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a b s t r a c t 

In diffusion MRI, spherical deconvolution approaches can estimate local white matter (WM) fiber orientation dis- 
tributions (FOD) which can be used to produce fiber tractography reconstructions. The applicability of spherical 
deconvolution to gray matter (GM), however, is still limited, despite its critical role as start/endpoint of WM fiber 
pathways. The advent of multi-shell diffusion MRI data offers additional contrast to model the GM signal but, to 
date, only isotropic models have been applied to GM. Evidence from both histology and high-resolution diffusion 
MRI studies suggests a marked anisotropic character of the diffusion process in GM, which could be exploited to 
improve the description of the cortical organization. In this study, we investigated whether performing spherical 
deconvolution with tissue specific models of both WM and GM can improve the characterization of the latter 
while retaining state-of-the-art performances in WM. To this end, we developed a framework able to simultane- 
ously accommodate multiple anisotropic response functions to estimate multiple, tissue-specific, fiber orientation 
distributions (mFODs). As proof of principle, we used the diffusion kurtosis imaging model to represent the WM 

signal, and the neurite orientation dispersion and density imaging (NODDI) model to represent the GM signal. The 
feasibility of the proposed approach is shown with numerical simulations and with data from the Human Con- 
nectome Project (HCP). The performance of our method is compared to the current state of the art, multi-shell 
constrained spherical deconvolution (MSCSD). The simulations show that with our new method we can accu- 
rately estimate a mixture of two FODs at SNR ≥ 50. With HCP data, the proposed method was able to reconstruct 
both tangentially and radially oriented FODs in GM, and performed comparably well to MSCSD in computing 
FODs in WM. When performing fiber tractography, the trajectories reconstructed with mFODs reached the cor- 
tex with more spatial continuity and for a longer distance as compared to MSCSD and allowed to reconstruct 
short trajectories tangential to the cortical folding. In conclusion, we demonstrated that our proposed method 
allows to perform spherical deconvolution of multiple anisotropic response functions, specifically improving the 
performances of spherical deconvolution in GM tissue. 

1

 

t  

t  

c  

m  

t  

I  

(  

p  

a  

p  

u  

(
 

c  

n  

l  

i  

i  

i  

h
R
A
1

. Introduction 

Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive
echnique sensitive to the microscopic motion (diffusion process) of wa-
er molecules ( Einstein, 1905 ). In biologic tissues, the diffusion pro-
ess is influenced by the presence of biologic membranes and macro-
olecules ( Walter and Hope, 1971 ), which can hinder and/or restrict

he molecular random walk in both isotropic and anisotropic fashions.
n 1994, Basser et al. (1994 ) proposed the diffusion tensor imaging
DTI) framework to characterize the anisotropy of hindered diffusion
rocesses. Later, it was shown that when the diffusion process exhibits
∗ Corresponding author at: Image Sciences Institute, UMC Utrecht, Heidelberglaan 
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 sufficient degree of anisotropy, its principal direction can be com-
uted ( Basser et al., 1994 ) and eventually tracked ( Jones et al., 1999 ),
ltimately leading to what is nowadays known as fiber tractography
 Mori et al., 1999 ; Mori et al., 2005 ) of the brain white matter (WM). 

DTI-based fiber tractography is efficient in terms of acquisition and
omputation but suffers from a number of limitations. Firstly, the tech-
ique fails when multiple brain pathways coexist in the same spatial
ocation ( Tuch et al., 2002 ), which has been estimated to be the case
n over 90% of the human WM ( Jeurissen et al., 2013 ) and which
s not likely to be solved by technological improvements as higher
maging resolutions ( Schilling et al., 2017 ). Secondly, DTI-based fiber
100, 3584CX, Utrecht, the Netherlands. 
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a  
ractography only applies to data acquired within the Gaussian diffu-
ion regime, and thus cannot take advantage of the strong diffusion
eightings which are typical for high angular resolution diffusion imag-

ng methods ( Xie et al., 2015 ). Due to these considerations, DTI is not
ikely the method of choice to study a heterogeneous structure as gray
atter (GM), which is characterized by low fractional anisotropy (FA)

nd, hence, high uncertainty of the principal diffusion direction. 
Spherical deconvolution ( Tournier et al., 2004 ; Dell’acqua et al.,

