investigate the nature of the bifurcation occurring at 𝑅0 =
1 we use an approach based on the centre manifold theory proposed
in van den Driessche and Watmough (2002) to show that there is a
𝛿 > 0 such that there exists near the disease-free steady state (𝑒0) a
locally asymptotically stable endemic steady state for 0 < 𝜇 < 𝛿. To do
so, we need to investigate the signs of

𝑎 = 𝑣
2
𝐷𝑥𝑥𝑓 (𝑒0, 0)𝑤2 = 1

2

3
∑

𝑖,𝑗,𝑘=0
𝑣𝑖𝑤𝑗𝑤𝑘

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(𝑒0, 0), (13)

𝑏 = 𝑣𝐷𝑥𝜇𝑓 (𝑒0, 0)𝑤 =
3
∑

𝑖,𝑗,𝑘=0
𝑣𝑖𝑤𝑗

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝜇

(𝑒0, 0), (14)

where: 𝑓 (𝑥, 𝜇) is the right hand side of the considered system; 𝜇 —
bifurcation parameter (such that for 𝑅0 < 1 we have 𝜇 < 0, while
or 𝑅0 > 1 we have 𝜇 > 0 and a disease-free steady state exists for
ll values of 𝜇 and its stability changes at 𝜇 = 0); 𝑣 and 𝑤 are the
orresponding left and right null-vectors, respectively, chosen in such
way that 𝑣𝑤 = 1 and 𝐷𝑥(𝑒0, 0) = 𝐽 (𝑒0, 0). Since in our case it is

nconvenient to use 𝑅0 directly as a bifurcation parameter, we take

= 𝛽 − 𝛽, 𝛽 = 𝛼 + 𝛾 −
(1 − 𝜎)𝛼𝜖
(𝜖 + 𝛾)

> 0. (15)

Clearly, (10) fulfils conditions (A1)–(A5) postulated in van den Driess-
che and Watmough (2002) and 𝐽 (𝑒0) given by (11) has a simple
zero eigenvalue for 𝑅0 = 1, cf. (12). Moreover, all required second
derivatives of the right hand-side of (10) evaluated at (𝑒0, 𝛽) are zero
except the following:

𝜕2𝑓1
𝜕𝐼2

(𝑒0, 𝛽) = −2
𝜖
𝛽(𝛼 + 𝜖),

𝜕2𝑓3
𝜕𝐼2

(𝑒0, 𝛽) =
2
𝜖
𝛽(𝛼 + 𝜖),

𝜕2𝑓1
𝜕𝐼𝜕𝛽

(𝑒0, 𝛽) = 1,
𝜕2𝑓3
𝜕𝐼𝜕𝛽

(𝑒0, 𝛽) = −1.

ince 𝑣3 = 0 (for the explanation see (van den Driessche and Wat-
ough, 2002, Lemma 3)) and direct calculations show that 𝑣 and 𝑤

an be chosen in such a way that 𝑣1, 𝑤1 > 0 we get

= −𝑣1𝑤2
1
𝛼 + 𝜖
𝜖

𝛽 < 0 and 𝑏 = 𝑣1𝑤1 ≠ 0

implying a forward bifurcation. ■

Clearly, Theorem 2.2 shows that for 𝑅0 we have a forward bifur-
cation. Moreover, for 𝜎 = 1, 𝑅0 = 𝑅𝐴, and as long as 𝑅𝐴 < 1,
the disease-free steady state is locally asymptotically stable and the
(positive) endemic steady state does not exist. On the other hand, for
𝑅𝐴 > 1 the endemic steady state exists and gains stability while the
disease-free one looses it.

In summary, the HC-model displays two types of dynamics:

1. For 𝑅𝐴 < 𝑅0 < 1 there exists only one disease-free steady
state 𝐸0 which is locally asymptotically stable. In such a case,
colonization is not persistent in the hospital and will die out
within infinite time horizon.

2. For 𝑅0 > 1 there co-exist two steady states: disease-free 𝐸0
(which is unstable) and endemic 𝐸1 = (𝑆∗, 𝐼∗, 𝑉 ∗,𝑊 ∗). More-
over

(a) for 𝑅𝐴 < 1 < 𝑅0 the transmission in hospital during
one stay is too low to lead to a persistent colonization
in the hospital and the readmission of colonized patients
is necessary to keep transmission going,

(b) for 𝑅0 > 𝑅𝐴 > 1 the transmission during one hospital
stay is already sufficient to lead to persistent colonization
within one hospital.
from ClinicalKey.com by Elsevier on March 09, 2021.
opyright ©2021. Elsevier Inc. All rights reserved.
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3. Network model

We now extend the model to include the pathogen spread within the
entire network and to understand the contribution of each hospital to
this process. In particular, we will study the impact of network structure
on transmission dynamics compared to an unconnected set of SIVW
populations.

