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Abstract: Background: Radiomics is aimed at image-based tumor phenotyping, enabling application within
clinical-decision-support-systems to improve diagnostic accuracy and allow for personalized treatment. The purpose
was to identify predictive 18-fluor-fluoro-2-deoxyglucose (18F-FDG) positron-emission tomography (PET) radiomic
features to predict recurrence, distant metastasis, and overall survival in patients with head and neck squamous cell
carcinoma treated with chemoradiotherapy.

Methods: Between 2012 and 2018, 103 retrospectively (training cohort) and 71 consecutively included patients
(validation cohort) underwent 18F-FDG-PET/CT imaging. The 434 extracted radiomic features were subjected, after
redundancy filtering, to a projection resulting in outcome-independent meta-features (factors). Correlations
between clinical, first-order 18F-FDG-PET parameters (e.g., SUVmean), and factors were assessed. Factors were
combined with 18F-FDG-PET and clinical parameters in a multivariable survival regression and validated. A clinically
applicable risk-stratification was constructed for patients’ outcome.

Results: Based on 124 retained radiomic features from 103 patients, 8 factors were constructed. Recurrence
prediction was significantly most accurate by combining HPV-status, SUVmean, SUVpeak, factor 3 (histogram
gradient and long-run-low-grey-level-emphasis), factor 4 (volume-difference, coarseness, and grey-level-non-
uniformity), and factor 6 (histogram variation coefficient) (CI = 0.645). Distant metastasis prediction was most
accurate assessing metabolic-active tumor volume (MATV)(CI = 0.627). Overall survival prediction was most accurate
using HPV-status, SUVmean, SUVmax, factor 1 (least-axis-length, non-uniformity, high-dependence-of-high grey-
levels), and factor 5 (aspherity, major-axis-length, inversed-compactness and, inversed-flatness) (CI = 0.764).

Conclusions: Combining HPV-status, first-order 18F-FDG-PET parameters, and complementary radiomic factors was
most accurate for time-to-event prediction. Predictive phenotype-specific tumor characteristics and interactions
might be captured and retained using radiomic factors, which allows for personalized risk stratification and
optimizing personalized cancer care.
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Statement of translational relevance
The current study provided new insights in image-based
tumor phenotyping by assessing associations of primary
tumor and lymphnode metastasis characteristics, as a
basis for future research. The combination of clinical,
first-order, and radiomics features showed complemen-
tary predictive value for locoregional recurrence, metas-
tasis and overall survival, while maintaining predictive
underlying processes. A clinical applicable risk stratifica-
tion was presented to stratify patients, which might im-
prove clinical-decision-support-systems and enhances
patient-specific treatment efficacy.

Introduction
Personalized cancer care of locally advanced head and
neck squamous cell carcinoma (HNSCC) implies
customization of therapy to the individual patient. This
might improve the current overall 5-year survival rate of
50% (35–65%) [1]. Radiotherapy with or without chemo-
therapy is frequently applied but fails in 50% of the cases.
In the vast majority (about 90%), the locoregional failure
occurs within the first 2 years after treatment [2, 3]. The
consequence of recurrent cancer is that surgical salvage
therapy is generally the only option with curative intent,
but this is associated with high morbidity [4]. More effi-
cient pre-treatment response prediction may result in
patient-tailored escalation or toxicity-reducing de-
escalation (e.g., in radiosensitive HPV-positive patients) of
(chemo)radiotherapy or a switch to different treatment
options (e.g., surgery). Imaging is crucial in management
because of its value on fast and non-invasive tumor sta-
ging, response monitoring, and prognosis prediction [5].
Exploration of quantitative imaging features might reflect
underlying phenotype and response and thus may
maximize the success of tailored treatments [6].
Radiomics focuses on the methodology of extensive

image-based tumor phenotyping [7]. With radiomics, it
may be possible to characterize phenotypic differences
providing information on the whole-lesion microenviron-
ment and surrounding area accounting for spatial and
temporal heterogeneity, such as cellular morphology, pro-
liferative capacity, metabolism, motility, angiogenic and
oxygenation status, gene expression (including expression
of cell surface markers, growth factor, and hormonal re-
ceptors), proliferative, immunogenic, and metastatic po-
tential [5, 6, 8]. These characteristics might be captured by

radiomics-derived tumor features (i.e., intensity, shape, or
texture) and might be of complementary value to other
clinical parameters to predict their effect on the chemo-
radiosensitivity (i.e., quantity of tumoral radiosensitive
cancer stem cells, the hypoxic fraction, reoxygenation of
the tumor vicinity, and/or repopulation capacity through-
out the course of therapy) [7, 9–11].
Radiomic features of functional imaging may provide

additional information to anatomical imaging, because it
provides information on pathophysiologic tumor character-
istics [12, 13]. Positron-emission tomography (PET)/com-
puted tomography (CT) using 18F-fluoro-deoxy-glucose
(18F-FDG) measures tumoral metabolic activity and can be
quantified with 18F-FDG-PET/CT by the standard uptake
value (SUV). Pretreatment 18F-FDG-PET/CT was reported
to be useful for detection, treatment decision support [14],
planning [15, 16], and the prediction and detection of re-
currences and long-term outcome [2]. PET-radiomics was
superior over a CT-based model (CIPET = 0.77 versus CICT
= 0.72) [17] and might improve lesion characterization and
patient outcome prediction compared to first-order PET
parameters in daily clinical routine [18–21].
Identified radiomic associations give insight in the bio-

logical basis of imaging appearance and could aid tar-
geted treatment decision-making and predict prognosis
non-invasively. Radiomics was mainly analyzed in CT
[22], or PET-CT separately [8, 10], but when combined
with clinical features, it resulted in higher predictive and
prognostic value [17, 23]. To our knowledge, a
comparison of prediction models in head and neck with
FDG-PET radiomic factors, SUV measurements (e.g.,
maximum or peak SUV), and clinical parameters, associ-
ated with patient’s outcome has not yet been described.
The aim of this study was to construct a model based

on 18F-FDG-PET radiomics features to predict locoregio-
nal recurrence, distant metastasis, and overall survival
(OS) in patients with locally advanced head and neck
squamous cell carcinoma treated with chemoradiotherapy.

