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Facial expressions are important for intentional display
of emotions in social interaction. For people with severe
paralysis, the ability to display emotions intentionally
can be impaired. Current brain–computer interfaces
(BCIs) allow for linguistic communication but are cum-
bersome for expressing emotions. Here, we investigated
the feasibility of a BCI to display emotions by decoding
facial expressions. We used electrocorticographic
recordings from the sensorimotor cortex of people with
refractory epilepsy and classified five facial expressions,
based on neural activity. The mean classification accu-
racy was 72%. This approach could be a promising ave-
nue for development of BCI-based solutions for fast
communication of emotions.
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Introduction
Locked-in syndrome (LIS) is a condition in which people
are (almost) completely paralyzed while mental capacity
remains intact1 and in which communication through the
normal means of vocalization and body language is
completely lost. A promising technological aid is the brain–
computer interface (BCI), which enables communication
by recording brain signals and translating these into com-
puter output.2 However, the speed of communication with
the current generation of BCIs3–5 is substantially lower than
that of normal speech.

Intentional communication of emotions is usually
conveyed by facial expressions,6 which allow people to con-
vey their feelings quickly, without linguistic utterance.
Although people with LIS cannot make deliberate facial
expressions, attempts to do so might lead to recognizable
and distinctive neural activity patterns, which can poten-
tially contribute to restoration of the communication of
emotion using a BCI approach. Indications for the feasibil-
ity of such an “intentional emotion display” BCI are sparse

(but see Chin and colleagues7), and it is currently unclear
whether deliberate facial expressions, which require the inte-
gration of different facial movements at the same time,6,8

can be distinguished from one another based on neural
activity. In the present proof-of-concept study, we mea-
sured electrocorticographic sensorimotor cortex (SMC) neu-
ral activity associated with posed facial expressions in two
individuals and classified the facial expressions based on the
neural activity patterns.

Patients and Methods
Participants
Two participants (A and B; both female, aged 30 and
41 years, respectively) were included in this study after
giving written informed consent. They underwent surgery
for epilepsy treatment in the University Medical Center
Utrecht, during which subdural electrocorticography elec-
trodes were temporarily implanted for clinical purposes.
For research purposes only, and with written informed
consent of the patients, an additional high-density elec-
trode grid of 128 electrodes (electrode diameter 1.17 and
1 mm, interelectrode distance 4 and 3 mm, for Subjects A
and B, respectively) was placed over the clinically non-
relevant SMC (subject A, left hemisphere; subject B, right
hemisphere). Only the high-density electrodes were used
for the present analysis. The Ethics Committee of the
University Medical Center Utrecht approved this study,
which was carried out in accordance with the Declaration
of Helsinki (2013).

Task
We examined five facial expressions (happy, sad, surprised,
disgusted, and neutral), which are clearly distinct from
each other with respect to the required muscles and can
be distinguished accurately with video-analysis.6,9 The
participants were asked to generate the facial expressions
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cued either by pictures of facial expressions (Cohn–
Kanade database10,11) or by the associated words. We used
picture and word cues because neural changes in the SMC
could be induced by visual perception of actions,12 posing
a confound in decoding. Trials started with a 2-second cue
(picture or word). The participants were instructed to make
the expression quickly and hold it for as long as the cue
was visible. The intertrial interval was 3 seconds. Each facial
expression was randomly repeated 5 times in pictures and
5 times in words, interleaved with rest trials, during which
the participants were instructed to keep a neutral face.

Data Acquisition and Preprocessing
Data acquisition and preprocessing was similar to that
described by Salari and colleagues13 unless mentioned
otherwise.

Classification Procedure
Trials were epoched between cue onset and offset and
were classified by template matching with leave-one-trial-
out cross-validation and using high-frequency-band
(65–130 Hz) power as a feature (for further details, see
Salari and colleagues13). To generate classification tem-
plates, we used all grid electrodes (excluding noisy, flat, or
re-reference electrodes) and we combined picture and text
trials. The effect of presentation type on classification was
assessed separately by inspection of cue-specific templates
and classifying text trials using picture templates and vice
versa.