In reality, the hospital–community pairs (HC-pairs) do not co-exist
independently. They form a healthcare system within a region or state,
and they interact as patients go for treatment to different healthcare
facilities. Therefore, transmission dynamics in the HC-pairs are influ-
enced by the flow of patients through the network of hospitals. To
model this process, we used a network model of healthcare systems
developed in Piotrowska et al. (2020) and Piotrowska and Sakowski
(2019a). We first describe the datasets used by the model, and then
the structure of the simulation model.

3.1. Data description

We consider input data from two different companies to which we
have access to check if the impact of the healthcare network would be
similar or it would vary for different regions. Datasets used to inform
the simulation model represent inter-hospital networks in the following
German regions:

• Lower Saxony (LS, provided by AOK Lower Saxony company
anonymized records, years 2008–2015),

• Saxony and Thuringia (ST, provided by AOK Plus company
anonymized records, years 2010–2016).

lthough the datasets are from the same country, they come from re-
ions with a significantly different characteristics and history. In addi-
ion, the abbreviation AOK simply stands for Allgemeine
rtskrankenkasse, i.e. general regional health insurance, and it is the
ame of 11 independent health insurance companies in Germany.

The provided datasets consist of hospitalization records of patients
nsured by the respective insurance companies, and each record con-
ains the following information: patient anonymized ID, birth year,
ex, the dates of admission and discharge, medical diagnosis codes
ICD-10 codes), anonymized ID of the healthcare facility where patient
s admitted, and the state where the facility is situated. In order to
btain networks that reflect realistic transfers of patients, we restrain
he datasets to records from LS for AOK Lower Saxony dataset and to
ecords from ST for AOK Plus (Piotrowska and Sakowski, 2019b; Lonc
t al., 2019b,a).

The AOK Lower Saxony dataset contains 5 254 492 healthcare facil-
ty stay records, of which 4 573 584 are from the facilities located in
ower Saxony, while the AOK Plus dataset contains 4 826 823 records,
f which 2 991 597 are from facilities located in Saxony and 1 566 451
re from facilities located in Thuringia. The differences between dif-
erent states reflect the difference between the populations of these
tates. Based on census conducted by Federal Statistical Office in 2011,
here were 4 056 799 people in Saxony, 2 188 589 in Thuringia and
777 992 in Lower Saxony. Furthermore, the data from AOK Lower
axony concerns the eight-year period as opposed to the seven-year
eriod in AOK Plus dataset.

Similarly, there are more healthcare facilities in Lower Saxony (223)
han in Saxony (88) and Thuringia (46). For both datasets, we observe
ome similarities when it comes to characterizing hospitals by the
umber of admissions — both distributions have only one peak and
t lies at interval 103–104, see Fig. 1. However, when it comes to the
umber of patients, the ST distribution has one great peak at interval
03–104, whereas for LS there are almost as many facilities in the
nterval 102–103 as in 103–104.

Both datasets have similar distributions of duration of both hos-
italizations and stays at home between hospitalizations (Fig. 2). In
4

oth cases, hospitalizations with a stay duration of three days are

Downloaded for Anonymous User (n/a) at Utrecht University 
For personal use only. No other uses without permission. C
the most common. Above that, the number of hospital stays quickly
decreases with increasing length of stay. For home stays, the decrease
is considerably slower and we observe some fluctuations.

Modelling transfers in created networks is based on each patient’s
records with overlapping stay periods. There are significant differences
in the characteristics of the overlapping records between considered
datasets. For LS, the overlap cases are generally more complex and
therefore harder to analyse and include in the hospital network model.
Furthermore, for ST the intersections are shorter — 89.9% of them last
only one day, whereas for LS such cases constitutes 54% of overlaps.
For further analysis of the datasets, we refer the reader to Piotrowska
and Sakowski (2019b) and Lonc et al. (2019b). It should be noted that
in both datasets there were several instances of facilities which were not
operating through the whole period. Thus, these facilities were ignored
in the simulations.

3.2. Model

Within our model, it is assumed that there are two kinds of nodes,
corresponding to healthcare facilities (H-nodes) and their community
nodes (C-nodes). The total number of nodes is therefore two times the
number of healthcare facilities. In every node, there are two types of
populations: susceptible (𝑆) and infectious (𝐼), like in standard simple
SIS model (Bailey, 1975; Keeling and Rohani, 2011). Note that while
the name infectious may suggest that these people are infected, it is
in fact not necessary for any symptoms to occur. It is only important
that these people are colonized and they may transmit the infection to
susceptible population.