Methods
Data selection
Between 2012 and 2014, 103 patients were included
retrospectively in our training cohort. Between 2014 and
2018, 81 consecutive patients were included independ-
ently from the training cohort in a validation cohort.
These training and validation single-center cohorts were
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approved by the local institutional ethics committee
(Amsterdam UMC Medisch Ethische ToetsingCommis-
sie (METC), reference: 2013.191). A written informed
consent was waived for the training cohort (reference:
2016.498), whereas for the validation cohort a written in-
formed consent was obtained from all patients. Previ-
ously untreated patients with histologically proven
HNSCC were included who were planned for chemora-
diotherapy with curative intent (see Table 1). Exclusion
criteria were nasopharyngeal tumors, age < 18 and preg-
nancy, previous locoregional treatment of HNSCC, or
insufficient image quality. Within 5 weeks after baseline
imaging, treatment was initiated consisting of a pre-
determined regimen of chemoradiotherapy (CRT) during
a period of 7 weeks; 70 Gy in 35 fractions with concomi-
tant cisplatin (100 mg/m2 on days 1, 22, and 43 of

radiotherapy)) or cetuximab (400 mg/m2 loading dose
followed by seven weekly infusions of 250 mg/m2). To-
bacco use was defined as a smoking history of ≥ 10 pack
years. Alcohol use was defined as drinking 3 or more al-
coholic drinks per day [24, 25]. Locoregional recurrence
was defined as the location of primary tumor (PT) and/
or lymph node metastases (LN). Locoregional failure
was measured from the end of CRT to the date of local
or regional histological proven relapse. Metastasis was
defined as a distant location from the locoregional PT
and LN. Overall survival time was measured from the
end of CRT until a HNSCC-related death. These patient
outcomes concerned locoregional recurrence, metastasis
or death within 2 years of follow-up time or a minimal
follow-up time of 2 years after the end of treatment.

18F-FDG-PET/CT acquisition
18F-FDG-PET/low-dose-CT was performed according to
the EANM guidelines 1.0 and since 2015 using version
2.0 on a Gemini-TF or Ingenuity TF PET/CT (Philips
Medical Systems, Best, The Netherlands) with EARL ac-
creditation [26]. The examination was performed after a
6-h fasting period and adequate hydration. Scans with
arms down were acquired; from mid-thigh to skull ver-
tex, 60 min after intravenous administration of 2.5 MBq/
kg 18F-FDG (3 min per bed position). The 18F-FDG-
PET/CT images were reconstructed using time of flight
iterative ordered subsets expectation maximization (3 it-
erations and 21 subsets) with photon attenuation correc-
tion using a low dose CT [27]. Reconstructed images of
both PET scanners were acquired with similar settings
and had an image matrix size of 144 × 144, voxel size of
4 × 4 × 4 mm, FWHM of 6.75 mm. Low-dose-CT was
collected using a beam current of 50 mAs at 120 kV for
anatomical correlation of 18F-FDG uptake and attenu-
ation correction. CT-scans were reconstructed using an
image matrix size of 512 × 512 resulting in pixel sizes of
1.17 × 1.17 mm and a slice thickness of 5 mm.

Whole-lesion delineation
Whole-lesion delineation was performed, as previously de-
scribed [28], by an experienced nuclear medicine phys-
ician with 5 years of experience (BZ) supervised by
another nuclear medicine physician with 30 years of ex-
perience (OH) in head and neck nuclear medicine, re-
spectively, with knowledge of the HNSCC diagnosis,
TNM-stage (7th edition [29]), and primary tumor location
for delineation of proven malignant lesions. Delineation of
primary tumors (PT) was performed semi-automatically
on 18F-FDG-PET/CT using a 50% isocontour of the SUV-
peak of the tumor volume adapted for the local back-
ground, providing low variability, low number of outliers,
and high repeatability [30, 31]. SUV was normalized to
body weight. Within the volume of interest (VOI), the

Table 1 Patient characteristics

Training cohort Validation cohort

Number (%) Number (%)

Patients total 103 71

No of male patients 76 (73.8%) 53 (75.7%)

Age, years (mean, IQR) 62.3 (57.3–67.8) 63.3 (57.8–69.3)

Mean radiation dose, Gy 70 70

Chemotherapy

Cisplatin 88 (85.4%) 57 (80%)

Cetuximab 15 (14.6%) 14 (20%)

T-stage

2 46 (44.7%) 25 (35.2%)

3 24 (23.3%) 19 (26.8%)

4 33 (32%) 27 (38%)

N-stage

0 14 (13.6%) 11 (15.5%)

1 13 (12.6%) 15 (21.1%)

2 75 (72.8%) 45 (63.4%)

3 1 (1%) 0 (0%)

HPV-status

Positive 39 (37.9%) 26 (36.6%)

Negative 64 (62.1%) 45 (63.4%)

Tumor site

Oropharynx 74 (71.8%) 51 (71.8%)

Hypopharynx 29 (28.2%) 20 (28.2%)