005 ) is one of the most popular methods to reconstruct fiber orien-
ation distributions (FOD) and to perform fiber tractography in WM.
onversely, fiber tractography based on spherical deconvolution meth-
ds has found very limited application to investigate the organization
f the cortical GM, despite its pivotal role as endpoint of most axonal
undles. This is most likely due to three unsolved challenges which limit
he performance of spherical deconvolution in GM. Firstly, the presence
f superficial WM next to the inner cortical surface limits the transition
f the streamlines from the deep WM to the cortical GM, and vice versa
 Reveley et al., 2015 ). Secondly, the fiber orientations of the superficial
M are typically tangent to the cortical surface, causing the prema-

ure termination of streamlines to and from the cortical banks and sulci,
hich results in the well-known gyral bias towards the cortical crowns
 Schilling et al., 2018 ). Thirdly, the FODs derived in the cortex are
oisy and exhibit spurious peaks, preventing reliable propagation of the
treamlines in the cortical ribbon. Importantly, these limitations in fiber
ractography propagate to other analysis techniques making use of fiber
econstructions as, among others, structural connectivity approaches
 Hagmann et al., 2008 ), cytorachitectonical analyses ( Bastiani and Roe-
roeck, 2015 ), and pre-surgical planning ( Mormina et al., 2016 ). In
his work, we focus on the third challenge, and propose a novel frame-
ork to improve the reliability of the fiber orientations determined with

pherical deconvolution in the cortical gray matter. Of note, previous
orks have proposed geometric heuristics to determine the fiber orien-

ation in the cortex based on the cortex normal ( Tozer et al., 2012 ) or
n the vector field from the inner to the outer cortex ( St-Onge et al.,
018 ). Although these methods have the merit to work with commonly
vailable datasets, they oversimplify the way axons traverse the cortex
 Kleinnijenhuis et al., 2013 ), and do not allow to take into account the si-
ultaneous presence of tangential and perpendicular fiber orientations

n the cortex ( Kleinnijenhuis et al., 2013 ; Leuze et al., 2014 ), which is
egion- and layer-specific. 

The advent of specialized techniques for diffusion imaging, such as
ltra-strong gradients ( McNab et al., 2013 ) and simultaneous multi-
lice ( Feinberg and Setsompop, 2013 ), are rapidly increasing the imag-
ng quality and resolution achievable in dMRI. This allows to appre-
iate new details of the human cortex, as recently reviewed by Assaf
 Assaf, 2018 ). In ex-vivo studies ( Kleinnijenhuis et al., 2013 ; Leuze et al.,
014 ; Aggarwal et al., 2015 ), it has been consistently shown that the
iffusion process observed in the cortex has a large anisotropic compo-
ent perpendicular to the cortical folding, but also that tangential direc-
ions can be observed, for instance, in the central sulcus ( McNab et al.,
013 ). In particular, the anisotropy of the cortex has been observed with
x-vivo MRI in animals, as well as in the human brain, both ex-vivo
 Leuze et al., 2014 ; McNab et al., 2009 ; Miller et al., 2012 ) and in-vivo
 McNab et al., 2013 ; Anwander et al., 2010 ). Such high-quality data ac-
uisitions may soon be routinely available for in-vivo applications, of-
ering unprecedented research possibilities ( Setsompop et al., 2018 ) in
ber tractography of GM, but a dedicated framework has not yet been

nvestigated. 
Multi-tissue spherical deconvolution approaches ( Jeurissen et al.,