Since we want to model hospital-acquired infections, it is assumed
that the transmission of pathogens takes place only in the H-nodes
(healthcare facilities). C-nodes comprise people discharged from an
associated H-node and waiting for a future admission (in perspective
ranging from few days to few years). Patients waiting for a readmission
to the same facility correspond to 𝑉 and 𝑊 populations of SIVW
model, as described in Section 2. However, in C-nodes there are also
patients waiting for a readmission to different facilities. The pathogen
transmission dynamics in every node is governed by the SIS model,
however in C-nodes we assume no further transmission — only clear-
ance is possible. It is worth noting that C-nodes do not mean to be
associated to any geographical location or proximity of the H-nodes
they correspond to. Rather they are simply artificial ‘‘containers’’ for
the patients dismissed from the hospitals. Thus, we assume that there is
no exchange of population between C-nodes. Moreover, this model does
not account for patients visiting the hospitals less frequently than once
every few years, as their impact on pathogen transmission is negligible.
In addition, for simplicity, it is assumed that the transmission/clearance
parameters are the same in each class of nodes.

Exchange of populations between the nodes is assumed to take
place once a day, at the same moment in the whole network, called
a transfer moment, and we assume it is instantaneous. To summarize,
the following movements are allowed by the model:

1. From a H-node to a different H-node. This case corresponds to an
inter-hospital transfer, which is a direct path of pathogen spread
in the healthcare system.

2. From a H-node to an associated C-node. This is a patient dis-
charge. After a discharge, the patient always go to the C-node
associated with a H-node facility.

3. From a C-node to a H-node. This is a (re-)admission. A patient
may go back to the originating H-node, or to a different one.

In this setting, the path (H-node → H-node) is called a direct transfer,
while the path (H-node → C-node → H-node) — an indirect transfer,
as it comprises a period spent outside of healthcare facilities. For the
indirect transfers, if the originating H-node is the same as the source
H-node, then we call it an (indirect) auto-transfer. This case is similar to

SIVW system dynamics. Thus, a given H-node–C-node pair (HC-pair) in
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2

Fig. 1. Number of healthcare facilities with given average number of admissions (a) and patients (b) per year for ST (years 2010–2016, data provided by AOK Plus) and LS (years
008–2015, data provided by AOK Lower Saxony).
Fig. 2. Length of hospitalizations (a) and home stays (b) for LS and ST data in days. For LS data, 4 longest duration stays (1001, 1013, 2223 and 2346 days) were omitted for
the visibility of the data.
this model corresponds to a single instance of SIVW system. Note that
hospital ↔ community transfers in this model are discrete, and this does
not pose an issue as such transfers happen quite frequently (once per
day).

In our networks, nodes represent hospitals and corresponding com-
munities. These nodes are connected via edges which represent patient
movements between these nodes in each direction. The transport of
patients between the nodes operates (once per day) on a Markov-
chain basis, i.e. there is a non-zero probability of transfer between
any two nodes connected by an edge. The edges are directional, as
these probabilities are often different for opposite directions. At the
transfer moment, the fraction of the populations corresponding to these
probabilities are transferred.

Derived networks can be visualized by directed graphs. In Fig. 3(b)
and (d), we see the visualization of the network created on the basis of
the AOK Plus data. The graph is strongly connected, which means that
from any node it is possible to reach every other node. The diameter of
5

the graph is 4, so the distance between every two nodes is not greater

Downloaded for Anonymous User (n/a) at Utrecht University 
For personal use only. No other uses without permission. C
than 4. The graph’s radius is 3, meaning that there exists a node which
is away from all others by no more than 3. Every node has on average
100.22 neighbours and its in-degree (the number of edges which are
directed towards the node, excluding self-loops) and out-degree (the
number of edges which are directed away from the node, excluding
self-loops) are equal to 58.13. We also present a network containing
only the healthcare facilities and direct patient transfers between them.
Fig. 3(a) and (c) visualizes the graph representing the Lower Saxony
network. The graph is again strongly connected, its diameter is 5 and
its radius is 3. The average number of neighbours is 106.41 and the
average in-degree and out-degree are 59.77.

In Fig. 4, we see the distributions of in- and out-degree respectively
for hospital nodes in both networks. For these nodes, the in-degrees are
generally greater than out-degrees, due to the fact that edges starting
at chosen hospital represent the direct transfers to other facilities or
the return to community (one node), whereas the edges directed to
the chosen hospital correspond to both direct transfers and indirect

transfers (edges from all community nodes). Moreover, there is no

from ClinicalKey.com by Elsevier on March 09, 2021.
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Fig. 3. Visualization of network based on: LS data (a) all nodes (c) hospital nodes only, and TS data (b) all nodes (d) hospital nodes only. The red nodes represent the H-nodes
for which 𝑅0 and 𝑅𝐴 are greater than 1, the orange nodes represent the H-nodes for which 𝑅0 > 1 > 𝑅𝐴, the green nodes represent the H-nodes for which 𝑅0 and 𝑅𝐴 are smaller
than 1, while the blue ones correspond to the C-nodes. The edges represent the positive probability of transfer from one node to another and the wider the edge, the higher the
probability of transfer is. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
clear dependence of in- and out-degree on 𝑅0. Also, in Fig. 5 we see
the differences in shape of distributions of in-degrees between AOK
Plus and AOK Lower Saxony, which underline diversity between these
networks.