Overall alcohol history score (SD) 1.91 (1.19) 1.72 (1.24)

Smoking pack years, (IQR) 22.7 (18.2–38.9) 23.5 (19.3–41.3)

Follow-up time (mean, IQR) 31.5 (20.7–44.5) 26.4 (19.8–34.1)

Recurrence 27 (26.2%) 19 (27.1%)

Metastasis 10 (9.7%) 18 (25.7%)

Death 37 (35.9%) 22 (31.4%)

IQR: interquartile range
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maximum and mean SUV were defined (SUVmax and
SUVmean). SUVpeak was defined as the uptake in a 1-mL
spherical VOI with the highest value across all tumor
voxel locations. Partial volume effects were minimized by
taking lesion only with a minimum volume of 4.2 mL into
account (i.e., 3 times the PET system’s spatial resolution
of 6.75 mm FWHM) [32].

Feature extraction
Radiomic features were extracted from the FDG-PET im-
ages using the in-house built Accurate tool (for making
vois) in combination with the RadCat tool for feature calcu-
lation (Supplement 10), as described previously [33–35]. It
provides 3D implementation of feature extraction methods
for four types of features: shape, intensity, texture based on
co-occurrence, and run-length matrices (description of
tumor voxels with homogeneous/heterogeneous high or
low grey-levels) according to the International biomarker
standardization initiative (IBSI) standard [36]. For each pa-
tient, 434 18F-FDG-PET radiomics features were extracted.
For the texture analysis, PET images were discretized to a
fixed bin size of 0.25 SUV [34]. The radiomic features were
not normalized and only raw values were used that were
directly computed from the DICOM images. The radiomic
data processing consisted of dimension reduction to arrive
at a limited number of latent features that retain most of
the information contained in the original feature-space (see
the next subsection and Supplement 1).

Radiomic data processing
Redundancy filtering
First, the marginal associations between the retained radiomic
features of the patient in the retrospective training cohort were
assessed in a heat map. As radiomic data are inherently multi-
collinear, some redundancy was expected: that is, there were
pairs of features whose marginal correlation neared (negative)
unity. Hence, redundancy filtering was performed, using a cus-
tom redundancy-filtering algorithm [37]. This algorithm
removes the minimal number of features under a marginal
correlation threshold, which we set at 0.95.

Correlation matrix regularization
The correlation matrix between the remaining features
after redundancy filtering was ill-conditioned [38]. The
remaining correlation matrix was subjected to ridge-
regularization [38]. The optimal value of the penalty-
parameter was determined by 5-fold cross-validation of
the log-likelihood. We considered the scaled features (cen-
tered around 0 and variance 1) to avoid a situation where
the features with the largest scale dominate the analysis.

Factor analytic data compression
Then, we performed a maximum likelihood factor ana-
lysis on the regularized feature-correlation matrix [38].

The goal was to reduce the dimension of the data with-
out losing (much) information. When the features natur-
ally clustered into latent factors (meta-features), it was
desirable to extract these factors, as it allowed us to
build a parsimonious model that retained (as much as
possible) the information of the full feature set. A latent
radiomic meta-feature represents a projection of the
shared information in a collection of observed features.
It represents a latent domain underlying a cluster of ob-
servables. The dimension of the latent space was deter-
mined by Guttman bounds [39]. The factor-solution was
rotated to a simple (i.e., sparse) orthogonal structure.

Obtaining factor scores
After projection of the original variable-space onto the
lower-dimensional factor-space, we desired factor scores:
the score each individual obtains on each of the latent
factors. These were obtained by regressing the latent fea-
tures on the observed data by way of the obtained factor
solution. The resulting factor scores of the retrospective
training set were used as predictors in further modeling.

Validation
Previously described four steps were then performed sep-
arately in the prospective validation cohort in order to val-
idate similar radiomic factors in the prediction analysis.

Statistical analysis
The correlation between clinical parameters, standard
18F-FDG-PET/CT parameters (SUVmax, SUVmean,
SUVpeak), and radiomic factors was determined in the
training and validation set with Spearman’s correlation
coefficient. Corresponding p values were multiplicity-
corrected using Bonferroni’s method. The difference in
outcome was assessed between patients who received
cisplatin and cetuximab (log rank test). The difference in
outcome was assessed for patients with a oropharyngeal
and hypopharyngeal tumor location between HPV-
positive and HPV-negative status (log rank test).
The prognostic performance of clinical parameters,

18F-FDG-PET/CT parameters, and radiomic factors was
firstly assessed in the training set separately for the pa-
tient outcomes (locoregional recurrence, distant metas-
tases, and death) by performing a Cox regression
analysis. Thereafter, significant clinical, 18F-FDG-PET/
CT parameters, and radiomic factors were combined in
a multivariable analysis. Multivariable regression analysis
was performed according to the TRIPOD-statement
(Supplement 9), accepting p values up to 0.157 to en-
hance the model applicability to other patient groups
[40, 41]. Predictive performance of the models was
assessed by a 5-fold cross-validation [42] and by using
the incident area under the receiver operating curves
(ROC) and concordance index (CI).
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The predictive accuracy of the constructed prediction
models in the training set was validated in a separate valid-
ation set. The prognostic performance was assessed by the
incident area under the receiver operating curves (ROC)
and concordance index (CI). Finally, the prediction models
were compared in the validation set using the log-
likelihood chi-square test and area under the curve (AUC).
A risk calculator for all outcomes was constructed,

based on the normalized standard hazard and the coeffi-
cient of each parameter or radiomic factor of the pre-
dictive model. This risk stratification was divided into a
high (≥ 66%), medium (≥ 33–66%), and low risk (< 33%)
for a patient outcome using the most accurate prediction
model. The correlation assessment was performed on
IBM SPSS Statistics for Windows. Analyses regarding
the factor-analytical data-compression and prognostic
modeling were performed with R.