014 ) have been suggested to further increase the accuracy of FOD re-
onstructions in WM by accounting for partial volume effects, e.g. in
patial locations where WM overlaps with GM or cerebrospinal fluid
CSF). Although GM and CSF are merely considered nuisance factors
 Dell’acqua et al., 2010 ), such framework highlights the feasibility
f explicitly accounting for multiple tissues in spherical deconvolu-
ion approaches. By separating multiple partial volume effects, multi-
issue approaches have shown improved FOD reconstructions in adults
 Jeurissen et al., 2014 ), neonates ( Pietsch et al., 2019 ) and in patients
ith Parkinson’s disease ( Kamagata et al., 2018 ). In current state-of-

he-art multi-shell spherical deconvolution, only WM is assumed to be
nisotropic, while GM is regarded as an isotropic tissue. To estimate
he WM FOD, a WM fiber model – or response function – is estimated
rom voxels with a single fiber population, which are typically located
n large bundles ( Tournier et al., 2007 ) such as the corpus callosum
r the corticospinal tract. The response function is then assumed to be
alid throughout the brain. While the validity of this representation has
een questioned even in WM itself ( Schilling et al., 2019 ), it is highly
nlikely that it can adequately represent the anisotropic signature of
he cortex, which in addition to axons also contains dendrites and cell-
odies ( Jespersen et al., 2012 ; Zhang et al., 2012 ; Palombo et al., 2020 ;
ampinen et al., 2019 ). 

In this study, we investigate whether the spherical deconvolution ap-
roach can be revisited to consider the different signal characteristics of
M and GM by explicitly modeling both signal mixtures simultaneously.

his novel framework allows to reconstruct multiple FODs (mFOD) and
s ultimately aimed at improving the FOD estimation and fiber tractog-
aphy of GM while retaining state-of-the-art performances in WM. In
ur proposed method, we disregard the existence of a single response
unction for the brain, and investigate whether it is feasible to simul-
aneously estimate multiple anisotropic FODs corresponding to tissue-
pecific response functions. We also evaluate whether this improves the
ber orientation characterization in GM, and fiber tractography in GM
s compared to existing spherical deconvolution methods. The mFOD
ethod is in principle also applicable to deep GM structures such as

he thalamus, which is often of interest in fiber tractography applica-
ions due to its hub role in several fiber bundles ( Maller et al., 2019 ).
n this work, however, we focus on the study on the cortical GM and
nly show proof-of-concept of the applicability of mFOD to deep GM,
hich should be investigated in more detail in future work. Preliminary

esults of this work have been presented at the 2019 ISMRM meeting in
ontreal, Canada ( De Luca et al., 2019 ). 

. Theory and methods 

The following paragraphs present the mFOD framework and explain
he qualitative and quantitative analyses that we performed using both
imulations and in-vivo data. 

.1. Generalized Richardson Lucy (GRL) 

In previous work ( Guo et al., 2018 ; Guo et al., 2020 ), we intro-
uced a multi-shell spherical deconvolution framework named Gener-
lized Richardson Lucy (GRL) to account for multiple tissue types, such
s WM, GM and cerebrospinal-fluid (CSF), as shown in Eq. (1) . 

𝑆 

𝑆 0 
= 𝑓 𝑊 𝑀 

⎡ ⎢ ⎢ ⎢ ⎣ 
H 

1 
WM , 1 ⋯ H 

1 
WM , k 

⋮ ⋱ ⋮ 
H 

n 
WM , 1 ⋯ H 

n 
WM , k 

⎤ ⎥ ⎥ ⎥ ⎦ 
⊗ FO D WM 

+ 𝑓 𝐺𝑀 

⎡ ⎢ ⎢ ⎣ 
H 

1 
GM 

⋮ 
H 

1 
GM 

⎤ ⎥ ⎥ ⎦ + 𝑓 𝐶𝑆𝐹 

⎡ ⎢ ⎢ ⎣ 
H 

1 
CSF 
⋮ 

H 

1 
CSF 

⎤⎥⎥⎦
(1) 

In Eq. (1) , S is the signal collected at n diffusion weightings, S 0 is
he non-diffusion-weighted signal, the H matrices represent the signal
odel associated to WM, GM and CSF, f is the associated signal frac-

ion, and FOD WM 

is the fiber orientation distribution associated to WM.
he columns of the deconvolution matrix shown in Eq. (1) represent
he possible solution of the spherical deconvolution on the unit sphere,
esulting in a total number of k + 2 columns, as GM and CSF are both
onsidered isotropic. 