3.3. Model parameters and setting

The fundamental parameters of the network model are the inter-
node transfer probabilities. These probabilities are derived directly
from anonymized admission/discharge records — details of this pro-
cedure may be found in Piotrowska et al. (2020), with the node sizes
estimated directly form the input data.

For each node, a simple SIS model composed of system of differen-
tial equations is used to simulate the process of colonization/infection
(Martcheva, 2015). Regarding the model parameters, we used the
6
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following values for H-nodes: the transmission rate 𝛽 = 0.029 day−1
(Gurieva et al., 2017), the clearance rate 𝛾 = 1∕365 day−1 (Scanvic
et al., 2001; Donker et al., 2010, 2014). For C-nodes, we use the same
clearance rate and 𝛽 = 0, as no transmission in the community is
assumed, as in SIVW model in Section 2.

Another important parameter in the model is the transfer intensity
rate 𝜏 ∈ [0, 1]. The extreme cases correspond to no transfers (𝜏 = 0) and
full transfers (𝜏 = 1). The latter case (𝜏 = 1) simply corresponds to the
undisturbed (full) network, Fig. 3, constructed from the actual datasets.
It is therefore a model of healthcare system, in which HC-pairs interact
with each other. On the other hand, to obtain the former (𝜏 = 0), the
inter-hospital transfers were ignored. This case corresponds to isolated
HC-pairs.

For any Markov-chain matrix [𝑎𝑖𝑗 ]𝑖,𝑗∈{1,…,2𝑛}, comprising the transfer
probabilities between the nodes, elements 𝑎𝑖𝑗 correspond to transfer
probability from 𝑖th node to 𝑗th node. Indices 1,… , 𝑛 correspond to
from ClinicalKey.com by Elsevier on March 09, 2021.
opyright ©2021. Elsevier Inc. All rights reserved.
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Fig. 4. In-degree and out-degree of the healthcare facility nodes sorted by the 𝑅0 value for LS (a) and ST (b) data. The sum of in-degrees shown on the figures do not sum to
the out-degrees, as only healthcare facilities (H-nodes) are present in the figures.
Fig. 5. In-degree (a) and out-degree (b) of the healthcare facility nodes for AOK Plus (blue) and AOK Lower Saxony (red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
H-nodes, and 𝑛 + 1,… , 2𝑛 to C-nodes. We assume that 𝑖th H-node
corresponds to 𝑖 + 𝑛-th C-node. Let 𝐴𝑓𝑢𝑙𝑙 be a Markov-chain matrix
corresponding to 𝜏 = 1, and let 𝐴𝑎𝑢𝑡𝑜 be a respective matrix for 𝜏 = 0.
Then we define a matrix for any intensity 𝜏 ∈ [0, 1] as a convex
combination of these two matrices:

𝐴𝜏 = (1 − 𝜏)𝐴𝑎𝑢𝑡𝑜 + 𝜏𝐴𝑓𝑢𝑙𝑙 , 𝜏 ∈ [0, 1]. (16)

As an initial state of the simulation, 1% infectious people are assumed
to be distributed uniformly within the network.

In this setting, the following aspects are considered: Do all three
cases (based on 𝑅𝐴 and 𝑅0 values) explained in Section 2 exist in real
systems? Can a healthcare system be treated as a small perturbation
of system of the individual HC-pairs? What is the impact of transfers?
Do the individual HC-pair properties correlate with their role in a
connected system?

Thus, for further reference, we would like to distinguish three cases:

𝜏 = 1, 𝜎 = 0: Full transfers — all transfers are taken into account.
7
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𝜏 = 0, 𝜎 = 0: Isolated HC-pairs — no transfers between HC-pairs.

𝜏 = 0, 𝜎 = 1: Isolated HC-pairs, perfect screening on admission — no
transfers between HC-pairs, no pathogen transfer through C-
nodes.