Results
Patient characteristics
Overall, 184 patients were included, of which 103 retro-
spectively (training set) and 71 consecutive independent
patients (validation set)(see table 1 for patient characteris-
tics). The mean age of the training cohort was 62.3 years
(inter-quartile range (IQR): 57.3–67.8). The mean age of
the validation cohort was 63.3 (IQR 57.8–69.3). Treatment
of all included patients consisted of pre-determined regi-
mens: in 88 patients radiotherapy was combined with a
cisplatin dose, 15 patients received radiotherapy with
cetuximab. The mean follow-up time in the training set
was 31.5 months (IQR: 20.7-44.5) and in the validation set
26.4 months (IQR 19.8–34.1). In the training cohort, 27
recurrences, 10 metastases, and 37 deaths occurred. In the
validation cohort, 19 recurrences, 18 metastases, and 22
deaths occurred. The outcome was not significantly differ-
ent between patients who received cisplatin and those
who received cetuximab in the training set and test set;
for recurrence (p = 0.071, p = 0.877, respectively), metas-
tasis (p = 0.60, p = 0.295, respectively), and OS (p = 0.053,
p = 0.276, respectively). The median OS in the training set
for patients with cisplatin 32.1 months and for cetuximab
27.6 months and in the validation set for cisplatin 23.2
months and for cetuximab 18.1 months. A significant bet-
ter OS was found for HPV-positive cancers with both oro-
pharyngeal and hypopharyngeal primary tumor location
(both p < 0.05).

Radiomic factors
Redundancy filtering showed many strong (absolute) as-
sociations, which was echoed in the heatmap on the
thresholded correlation matrix (Fig. 1c), including all
correlations whose absolute value equals or exceeds
0.95. After redundancy thresholding, 124 radiomic fea-
tures were retained (Fig. 1d). The remaining correlation

matrix was subjected to ridge-regularization with the op-
timal regularization parameter value determined by 5-
fold cross-validation of the log-likelihood. The resulting
regularized matrix was well-conditioned.
The factor analytic data compression of the regular-

ized correlation matrix resulted in eight latent meta-
features (factors). These retained 80% of the covariation
between the original 124 features. Hence, the factor so-
lution was deemed to sufficiently represent the original
feature-space (Supplement 1). The factor solution was
visualized (Fig. 2) with a dandelion plot [43].

Representation of original features in the radiomic factors
Factor 1 consisted mainly of (I) least axis length (morph-
ology) and (II) non-uniformity (GLRLM; grey-level-run-
length matrix and GLDZM; grey-level-distance zone-matrix
(counts the number of groups of linked voxels, which share
a specific discretized grey-level and possess the same distance
to ROI edge), and (III) high dependence of high grey levels
(NGLDM; neighborhood grey-level difference matrix, which
aims to capture the coarseness of the overall texture [36]).
Factor 2 consisted mainly of (I) histogram range (intensity),

(II) (A) contrast, dissimilarity, cluster prominence (GLCM;
grey-level-co-occurrence matrix), (B) zone size non-uniformity
(GLSZM; grey-level-size-zone matrix) (C) complexity, con-
trast, and strength (NTGDM; neighbourhood-grey-tone-dif-
ference matrices), and (D) small distance high grey level
emphasis (GLDZM).
Factor 3 consisted mainly of (I) maximum histogram

gradient and inversed minimum histogram gradient (In-
tensity), (II) (A) long run low grey-level emphasis and
run-length variance (GLRLM), (B) zone size variance
(GLSZM) (C) busyness (NGTDM), and (D) high depend-
ence emphasis and dependence count variance (NGLDM).
Factor 4 consisted mainly of (I) volume difference (inten-

sity), (II) (A) inversed 3D coarseness, grey-level non-
uniformity, large distance low grey-level (NGTDM), and (B)
inversed low grey-level count and energy count (NGLDM).
Factor 5 consisted mainly of (I) aspherity, major axis

length, inversed compactness, and flatness (morphology).
Factor 6 consisted mainly of (I) histogram coefficient of

variation (intensity) (II) second measure of information
correlation (GLCM) and (III) Morans I (Morphology).
Factor 7 consisted mainly of (I) inversed small zone

low grey-level emphasis (GLSZM).
Factor 8 consisted mainly of inversed difference fea-

tures (GLCM), but scored lower than the overlapping
factor 1 features.

Associations between clinical and 18F-FDG-PET
parameters with radiomic factors
The significant associations after Bonferroni’s correction
of each of the 8 factors with T-stage, N-stage, HPV-
status, and smoking in the training set (Table 2) showed
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that factor 1 had a significant positive correlation with
T-stage (r = 0.454), SUVmax (r = 0.440), SUVpeak (r =
0.521), SUVmean (r = 0.468), TLG (r = 0.807), and
MATV (r = 0.947). Factor 2 correlated significantly with
SUVmax, SUVpeak, and SUVmean (r = 0.704–0.740).
Furthermore, T-stage correlated significantly with SUV-
max (r = 0.412), SUVpeak (r = 0.438), SUVmean (r =
0.422), and MATV (r = 0.405). HPV-status correlated
negatively with SUVmean (r = − 0.338). In the validation
set, associations between factor 1 and TLG and MATV
(r = 0.812, 0.887), factor 2 and SUVmax, SUVpeak and
TLG (r = 0.838–0.876), and factor 3 and TLG and
MATV (r = 0.494, 0.815, respectively) remained signifi-
cant (Supplement 2). Low association was found be-
tween factors (Supplement 3).