.2. Multiple fiber orientation distributions (mFOD) 

In the mFOD framework, we redesigned the deconvolution matrix to
llow for an arbitrary number of independent anisotropic deconvolution
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odels. Considering solving the spherical deconvolution problem once
ore for WM, GM and CSF, but now accounting for anisotropic diffusion

n both WM and GM, we can write: 

𝑆 

𝑆 0 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
H 

1 
WM , 1 ⋯ H 

1 
WM , k 

⋮ ⋱ ⋮ 
H 

n 
WM , 1 ⋯ H 

n 
WM , k 

H 

1 
GM , 1 ⋯ H 

1 
GM , k 

⋮ ⋱ ⋮ 
H 

n 
GM , 1 ⋯ H 

n 
GM , k 

⎤ ⎥ ⎥ ⎥ ⎦ 
⊗

[ 
FO D WM 

FO D GM 

] [ 
𝑓 WM 

𝑓 GM 

] 
+ 𝑓 𝐶𝑆𝐹 

⎡ ⎢ ⎢ ⎣ 
H 

1 
CSF 
⋮ 

H 

1 
CSF 

⎤ ⎥ ⎥ ⎦ (2) 

Eq. (2) can be solved using the iterative least-squares minimizer pre-
iously introduced for GRL but replacing the Richardson-Lucy decon-
olution scheme with a regularized non-negative least-squares solver
 De Luca et al., 2018 ), producing multiple independent FODs. 

.3. Signal models (response function) 

To underline the model independence of the mFOD framework, the
-matrices of WM, GM and CSF, shown in Eq. (2) , were evaluated with

hree different models. The columns of the H-matrices are generated
ith instances of a specific model, e.g. the signals are generated with a
redefined set of parameters and then projected along a number of spa-
ial directions defined on the unit sphere. In other works, the H-matrix is
eferred to as deconvolution matrix, or response function or kernel. H CSF 

as generated using the ADC model with the typical diffusion coefficient
f free water at 37° (3.0 × 10 − 3 mm2/s). The columns of H WM 

and H GM 

ere generated using the DKI model ( Jensen et al., 2005 ) with isotropic
urtosis ( De Luca et al., 2017 ), and the NODDI model ( Zhang et al.,
012 ), respectively, both in simulations and with in-vivo data. For
oth models, the deconvolution matrix included 300 possible solutions
qually distributed on the unit-sphere, which results in an angular res-
lution of about 4°. The DKI model was chosen as it can represent the
nisotropy of the WM signal while also considering non-Gaussian diffu-
ion effects. The NODDI model has been shown to characterize the GM
icrostructure better than tensor models ( Kleinnijenhuis, 2014 ), and al-

ows to take into account the larger presence of cell bodies in GM as com-
ared to WM. It should be noted that mFOD is a generic framework that
ould be used in combination with models other than DKI and NODDI,
uch as geometric models ( Ferizi et al., 2014 ) or data driven represen-
ations ( Tax et al., 2014 ). The combination of the simplified DKI and
ODDI models should thus not be regarded necessarily as the optimal
hoice, but rather as a proof of concept. The parameters of the models
ere determined as explained in the following paragraphs. 