Neural Activity Localization and Trial
Consistency
To gain insight into which areas were activated by which
expression, we visualized, per expression, the average

FIGURE 1: Classification accuracies and confusion matrices. (A) The classification accuracies (y-axis) for both participants (x-axis).
The red line represents chance level. (B) The confusion matrices are shown for Subject A and B, respectively, with on the y-axis
the actual expression and on the x-axis the predicted expression. [Color figure can be viewed at www.annalsofneurology.org]
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neural activity pattern on the brain. Furthermore, to see
how consistent neural activity patterns were, we calcu-
lated the average within-class correlation between trials
and the average between-class correlation. This was done
for only the four emotional expressions, because the neu-
tral expression did not involve any movement and there-
fore was not expected to be associated with neural
activity changes.

Informative Locations and Grid Sizes
We determined which brain regions were most informative
for classification against the background of considering BCI
applications and minimizing risks of electrocorticography
grid implants.14 For this purpose, we used a random search
procedure (described by Salari and colleagues13), in which
random combinations of electrodes were chosen 5,000
times and subsequently used for classification. The average

FIGURE 2: The average neural activity patterns and informative areas. (A) The average neural activity pattern is shown per
movement containing expression for both Subjects A and B. The black line indicates the central sulcus. Colors indicate the level
of normalized high-frequency band power. (B) On the left, the most informative electrodes are shown for both Subjects A and
B. The red line indicates the central sulcus. Colors indicate the level of attributed information for each electrode, which was
determined by a random search procedure. Warm colors indicate high classification accuracies and therefore more information.
On the right, the results of the searchlight procedure are shown, with the most informative areas shown in warm colors. We
used a 3 × 3 electrode configuration for the creation of the current plot (three electrode rows and columns), corresponding to
approximately 12 mm × 12 mm for Subject A and 9 mm × 9 mm for Subject B. Colors represent, for each electrode, the accuracy
score averaged over all configurations containing that electrode. [Color figure can be viewed at www.annalsofneurology.org]
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FIGURE 3: The influence of grid size and presentation type on classification accuracy. (A) On the y-axis, the maximum
classification accuracy (from all grid locations in the searchlight) is indicated for both participants per size of cortical surface,
which is indicated on the x-axis. Results were obtained using the searchlight approach, in which, for each sampled area of cortex,
the classification accuracy was determined. Note that the number of electrodes of each consecutive data point in this plot is
equal for both participants, but owing to differences in the resolution, the covered surfaces differ. (B) The confusion matrices of
classification with templates based on the opposite presentation type are shown. That is, picture trials were classified using
templates based only on text trials and vice versa. The confusion matrices are shown for Subject A and B, respectively, with on
the y-axis the real expression and on the x-axis the predicted expression. By doing so, classification can be driven only by activity
common in both presentation types and is therefore more likely to be attributable to the facial movements than to the stimulus
presentation. Note, however, that as the number of trials per presentation type is rather limited (5 per class), stability of the
templates may be reduced. Therefore, in all other classification analysis, we included both text and picture trials. (C) The facial
expression neural activity templates are shown per Subject A and B. On the x-axis, the facial expressions are indicated. On the y-
axis, electrodes are shown. The color scale indicates the normalized neural activity level, and each cell indicates the average
neural activity level for one electrode based on all trials (left), on picture trials only (middle), or text trials only (right). [Color
figure can be viewed at www.annalsofneurology.org]
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accuracy of each electrode was then determined and z-
scored. In addition, we used a searchlight procedure13 to
investigate what the classification accuracy would be if we
used a smaller portion of the grid. This approach was also
used to determine the maximum possible accuracy over all
investigated grid locations for different grid sizes. In addi-
tion, we investigated which grid size yielded the highest
accuracy, to find the minimally required grid size for maxi-
mal accuracy.

Data Availability
Data can be made available upon reasonable request.