To calculate 𝑅𝐴 and 𝑅0 for each 𝑖th HC-pair, we first need to
estimate 𝛼𝑖 and 𝜖𝑖 parameters which are equal to one over average
length of patient stays in hospital 𝑖 and corresponding community,
respectively. To estimate those values, we take diagonal elements 𝑎𝑖𝑖
and 𝑎𝑖+𝑛,𝑖+𝑛 of 𝐴𝑎𝑢𝑡𝑜 matrix i.e. the probabilities of stay of patients in
𝑖th unit and corresponding community node, respectively. Let us define
the success (at given day 𝑘 after admission) as discharge of the patient
from hospital 𝑖. It means that for 𝑘−1 days, with probability 𝑎𝑖𝑖 for each
day, patient was in the hospital and then at day 𝑘, patient was dismissed
with probability 1 − 𝑎𝑖𝑖. Thus, the probability of such situation is given
by 𝑎𝑘−1𝑖𝑖 (1 − 𝑎𝑖𝑖), which is probability mass function for the geometric
distribution. Hence, the average (expected) length of patient stays in
from ClinicalKey.com by Elsevier on March 09, 2021.
opyright ©2021. Elsevier Inc. All rights reserved.
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Fig. 6. Basic reproduction number 𝑅0 and reproduction number for one hospital stay 𝑅𝐴 given by (8) and (9) respectively, for 𝜎 = 0 and all considered healthcare facilities.
Healthcare facilities are ordered by 𝑅0 value, smallest first. 𝛼 and 𝜖 calculated for the transfer matrix defined in (16) for 𝜏 = 0: (a) AOK Lower Saxony data (LS) (b) AOK Plus
data (ST). In the area on the right to A-line all units have 𝑅0 ≥ 1, B-line indicates first unit such that 𝑅𝐴 ≥ 1 while C-line represents last unit such that 𝑅𝐴 < 1.
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a given hospital 𝑖 equals to 1∕𝛼𝑖 = 1∕(1 − 𝑎𝑖𝑖). The same arguments
holds for the community, corresponding to 𝑖th hospital, resulting in
𝜖 = 1 − 𝑎𝑖+𝑛,𝑖+𝑛.

4. Results

Let us start from the discussion of the individual HC-pair properties
and their relationship to the SIVW model. For 𝜎 = 0, i.e. no screening
at admission, the reproduction numbers 𝑅0 and 𝑅𝐴 for LS and ST cases
are presented in Fig. 6, where facilities are sorted by their 𝑅0 value. As
xpected, we observe correspondence of 𝑅𝐴 and 𝑅0. Although it cannot
e exactly called monotone, the correlation is quite clear. For the LS
atabase, 𝑅𝐴 < 𝑅0 < 1 is fulfilled for facilities numbered up to 90 (TS:
7), while 𝑅𝐴 < 1 < 𝑅0 holds for facilities from 91 up to 120 (TS: 85).
or the remaining facilities 1 < 𝑅𝐴 < 𝑅0 is fulfilled.

First consider the case when there is no transfer through the net-
ork, i.e. 𝜏 = 0. As discussed in Section 2, 𝑅0 > 1 should lead to
ersistent colonization of a healthcare facility, although if 𝑅𝐴 < 1 the
nfectious patients must be readmitted to sustain the colonization. This
tatement holds for our simulation results of isolated HC-nodes (𝜏 = 0)
resented in Figs. 7 and 8. The prevalence increases to significant levels
ith reproduction numbers reaching the 𝑅𝐴 < 1 < 𝑅0 regime and it

ncreases even more when 1 < 𝑅𝐴 < 𝑅0.
Further analysis of 𝜏 = 0, 𝜎 = 1 case reveals that the colonization

ithin 𝑅𝐴 < 1 < 𝑅0 regime is indeed due to readmission of colonized
atients, as these facilities do not reach colonized state without commu-
ity transmission. Nevertheless 1 < 𝑅𝐴 < 𝑅0 facilities remain colonized,
ostly with rather high prevalence level.

The interesting phenomenon may be observed for high 𝑅0 or 𝑅𝐴
alues. Prevalence in these facilities remain very high (80% and more)
ut the colonization rates in C-nodes can in fact be low. This effect may
e attributed to the very long average length of stays in these facilities,
o that the dismissed patient number is too low to affect prevalence
f communities significantly. In fact, transfers to other hospitals are
mportant factor governing the average length of stay in most of these
acilities, which decrease it significantly.

To estimate the impact of transfers, we increase 𝜏 (cf. Figs. 7 to 9).
he prevalence pattern changes significantly, as the colonized patients
re distributed through all the facilities. The distribution is not uniform,
n most cases it stays below 10%. Let us focus on 𝜏 = 1. We do
8
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ot observe a straightforward dependence of facility prevalence on
he reproduction number 𝑅0 anymore. However, some features are
reserved, as high prevalence in facility/community is present for 1 <
𝐴 < 𝑅0 facilities. Otherwise it stays on low level.