Prognostic value of clinical, 18F-FDG-PET parameters, and
radiomic factors in the training set
The significant predictors of recurrence were in the training
set per clinical, PET parameter of radiomic factors separately;
HPV-status; MATV; and factors 1 and 4 (Supplement 4).
The combination of clinical and 18F-FDG-PET param-

eters resulted in N-stage, HPV-status; and SUVmean as
significant predictors (Supplement 5). The combination
of clinical and radiomics parameters resulted in HPV-

status; and factors 1, 4, 5 as significant predictors. The
combination of clinical, 18F-FDG-PET, and radiomics pa-
rameters resulted in HPV-status, SUVmean, SUVpeak,
factor 3, 4, and 6 as significant predictors (Supplement 4)
and was significantly (p = 0.041; Supplement 5) most ac-
curate to predict recurrences (CI = 0.796, SE = 0.045) as
compared with other combinations (Table 3).
The significant predictors for distant metastasis were

in the training set per clinical, PET parameter of radio-
mic factors separately; only MATV (Supplement 3).
The combination of clinical and 18F-FDG-PET pa-

rameters resulted in N-stage and SUVmean as signifi-
cant predictors (Supplement 4). The combination of
clinical parameters, 18F-FDG-PET parameters, and
radiomics resulted in only MATV as significant pre-
dictor (Supplement 4).
The significant predictors for overall survival were in

the training set per clinical, PET parameter of radiomic
factors separately; T-stage, HPV-status; MATV; factors 1
and 5 (Supplement 4).
The combination of clinical and 18F-FDG-PET param-

eters resulted in HPV-status and MATV as significant
predictors (Supplement 4). The combination of clinical
parameters and radiomics resulted in factors 1 and 5 as
significant predictors.

Fig. 1 An overview of the radiomics workflow including a delineation, b extracting of intensity, texture, morphologic, and shape radiomics
features. c The removal of redundancy of highly correlated features (Pearson r > 0.95) and the construction of factors. d The construction of
prediction models with clinical, first-order PET-features, and/or radiomic factors and the risk-stratification into a high/medium/low risk for
developing an event based on the constructed prediction models
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The combination of clinical parameters, 18F-FDG-PET
parameters, and radiomics resulted in HPV-status, SUV-
max, SUVmean, factors 1 and 5 as significant predictors
(Supplement 5) and was non-significantly (p > 0.05; Sup-
plement 6) most predictive (CI = 0.750, SE = 0.046) as
compared with other combinations (Table 3).

Validation of the prognostic models
In the validation set, the prognostic accuracy of each
trained model predicting the risk for recurrence, metastasis,
and overall survival was validated (Table 4). This resulted
in a validated CI = 0.645 (SE = 0.071) for recurrence, CI =
0.627 (SE = 0.094) for metastasis, and CI = 0.764 (SE =
0.062) for overall survival (Table 4 and Fig. 4).
The risk stratification into a high, medium, and low

risk for adverse outcome was constructed; for recur-
rence (p = 7E−5), metastasis (p = 0.002) and overall
survival (p = 4E−7) (Fig. 3, Supplement 7 and 8). A
clinical applicable patient-specific risk calculator was

constructed for a single patient to predict recurrence,
metastasis, or death (Table 5).

Discussion
In this study, the examination of the prognostic value of pre-
treatment 18F-FDG-PET radiomics in locally advanced
HNSCC showed that the discriminatory performance of the
combination of latent radiomics factors of 18F-FDG-PET was
of additional value in predicting recurrence, metastasis, and
overall survival and that the combination of clinical, PET,
and radiomics parameters was most predictive.

Radiomics process
The primary goal of radiomics is to build clinical models
using machine learning techniques [44] in order to pre-
dict patient outcome, thereby allowing for better person-
alized treatment management. These multivariable
prediction models might be unintelligible for clinicians,
because they combine a large number of high-order

Fig. 2 Dandelion plot for visualization of the dimension reduction of all features by construction of 8 factors reflecting the radiomics
feature spectrum.The cumulative ratio was 80% of all extracted features. Per factor the most important radiomics features were described
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Table 2. Correlations of radiomic factors with clinical parameters and FDG-PET parameters in the training set

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 SUVmax SUVpeak SUVmean TLG MATV

T-stage 0.454 0.234 − 0.102 0.11 0.111 − 0.101 0.123 0.035 0.412 0.438 0.422 0.318 0.405

p value 0.000 0.017 0.306 0.269 0.263 0.312 0.214 0.725 0.000 0.000 0.000 0.001 0.000

N-stage 0.075 − 0.082 0.086 0.144 0.069 0.043 − 0.053 0.047 0.057 0.045 0.042 0.06 0.065

p value 0.452 0.408 0.389 0.148 0.488 0.670 0.596 0.639 0.568 0.650 0.677 0.544 0.515

HPV − 0.259 − 0.273 0.126 0.006 − 0.149 0.055 0.009 0.036 − 0.329 − 0.332 − 0.338 − 0.195 − 0.245

p value 0.008 0.005 0.205 0.951 0.132 0.584 0.925 0.722 0.001 0.001 0.000 0.048 0.012

Smoking (PY) 0.021 0.05 − 0.12 0.077 0.27 0.013 − 0.039 0.077 0.139 0.095 0.099 − 0.032 0.029

p value 0.835 0.613 0.227 0.437 0.006 0.894 0.699 0.442 0.160 0.340 0.319 0.751 0.769