Results
Task Performance
Participants performed the task well, although for Sub-
ject B some expressions, for example surprise, were noted
to be rather subtle. This participant did report, however,
that the movements she made represented a surprised face
for her, and therefore we did not exclude any trials.

Spatial Classification Accuracy
Classification accuracy was 78 and 66% for Subject A
and B, respectively (mean = 72, SD = 8.49, n = 2), and
chance level was 20% (Fig 1). Classification was signifi-
cantly above chance level (p < 0.001) for both participants.

Neural Activity Localization and Trial
Consistency
Of all electrodes, 84% (106 of 126 for Subject A) and
82% (103 of 125 for Subject B) showed a significant cor-
relation with at least one of the posed facial expressions.
Although some areas were active during all investigated
facial movements, there were also many areas where high-
frequency-band activity differed between expressions
(Fig 2A). On average, trials within the same class corre-
lated with a value of 0.32 (SD = 0.05) for Subject A and
0.32 (SD = 0.09) for Subject B. Trials of different classes
correlated on average with a value of 0.21 (SD = 0.05)
and 0.20 (SD = 0.05) for Subject A and B, respectively.

Informative Locations and Grid Sizes
The most informative electrodes were located in the face
area of the SMC, immediately below the hand area
(Fig 2B). The minimum required grid size to obtain maxi-
mum accuracy was 4 cm2 (6 × 6 electrodes with 4 mm dis-
tance) and 2.25 cm2 (6 × 6 electrodes with 3 mm distance)
for Subject A and B, respectively (mean, 3.13 cm2; Fig 3).

Presentation Type
Classification of picture trials based on text templates and
vice versa resulted in similar results to the use of combined
text and picture templates (78 and 68% accuracy for

Subject A and B, respectively). Visual inspection of the
average neural pattern per class showed that only for the
expression of disgust by Subject B was there a clear influ-
ence of presentation type. In the combined (picture
+ text) template, this effect was reduced, however
(see Fig 3).

Discussion
In this proof-of-concept study, we showed that five posed
facial expressions can be classified well based on SMC
neural activity. Both the left and the right hemisphere
could be used for classification, which corresponds to ear-
lier demonstrations of bilateral activation during produc-
tion of a willful smile.15 The facial SMC area was most
informative for classification. Furthermore, we found that
even with a grid size of only 3.13 cm2, good performance
could be reached. Importantly, given that people had to
hold the facial expressions for only 2 seconds, we show
that classification of posed facial expressions can be
established relatively fast.

Our results add a new conceptual dimension to pre-
vious studies that classified isolated articulator
movements,13,16 by showing that posed facial expressions,
which entail simultaneous movements of multiple effec-
tors (lips, jaw, nose and eyebrows), can be identified to a
high degree by using neural activity alone. Importantly,
this study focused on facial expressions, which allows the
decoding of activity that corresponds to willful expression
of feelings and is therefore conceptually different from ear-
lier reports on decoding mood itself (eg, Sani and col-
leagues17). Indeed, a double dissociation between genuine
and mimicked facial movements exists in the motor path-
ways, with the mimicked movements originating from the
motor cortex and the emotional state mostly from subcor-
tical structures.18,19 Given that it is important for BCI
users to have control over what they want to communi-
cate, we believe that classification of willful facial expres-
sions benefits the development of communication BCIs.

In the present study, we investigated executed move-
ments produced by able-bodied people. The feasibility of
classifying attempted facial expressions in people with LIS
is likely20 but requires confirmation. Another limitation is
the small number of participants and expressions. The
influence of the presentation type on the classification
seemed to be limited, but further research on this topic is
needed because the number of trials per presentation type
was low.

Conclusion
We demonstrate that posed, intentional facial expressions
can be distinguished from each other based on SMC
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activity. These results suggest that the deliberate display of
emotions in the form of facial expressions can be added to
communication BCIs and potentially increase the utility
of neuroprosthetic communication devices. Enrichment of
BCI communication with emotional messaging is likely to
enhance the quality of social interaction for people
with LIS.
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