.4. Simulations 

The feasibility of simultaneously computing multiple anisotropic
ODs corresponding to different models was evaluated numerically.
 WM 

was generated with the DKI model by setting the eigenvalues of the
iffusion tensor as (1.7, 0.3, 0.3) x 10 − 3 mm 

2 /s, and isotropic kurtosis
qual to 0.6. H GM 

was generated with the NODDI model by simulating
alues of intra to extra-cellular ratio 0.4, parallel diffusivity 1.7 × 10 − 3 

m 

2 /s, concentration parameter of the Watson distribution equal to
.0, and no partial volume of free-water was considered as the mFOD
pproach explicitly accounts for it. The parameters used for generating
 WM 

and H GM 

matched the average values observed with in-vivo data. 
Two sets of simulations were generated using the 3-shells HCP acqui-

ition protocol. Simulation I aimed at evaluating the robustness to noise
f the mFOD approach, whereas simulation II characterized its ability
o separate partial volume effects for a given SNR level. 

.4.1. Simulation I 

To investigate the feasibility of mFOD, we generated three sets of
artial volume effects of WM and GM, to simulate the transition from
eep WM to GM. The first configuration (a) simulates the partial volume
f 1 WM-like fiber and CSF, which in-vivo can be observed in the deep
M, for instance in proximity of the ventricles. In this simulation, f WM 

as set equal to 0.8, and f GM 

equal to 0.2. The second configuration (b)
imulates the partial volume of 1 GM-like fiber and CSF with signal frac-
ions f GM 

= 0.8, f CSF = 0.2, and is meant to reproduce the setting observed
n-vivo in the outer cortex. The third configuration (c) simulates the
artial volume between 2 WM-like fibers with crossing angle 45°, and 1
M-like fiber crossing the first WM-like fiber with angles 30°- 60°- 90°,

espectively, to mimic the transition of a WM fiber to GM through the
uperficial WM. For this configuration, the signal fractions f WM 

and f GM 

ere both set equal to 0.5. The fourth configuration (d) simulates the
rossing of a WM-like and a GM-like fiber, which simplifies what may
e observed in-vivo after the superficial WM is crossed. In this case, the
imulation was repeated for crossing angles in the range 10° - 90° with
ignal fractions f WM 

and f GM 

both equal to 0.5. The fifth configuration
e) is representative of a voxel containing mostly GM. For this configura-
ion, we used the same settings of the previous simulation but adjusted
he values of the signal fractions to f WM 

= 0.2 and f GM 

= 0.8. The effect
f noise was simulated by adding 1000 Rician realizations in correspon-
ence of SNR levels 10, 20, 30, 40, 50, 60, 70, and 150. For each SNR
evel, we evaluated the error between the estimated and the simulated
ignal fractions, as well as the angular error between the simulated and
he estimated FOD directions. 

Additional simulations were performed to understand the perfor-
ance of mFOD as function of the employed signal model and of the

cquisition protocol and can be found in the Supplementary Material. 

.4.2. Simulation II 

Three partial volume configurations were generated in analogy with
imulation I – configuration e with a crossing angle equal to 75°, but
ncreasing the ratio between the two simulated tissues from 0 to 1 with
tep 0.1. Rician noise was added by considering 1000 realizations at SNR
0. The error between the simulated and the estimated signal fractions
as determined. 

.5. In-vivo data processing 

Two subjects from the pre-processed dataset of the Human Connec-
ome Project (HCP) ( McNab et al., 2013 ; Sotiropoulos et al., 2013 ) were
andomly chosen and included in this study. The datasets included a T1-
eighted image acquired at a resolution of 0.7 mm isotropic, and a dMRI
ataset acquired at 1.25 mm isotropic. The diffusion datasets consisted
f 18 b = 0 s/mm 

2 volumes in addition to 270 volumes acquired by
ampling diffusion weightings b = 1000, 2000, and 3000 s/mm 

2 along
0 directions each. One of the two subjects was chosen to showcase
he main results of the mFOD approach, using the native dMRI space
1.25 mm) as analysis space. Generalizability of the methods was then
hown on the second subject, using the T1 resolution (0.7 mm) to high-
ight some features of the mFOD method. The T1-weighted data of the
rst subject was rigidly registered to the pre-processed dMRI data. Then,
he tissue type segmentations of both datasets in WM, GM and CSF were
erived with FSL FAST ( Zhang et al., 2001 ). The SNR of the two datasets
as determined by computing the average and the standard deviation
f the signals at b = 0 s/mm 