SUVmax 0.440 0.717 − 0.093 0.311 0.08 0.044 0.165 0.168

p value 0.000 0.000 0.353 0.001 0.425 0.660 0.096 0.089

SUVpeak 0.521 0.704 − 0.034 0.284 0.042 0.02 0.146 0.177

p value 0.000 0.000 0.731 0.004 0.675 0.838 0.141 0.073

SUVmean 0.468 0.740 − 0.073 0.289 0.01 − 0.016 0.151 0.157

p value 0.000 0.000 0.463 0.003 0.919 0.869 0.127 0.112

TLG 0.807 0.172 0.395 0.079 0.04 0.01 0.07 − 0.114

p value 0.000 0.082 0.000 0.429 0.686 0.920 0.482 0.254

MATV 0.947 0.023 0.034 0.044 0.104 0.001 0.023 − 0.234

p value 0.000 0.820 0.734 0.656 0.297 0.997 0.817 0.018

Bold numbers were significantly correlated (p < 0.001), after the Bonferroni multiple testing correction

Table 3 Predictive accuracy of clinical parameters, PET-parameters, and radiomics factors separately and combined for the
prediction of locoregional recurrence, metastasis, and death

Recurrence prediction Metastasis prediction Overall survival prediction

Patients Recurrences Concordance
index

SE Patients Distant
metastasis

Concordance
index

SE Patients Deaths Concordance
index

SE

Clinical
parameters
T-stage, N-stage,
HPV-status, Smok-
ing (PY)

103 27 0.699 0.049 103 10 0.690 0.097 103 37 0.691 0.043

PET parameters
SUVmax,
SUVmean,
SUVpeak, TLG,
MATV

103 27 0.616 0.065 103 10 0.759 0.062 103 37 0.711 0.041

Radiomics
parameters
Factor 1 to 8

103 27 0.716 0.055 103 10 0.746 0.079 103 37 0.714 0.05

Combined
clinical + PET
parameters

103 27 0.758 0.05 103 10 0.822 0.047 103 37 0.744 0.042

Combined
clinical +
radiomics

103 27 0.770 0.043 103 10 0.831 0.066 103 37 0.749 0.047

Combined
clinical + PET +
radiomics

103 27 0.796 0.045 103 10 0.945 0.029 103 37 0.750 0.046
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multimodality image features [45, 46]. However, they
may outperform visual analysis in terms of accuracy.
Aerts et al. [22] selected only the single best predictive

features on CT from each of their four main feature cat-
egories (statistical features (e.g., mean, maximum, peak,
mode), shape, grey-level-non-uniformity, and wavelet
grey-level-non-uniformity HLH (i.e., describing intratu-
moral heterogeneity after decomposing the image in
mid-frequencies). Bogowicz et al. [17] reported that per-
forming PET, the combination of principle component
analysis (PCA; a statistical procedure that converts a
large set of observations of possibly correlated variables
into a smaller projection of the most informative linearly
uncorrelated variables) and univariate feature selection
using the Cox regression with backward selection,

resulted in the least complicated model with best dis-
criminative power. However, their final PET model con-
sisted of only 2 single radiomic features, and no clinical
variables were considered. Vallières et al. [8] trained pre-
dictive models for each radiomic feature combined with
clinical variables and patient outcome by performing
random forests and made adjustments to model imbal-
ance. Finally, only one PET-radiomics (GLNGLSZM) and
two CT-radiomics features were included in the model.
These methods manually excluded all other possible
prognostic features.
In this study, a dimension reduction was performed of

the feature space by removing redundant features
(retaining 124 features). Based on these features, a factor
analysis was performed, which consisted of a feature

Table 4 The accuracy of the prediction models for recurrence, metastasis, and overall survival in the training set and validated in
the validation set. For the recurrence prediction, the combination of HPV, SUVmean, SUVpeak, factors 3, 4, and 6 was most accurate.
For the metastasis prediction, the use of only MATV was most accurate. For overall survival prediction, the combination of HPV,
SUVmax, SUVmean, factors 1 and 5 was most accurate

Final prediction models Training set Validation set

Patients Events Concordance index SE Patients Events Concordance index SE

Recurrence prediction model
HPV, SUVmean, SUVpeak, factor 3, factor 4, factor 6

103 27 0.779 0.050 71 19 0.645 0.071

Metastasis prediction model
MATV

103 10 0.657 0.093 71 18 0.627 0.094

Overall survival prediction model
HPV, SUVmax, SUVmean, factor 1, factor 5

103 37 0.751 0.045 71 22 0.764 0.052

Events: amount of recurrences in the recurrence prediction model; amount of distant metastases in the metastasis prediction model; amount of deaths in the
overall survival prediction model
SE standard error

Fig. 3 The accuracy of th e c ombined prediction of a locoregional recurrence, b metastasis, and c overall survival in the validation cohort. In b,
the curve of the relatively small medium risk group for metastasis is short; this is due to the short follow-up time until the metastasis occurred. A
significant predictive risk stratification (p < 0.05) was shown, divided in low (0–33%), medium (33–66%), and high (66–100%) risk for an
unfavorable prognosis
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subset (i.e., factor) and contains a part of the predictive
feature spectrum on a scale of importance. This allowed
the preservation of the multiple predictive features and as-
sess possible interactions or associations. This might pro-
vide insight in the underlying concepts of the
heterogeneous whole-lesion PET data, as a basis for iden-
tification and targeting tumoral subvolumes which are
predictive for adverse outcome [47]. Moreover, this factor
analysis was done separately from the patient outcome,
which might allow for the improvement of the tumor-
specific classification, as basis for prognosis prediction.
However, in other studies which selected single features,
this inter-correlation of feature was lost [17, 22]. Thirdly,
it overcomes the risk of data overfitting, which arises
when the number of features is large and the number of
training data is comparatively small [48].