The final result of this simulation, which is perhaps slightly surpris-
ng, is that increasing the transfer intensity does not result in increase
f the system-level prevalence, both in sense of healthcare facilities
nd community (see Fig. 10). Increasing transfers from 𝜏 = 0 may
nitially result in some prevalence increase, but then it decreases until
= 1, when prevalence reaches about 6% for both LS and TS. Generally

ncreasing the transfer intensity promotes lower prevalence, although
he healthcare system is affected more than the community.

In Fig. 11, we present the difference in prevalence for full hospital
etwork (𝜏 = 1) and decoupled HC-pairs (𝜏 = 0). In both cases, for units
ith 𝑅0 < 1 we observe small increase in the prevalence. On the other
and, for most units with 𝑅0 > 1 we observe decrease, which is more
ronounced for facilities with greater 𝑅0. Interestingly, for units with
𝐴 > 1 there appears a strong diversity, although we see decrease in

he prevalence due to the network effect. Additional investigation of the
ifference in final prevalence in H-nodes depending on their in-degrees
nd out-degrees shows small positive correlation, cf. Fig. 12, however
btained results are not significant from the statistical point of view
part from in-degrees, which show weak positive correlation with the
ifference between prevalences for both networks.

To conclude, the presented results suggest that the dynamics in
he transfer network is much more than a small perturbation of the
ynamics observed for isolated facility/community pairs. While for
any nodes this coupling may be the most significant effect governing

heir prevalence, clearly we also observe opposite behaviour. Still, the
nalysis of SIVW system properties is important for understanding the
ynamics of the entire system, as by comparison of reproduction rates
e may identify the nodes with risk of high prevalence. This knowledge
ay be a basis of a future system-level infection-control strategy.

Moreover, in Figs. 13 and 14 we present changes of the prevalence
nd respectively the final prevalence for decoupled HC-pairs model
ith very effective decolonization of all patients that are screened at
dmission (𝜎 = 1). Comparing to the results without decolonization,
e note that in for LS and ST networks, units on the left of B-line do
ot have colonized patients or their percentage is negligible. On the
ther hand, for the units on the right of C-line we observe significant
roportion of colonized patients.
from ClinicalKey.com by Elsevier on March 09, 2021.
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Fig. 7. Prevalence (indicated by colour) in healthcare facilities versus time for 𝜎 = 0: (a) for AOK Lower Saxony data (LS), 𝜏 = 0, (b) for AOK Plus data (ST), 𝜏 = 0, (c) for AOK
Lower Saxony data (LS), 𝜏 = 1∕2, (d) for AOK Plus data (ST), 𝜏 = 1∕2, (e) for AOK Lower Saxony data (LS), 𝜏 = 1, (f) for AOK Plus data (ST), 𝜏 = 1. The facilities are sorted
by basic reproduction number 𝑅0 given by (8), smallest first. In the area on the right to A-line all units have 𝑅0 ≥ 1, B-line indicates first unit such that 𝑅𝐴 ≥ 1 while C-line
represents last unit such that 𝑅𝐴 < 1. On the colour bar the percentage of infectious individuals is presented. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 8. Prevalence in healthcare facilities at the end of simulation for 𝜎 = 0: (a) for AOK Lower Saxony data (LS), 𝜏 = 0, (b) for AOK Plus data (ST), 𝜏 = 0, (c) for AOK Lower
Saxony data (LS), 𝜏 = 1∕2, (d) for AOK Plus data (ST), 𝜏 = 1∕2, (e) for AOK Lower Saxony data (LS), 𝜏 = 1, (f) for AOK Plus data (ST), 𝜏 = 1. The facilities are sorted by basic
reproduction number 𝑅0 given by (8), smallest first. In the area on the right to A-line all units have 𝑅0 ≥ 1, B-line indicates first unit such that 𝑅𝐴 ≥ 1 while C-line represents last
unit such that 𝑅𝐴 < 1.
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Fig. 9. Prevalence (indicated by colour) in healthcare facilities at the end of simulation versus 𝜏 (where 𝜎 = 0) for: (a) for AOK Lower Saxony data (LS) (b) for AOK Plus data
(ST). On the colour bar the percentage of infectious individuals is presented. In the area on the right to A-line all units have 𝑅0 ≥ 1, B-line indicates first unit such that 𝑅𝐴 ≥ 1
while C-line represents last unit such that 𝑅𝐴 < 1. On the colour bar the percentage of infectious individuals is presented. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. System-level prevalence for the different values of 𝜏 in the transfer matrix given by (16) for 𝜎 = 0 and for different times for: (a) hospitals and (b) community nodes for
AOK Lower Saxony network model (LS); (c) hospitals and (d) community nodes for AOK Plus network model (ST). On the colour bar the percentage of infectious individuals is
presented. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Difference between prevalence in healthcare facilities between cases 𝜏 = 1 and 𝜏 = 0, both for 𝜎 = 0. Negative values correspond to decrease in prevalence due to network
effects: (a) for AOK Lower Saxony data (LS), (b) for AOK Plus data (ST). The facilities are sorted by their basic reproduction numbers 𝑅0 given by (8), smallest first. In the area
on the right to A-line all units have 𝑅0 ≥ 1, B-line indicates first unit such that 𝑅𝐴 ≥ 1 while C-line represents last unit such that 𝑅𝐴 < 1.