2 in two regions of interest manually placed
n deep WM and in the parietal cortex, respectively. The average SNR
t b = 0 s/mm 

2 of the first dataset was 20 ± 4 in WM and 32 ± 9 in GM.
he average SNR at b = 0 s/mm 

2 of the second dataset was 20 ± 5 in
M and 27 ± 8 in GM. 
The dMRI data was fit with both the “Multi-Shell Constrained Spher-

cal Deconvolution ” (MSCSD) ( Jeurissen et al., 2014 ) (only data at
.25 mm) and the mFOD approaches using custom implementations
n MATLAB R2018b (The Mathworks Inc.) and functions from the Ex-
loreDTI toolbox ( Leemans et al., 2009 ). The code of mFOD is freely
vailable online as part of the “MRIToolkit ” toolbox for MATLAB ( https:
/github.com/delucaal/MRIToolkit ). MSCSD was initialized as previ-
usly suggested independently on each dataset with spherical harmonics

https://github.com/delucaal/MRIToolkit


A. De Luca, F. Guo and M. Froeling et al. NeuroImage 222 (2020) 117206 

Fig. 1. A graphical representation of the H-matrices (response functions) used 
in mFOD in correspondence of data at b = 3000 s/mm 

2 . The white matter 
(WM) signal is represented with the diffusion kurtosis imaging (DKI) model and 
shows a highly anisotropic profile. The NODDI model is used to represent the 
anisotropic diffusion signal in gray matter (GM). The corresponding H-matrix 
results in an anisotropic – zeppelin-like – 3D profile. 
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f order 8 by using the tissue maps derived from the T1-weighted im-
ge. For the generation of the H-matrices used for the mFOD approach,
 whole brain DKI and NODDI fit were performed with the dMRI data
f the two HCP datasets at 1.25 mm resolution. For the WM H-matrix,
he eigenvalues of the diffusion tensor and the isotropic kurtosis were
veraged within a white matter mask defined by fractional anisotropy
alues above 0.7. This resulted in eigenvalues [1.3, 0.5, 0.5] x 10 − 3 

m 

2 /s and isotropic kurtosis value 0.64. For the H-matrix of GM, the
ODDI metrics were averaged within the GM segmentation obtained
ith the T1-weighted image, which resulted in intra to extra-cellular

atio 0.4, parallel diffusivity 1.7 × 10 − 3 mm 

2 /s and Watson’s concentra-
ion parameter ( 𝜅) equal to 1. In this work, identical H-matrices were
sed for the mFOD analysis of both datasets as proof-of-concept. More
enerally, however, we recommend optimizing the signal models on a
er-subject basis, especially when studying subjects with large lifespan
r in patients. A graphical representation of the H-matrices (response
unctions) used for the analysis of in-vivo data is shown in Fig. 1 for
he data shell at b = 3000 s/mm 

2 . The figure shows that the H-matrix
orresponding to mFOD 1 is pancake-like and appears similar to the re-
ponse function commonly used in constrained spherical deconvolution.
he NODDI-based H-matrix used for mFOD 2 is also clearly anisotropic
nd assumes a zeppelin-like shape. 

.6. FODs and signal fractions 

The MSCSD fit produced signal fraction maps associated to WM, GM
nd CSF, and one FOD describing WM orientations. The fit of the mFOD
pproach resulted in the same number of fractional maps but two FODs,
FOD 1 describing WM geometry, and mFOD 2 describing GM geometry,

espectively. 
The signal fraction maps computed with MSCSD and mFOD were

uantitatively compared by evaluating their Pearson correlations. To
his end, f WM 

and f GM 

were evaluated, respectively, in WM and GM
asks derived from the T1-weighted image. Next, the signal fraction
aps from both mFOD and MSCSD were visually compared to those ob-

ained from the T1-weighted volume. Further, the FODs computed with
SCSD and the mFOD framework were compared in selected areas of

he cortex and of deep GM, to determine whether mFOD 2 provided ad-
itional information in GM as compared to mFOD and MSCSD. 
1 
The FODs computed with the mFOD method can be either analyzed
eparately, or merged to combine accurate geometrical information in
oth WM and GM. As a proof of concept, we combined the two FODs
y considering their normalized sum weighted by the respective signal
ractions (mFOD-WS). 