Tumor characteristics by radiomic factors
The spectrum of known predictive clinical and first-
order PET parameters might be extended with non-
correlated PET-radiomic features we found in this study,
capturing complementary characteristics of the complex
heterogeneous tumoral microenvironment.
Low values of factor 3, 4, and 6 were predictive of recur-

rence, complementary to negative HPV-status, low SUV-
mean, and high SUVpeak. Factor 3 correlated in the
validation set with MATV and measured mainly

maximum histogram gradient and long low grey-level
lengths with a variance of lengths and zones, and high
busyness, which might indicate tumoral intensity hetero-
geneity in tumoral zones of varying size, with long rows of
low grey-level voxels (i.e., low FDG uptake). These fea-
tures might capture the presence of necrotic regions
within the core of tumors. Previously, this correlation be-
tween heterogeneity and volume in PET-data was re-
ported by Hatt et al. [20]. Also Cheng et al. [49] found
that besides TLG, uniformity (local scale texture param-
eter) and zone-size non-uniformity (ZSNU) were usable as
prognostic stratifiers. This was confirmed by Vallières
et al. [8], who also reported that GLSZMGLN (grey-level
size zone matrix with grey-level non-uniformity) was pre-
dictive for locoregional recurrence. Also Bogowicz et al.
[17] found that GLSZMZSLGE (grey-level size zone matrix;
with zone size low grey-level emphasis) was predictive for
favorable prognosis (CI 0.71). However, in their study, dif-
ferent scanners were used between training and validation
cohorts, which reduced data quality. Factor 4 measured
slightly different characteristics such as intensity differ-
ences with high grey-level counts (inversed low grey-level
count) and grey-level non-uniformity (inversed coarse-
ness). This factor might capture the heterogeneity of tu-
moral sub-areas with a mainly high FDG-tracer uptake.
Factor 6 measured the histogram variety of intensity and
quantifies the complexity of the texture (second measure

Table 5 The risk for locoregional recurrence calculator, which can be used in clinical practice to calculate the risk per specific
patient for locoregional recurrence during the follow-up time of 2 years. The yellow boxes could be filled-in with the single patient
data in order to calculate the risk for locoregional recurrence. The risk for metastasis calculator, which can be used in clinical practice
to calculate the risk per specific patient for metastasis during the follow-up time of 2 years. The yellow boxes are filled-in with the
single patient data (with a large tumor) in order to calculate the risk for metastasis. The risk for death calculator, which can be used
in clinical practice to calculate the risk per specific patient for death during the follow-up time of 2 years. The yellow boxes could be
filled-in with the single patient data in order to calculate the risk for death

*HPV status: 0 = negative, 1 = positive
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of information correlation), which might capture the tu-
moral range of FDG-uptake and differences of uptake be-
tween sub-areas. These radiomics features, bundled in
factors, were not previously described in literature and
might provide insights in the extent of tumoral clonal het-
erogeneity and interactions, which might help us to con-
trol tumors [6].
For distant metastasis prediction, we found in this

study the use of MATV only was most accurate and out-
performed all other clinical and radiomic parameters.
This was partly confirmed by Vallières et al. [8], who
also found tumoral volume, as well as age, tumor type,
and N-stage as well as CT-radiomic heterogeneity fea-
tures as predictive parameter. The large metabolic active
tumor volume might enable large numbers of cell divi-
sions, tumor progression into genetic instability, which
might lead to metastatic ability [6].
High values of factors 1 and 5 were most predictive of

adverse overall survival, complementary to negative
HPV-status, SUVmax, and SUVmean. Factor 1 corre-
lated significantly with T-stage and all PET parameters,
with the highest correlation of those which were
volume-related. This was in line with Vallieres et al. [8],
who found that volume outperformed each radiomic
models. However, factor 1 consisted also of mainly mor-
phologic and non-uniformity texture features and was
dependent on high intensity, which might correlate with
large heterogeneous tumoral entities. This factor might
capture the voluminous extent of the tumor, combined
with areas of high FDG-tracer uptake. El Naqa et al. [23]
also reported that intensity histogram and shape features
were predictive of survival. Factor 5 measured also mor-
phological tumor characteristics, such as asperity, major
axis length, and inversed compactness and inversed flat-
ness. This was found complementary to the volume-
related features in factor 1, and in line with Bogowicz
et al. [17], who reported that besides GLSZMZSLGE,
sphericity was most predictive for favorable prognosis
(CI = 0.71). Also, Aerts et al. reported similar results in
CT-data, showing that patients with more compact/
spherical tumors had better survival probability [22].
Factors 1 and 2 both correlated with PET parameters
and reflected particular heterogeneous distribution of
FDG-PET uptake. Factor 1 correlated with volume-
related TLG and MATV in the validation set. Factor 2
measured the histogram range, contrast, and small high
grey emphasis, and correlated with SUVmax, SUVpeak,
and SUVmean, and did not remain predictive.