Fig. 12. Difference between prevalence in healthcare facilities between cases 𝜏 = 1 and 𝜏 = 0, both for 𝜎 = 0 for different hospitals showing the in-degree and out-degree of
H-nodes. Negative value corresponds to decrease in prevalence due to network effect. The solid lines depict the regression lines, coefficients of determination (R2) are estimated.
Results for (a) AOK Lower Saxony data (LS), (b) AOK Plus data (ST).

Fig. 13. Prevalence (indicated by colour) in healthcare facilities versus time for 𝜏 = 0, 𝜎 = 1. The facilities are sorted by basic reproduction number 𝑅0 given by (8), smallest first:
(a) for AOK Lower Saxony data (LS) (b) for AOK Plus data (ST). In the area on the right to A-line all units have 𝑅0 ≥ 1, B-line indicates first unit such that 𝑅𝐴 ≥ 1 while C-line
represents last unit such that 𝑅𝐴 < 1. On the colour bar the percentage of infectious individuals is presented. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 14. Prevalence in healthcare facilities at the end of simulation for 𝜏 = 0, 𝜎 = 1. The facilities are sorted by basic reproduction number 𝑅0 given by (8), smallest first: (a) for
AOK Lower Saxony data (LS) (b) for AOK Plus data (ST). In the area on the right to A-line all units have 𝑅0 ≥ 1, B-line indicates first unit such that 𝑅𝐴 ≥ 1 while C-line represents
last unit such that 𝑅𝐴 < 1.
5. Summary and discussion

In this paper, a hospital–community pair (HC-pair) model is pro-
posed for the spread of resistant pathogens in a network of hospitals. It
is based on the susceptible–infectious–susceptible (SIS) type differential
equation model, used for patients of a hospital and an associated
population — a community of potential patients of this facility. The
pathogen dynamics in these groups are governed by a SIS transmis-
sion process, under the assumption that there is no transmission of
pathogens in the community. Then, additional terms are added to cou-
ple the hospital SIS and community SIS, which correspond to admission
and discharge of patients.

The analysis of this system reveals that depending on the model
parameters (transmission rate, clearance rate, admission rate and dis-
charge rate), there exist two possible cases: either there is only one,
stable steady disease-free state, or there are two steady states: unstable
disease-free state and stable endemic state. In the former case, even
if initially there is a high prevalence among the populations, it will
converge asymptotically to zero with time. In the latter case, the disease
will not die out and there will always be certain number of colonized
patients, whenever the pathogen is introduced to the system.

The dynamics of the system are governed by two threshold quan-
tities, namely the single admission reproduction number 𝑅𝐴 and the
basic reproduction number 𝑅0. The former describes the number of
secondary cases caused by one infected individual during a single
hospital stay, while the latter is the number of secondary cases caused
during the entire infectious period, which may comprise more than one
stay in the hospital. In situations, where 𝑅𝐴 < 1 < 𝑅0, the endemic
state is only possible through readmissions of colonized patients into
the hospital, i.e. the readmission from the community is then necessary
to keep transmission on-going.

After connecting the HC-pairs into a network of hospitals with
transfers between them, there is a flow of colonized patients between
the HC-pairs. This leads to an inflow of colonization into nodes that
have a stable disease-free state and we therefore see low prevalence
in these nodes, but because there is not much transmission within
the nodes, prevalence stays low. In nodes where 𝑅0 > 1, endemic
prevalence establishes itself independent of inflow from outside. These
nodes are the source of overall endemic prevalence in the system.

To study these dynamics based on data from a real hospital network,
we used network models of healthcare systems of Lower Saxony region
(LS) and Saxony and Thuringia regions (ST), derived from anonymized
records of insurance companies AOK Lower Saxony and AOK Plus,
respectively. The analysis of patient transfers within these networks
allowed us to estimate reproduction numbers for the isolated HC-
pairs. In both networks, we find a nonzero representation of all cases
predicted by the theory. The results of the simulations agree with the
13
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theoretical characterization. Moreover, by preventing the readmission
of the infectious patients, the persistent colonization was removed from
facilities with stable endemic state, but 𝑅𝐴 ≤ 1. This result confirms
that in these HC-pairs, the readmission of colonized people is indeed
necessary to sustain the disease. On the other hand, facilities with
𝑅𝐴 > 1 remain colonized even in this case, as predicted.