Discriminative power of prediction models
In order to improve predictive accuracy, patient-specific
tumoral characteristics were captured by radiomics fea-
tures and such as low grey-level zone sizes, heterogeneous
busyness and morphologic tumor volume, and bundled by

factors. Prediction models including these factors are hy-
pothesized to be more patient-specific, because of more
unique characteristics, than models which do not investi-
gate underlying feature correlations and include only the
single most predictive feature. Vallières et al. [8] combined
clinical parameters, without HPV-status, with only one
PET- and CT-radiomic feature; however, the prediction
accuracy was similar for locoregional recurrences (AUC =
0.69) and overall survival (CI = 0.74). Aerts et al. [22] used
the top 4 performing CT-features of each radiomics fea-
ture category, where inclusion of TNM-stage improved
performance and showed a survival prediction of CI =
0.69. Bogowicz et al. [17] reported a CI of 0.71 using PET-
radiomics; however, data was influenced by artifacts, scan-
ner, and protocol heterogeneity. Also, current study
showed that for metastasis prediction, the use of only
MATV was most accurate. The accuracy of the prediction
model combining all clinical (T-stage), first-order PET
(SUVmean), and radiomic factors was found to be higher
than the final model, consisting of only MATV. This
might be due to the fact that the other features still hold
some predictive power. Although this might provide in-
sights in metastatic tumor characteristics, it should be val-
idated in future studies. This was partly in line with
Vallières et al. [8], who also found volume-parameter was
most predictive, but they found additional value for CT-
radiomics features.

Clinical applicability
The efficacy of a treatment plan, nowadays based on informa-
tion from clinical examination (under anesthesia), visual inter-
pretation of imaging, and invasive biopsies, could be
optimized by taking the patient-specific pathophysiologic
phenotype into account [50] using quantitative imaging assess-
ment. The underlying tumor biology could be heterogeneous
with different sub-clonal populations, continuously changing
and associated with resistance to treatment, recurrence, and
overall survival [8, 22]. Many studies [8, 17, 22, 23] con-
structed predictive models based on the selection of a few
radiomic features excluding clinical parameters (e.g., HPV sta-
tus) and interactions with radiomic features, in order to re-
duce the risk for overfitting [8, 17, 22].
In this study, we showed an advanced factor analysis

using three-dimensional whole-lesion radiomic features as
well as retaining feature interactions captured in radiomic
factors. These complementary factors improved predictive
accuracy to the basis of clinical factors, including HPV-
status and first-order PET parameters, and remained ac-
curate after validation. Although we found a correlation
between MATV and T-stage (mainly based on tumor vol-
ume), volume-related parameters were more predictive.
Furthermore, we presented a patient-specific clinical-
applicable risk stratification for patients with head and
neck cancer treated with (chemo)radiotherapy. Low-risk
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Fig. 4 ROC curves in the training and validation set per patient outcome prediction. Area under the incident receiver operating characteristic
curve (ROC) for each final model in the training set as well as in the validation set for the prediction of recurrence, metastasis, and death within 2
years of follow-up after end of treatment
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patients could be candidates for treatment de-escalation stud-
ies [51, 52], whereas high-risk patients could benefit from
treatment escalation [53], immunotherapy [54], or surgical
treatment. This optimization of treatment efficacy might also
result in a beneficial reduction of costs. Identification and val-
idation of optimal machine-learning methods for radiomic ap-
plications using standardized EANM guidelines [26] is crucial
towards reproducible biomarkers in clinical practice, comple-
mentary to the clinical and first-order PET parameters.

Limitations
At the assessment of multiple clinical, first-order, and radio-
mic features, there is a risk for overfitting bias. In the current
study, we used a relatively large patient sample size and per-
formed a multicollinearity filtering to exclude highly corre-
lated features. Moreover, the factor analysis projects the
large and collinear radiomic feature-space onto an orthog-
onal latent-feature-space of smaller dimension (8 factors)
while retaining the bulk of the information contained in the
full data. This projection is thus geared towards the avoid-
ance of overfitting. Finally, a limited amount of clinical, first-
order PET and PET-radiomic factors was combined in a
multivariable model. However, it is still possible that the
number of events was not enough to construct a statistically
robust prediction model. In this study, validation was per-
formed internally by 5-fold cross-validation of the prognostic
models. Moreover, we used an independent validation-
cohort of similar institute to estimate the performance of a
prediction model. In Table 4 and Fig. 4, we present the re-
sults obtained for the training set as well as the independent
validation set. We can see that for the recurrence prediction
model, the concordance index for the independent validation
set is somewhat lower, while for the other 2 models, a similar
performance was found between the training and (independ-
ent) validation dataset. However, in future studies, validation
in a larger cohort from an external institute is still needed.
The prognostic model performance might be optimized

by a stricter redundancy filtering to retain only complemen-
tary factors; however, in this study, we saved the inclusion
of possible predictive underlying relationships of features.
This model should be constructed using a limited amount
of factors separate from patients outcome, in order to solely
include predictive tumoral processes and to minimize
cohort-dependent prognostic influences. Another improve-
ment of the prognostic model performance might be the
implementation of complementary predictive CT-radiomic
features [22, 55, 56], which would require similar acquisi-
tion parameters, artifacts reduction techniques, and a larger
patient population to overcome the risk of overfitting and
should be evaluated in future studies.
This study was hypothesis generating and the feasibility was

tested. However, in the next step to clinical translation, more
extensive validation and refinement on larger and external
datasets as well as evaluation of the clnical applicable

calculators, is needed. Moreover, it is of interest to perform
further technical validation, such as by the use of voxel
randomization [57, 58]. Our study suggests that adding radio-
mics to the 18F-FDG-PET image analysis can improve prog-
nostication as a step towards personalized treatment of HNSC
C patients.

Conclusion
The combination of HPV-status, first-order 18F-FDG-PET
parameters, and complementary radiomic phenotype-
specific factors improved time-to-event prediction most
accurately. Predictive tumor-specific characteristics and
interactions might be captured and retained using radio-
mic factors, which allows for personalized risk stratifica-
tion and optimizing personalized cancer care.
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