Finally the individual HC-pairs were coupled together by the inter-
facility transfers, and the patients within the model were allowed to go
to different facilities. Various rates of transfers between HC-pairs were
studied, ranging from decoupled pairs to fully coupled, as defined by
the data. These simulations reveal that the impact of the healthcare
network on the HC-pairs is significant. The endemic state is introduced
to almost all facilities, although the prevalence is mostly low, below
10%. This behaviour is observed even if the amount of transfers is
reduced significantly when compared to the actual data. However, no
new high-prevalence endemic states are introduced by network effect.
On the other hand, we observe many facilities with high prevalence
in isolated case, which decreases significantly when the coupling is
introduced.

These observations can be explained based on the differences be-
tween facilities in their values of 𝑅𝐴 and 𝑅0. These differences occur
due to the differences in the average length of stay of patients in
hospitals and the communities: if patients stay longer, 𝑅𝐴 is higher, and
if they are readmitted more frequently, the value of 𝑅0 is higher. We
assumed here that the transmission rate 𝛽 is the same for all hospitals,
because we had no hospital-specific information on this parameter.
However, in reality there may also be differences between hospitals in
their transmission rates, which would then also affect 𝑅𝐴 and 𝑅0. In
the simulated dynamics we clearly observed differences in prevalence
between the three groups of hospitals distinguished by whether their
threshold values lie above or below 1. Hospital–community pairs with
both thresholds below 1 have low prevalence, even if they receive
colonized patients from other hospitals. Hospital–community pairs with
one or both thresholds above 1 have high to very high prevalence and
act as sources for the endemic prevalence in the entire network. For
HC-pairs with 𝑅𝐴 < 1 < 𝑅0, prevalence is in the medium range and
reducing readmission rate would suffice to bring prevalence down to
low levels.

At the level of the entire network we observe that with increasing
transfer rates, the system-level prevalence decreases. That result seems
to be surprising at first, as we would expect the increased transfer rate
to improve transmission of the disease. However, it can be explained by
the effect of dilution of prevalence, when patients move from facilities
with a high 𝑅0 to those with a low 𝑅0. In the latter, transmission chains
are stopped and do not lead to many secondary cases. Conversely, if
a colonized patient moves from a low 𝑅0 to a high 𝑅0 hospital, that
patient will not add much to the already high prevalence. So in total,
from ClinicalKey.com by Elsevier on March 09, 2021.
opyright ©2021. Elsevier Inc. All rights reserved.
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transmission is reduced by moving colonized patients from high risk
facilities to lower risk facilities.

However, it seems that there are some healthcare facilities in sys-
tems under consideration, which do not have a significant coupled
population base. They mostly admit patients associated with different
facilities. When the transfers are removed from the model, they mani-
fest a very long average stay length, which result in high prevalence. If
the coupling with other HC-pairs is restored, their prevalence is much
lower.

The strength of this study is that it combines a relatively simple
transmission model for single hospital–community pairs with a complex
network model based on data from a real hospital network. This way,
it is possible to compute reproduction numbers, which can then be
used to interpret the dynamics of pathogen transmission observed in
the network of hospitals. The impact of patients’ transfers on the
dynamics in the entire system can be studied by comparing the fully
connected system to the system of unconnected HC-pairs, which is fully
analytically tractable. A limitation of the study is that we did not have
colonization data from the hospitals in the network, so transmission
parameter values had to be taken from published literature. Although
we did take into account differences between hospitals in their average
length of stay, there may be many other factors that we did not have
information about and could not have considered, such as: differences
in morbidities of patients, implemented infection prevention and antibi-
otic use. Nevertheless, our results clearly demonstrate how transmission
dynamics in a network of hospitals are governed by the contributions of
all hospital–community pairs, and how these can be viewed as sources
or sinks in the entire flow through the network.

Our results have some implications for infection prevention in
healthcare systems, where hospitals are connected via patient transfers.
It is important to realize that even with the most effective prevention
strategies within a single hospital, readmissions of patients from other
hospitals form a continuous risk of new outbreaks. Within the entire
network, there may be hospitals that are a continuous source of
transmission for the entire hospital network, and hospitals with low
prevalence are most at risk by importation from those sources. Reduc-
ing transfers between hospitals will benefit low prevalence hospitals by
reducing their risk of importation, but it will not change much in high
prevalence hospitals. The latter can only reduce their prevalence by
reducing readmission rates and reducing transmission within the hos-
pital. Therefore, screening of patients who come from other hospitals
at admission may be an effective strategy for hospitals with low preva-
lence, but not for those with medium and high prevalence. For those
with medium prevalence, screening of both patients transferred from
other hospitals and those readmitted from the community may suffice
to reduce prevalence. For high prevalence hospitals, only improvement
of within-hospital infection prevention can help to reduce prevalence.
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