One of the difficulties when validating in-vivo dMRI techniques is the
ack of ground truth. MSCSD can be regarded as a gold standard in WM,
ut debatably not in GM. In a first analysis, we investigated to which
xtent the principal diffusion directions of the mFOD-WS agree with
hose of MSCSD in WM, GM and at the WM/GM interface. A voxel was
ssigned to the latter class when its probability of belonging to both WM
nd GM was non-zero in the T1-weighted segmentation. Per voxel, up to
hree peaks were identified for both FODs, then sorted per descending
mplitude values. Subsequently, the dyadic angle between each mFOD-
S peak and the closest MSCSD peak was determined. 
If discrepancies are observed in GM, it remains impossible to ulti-

ately judge which method is the most accurate, but comparisons with
 third method could provide additional interpretations. Anatomical
nowledge as well as previous MRI studies ( Setsompop et al., 2018 )
uggest that the dominant diffusion directions in GM should be per-
endicular to the cortical folding, with exceptions such as the primary
isual cortex ( Kleinnijenhuis et al., 2013 ). We therefore derived the
ormal vectors to the cortical folding based on the structural tensor
 Kleinnijenhuis et al., 2012 ). In short, a 3D volume was initialized with
-values in correspondence of the GM/WM and GM/CSF interfaces, as
erived from the T1-weighted segmentation. The linear interpolation
eld between the two surfaces was derived, and the corresponding vec-
ors computed by computing the X-Y-Z first order derivatives of the
olume. Subsequently, we determined the minimum dyadic angle be-
ween the normal vectors and any peak orientation determined with
he MSCSD and mFOD-WS results, respectively. 

.7. Fiber tractography 

.7.1. Tracking parameters 

We investigated fiber tractography results obtained with MSCSD,
FOD 1 , mFOD 2 and mFOD-WS, with a particular focus on GM areas.
eterministic fiber tractography was performed in ExploreDTI by using

dentical parameters for all methods: FOD threshold 0.1 (default), mini-
um/maximum fiber length equal to 20/500 mm, angle threshold 45°,

nd step-size 0.6 mm. Fiber tractography was also performed in an ax-
al region of interest overlapping the central sulcus in a single slice, and
sing FOD thresholds of 0.1 and 0.3, minimum fiber lengths of 10 and
0 mm, and step-size of 0.35 mm. 

Firstly, FODs computed with the MSCSD and mFOD-WS approaches
ere computed in a frontal region and color encoded with a custom

olormap assigning red, yellow and blue to pathways traversing WM,
M and CSF, respectively. Subsequently, whole-brain tractography of all
ODs was performed by seeding all voxels with an FOD value above the
efault threshold. The fiber bundles were color encoded both with the
onventional RGB color scheme ( Pajevic and Pierpaoli, 1999 ) and the
bove-mentioned tissue-type color scheme, to convey both directional
nformation and specificity of the FODs to the different tissue types. 

Fiber pathways obtained with MSCSD and mFOD in a 3.75 mm wide
agittal slab were color encoded by normalized distance between the
M/WM interface and the WM/CSF interface – as obtained from the
1-weighted segmentation – and also directly overlaid, to appreciate
ifferences in GM tracking distance and density between the compared
ethods. 

Subsequently, we evaluated the number of tract pathways generated
ith MSCSD and mFOD-WS, which is informative given that the seed-
oints were kept constant and that a deterministic tracking algorithm
as used. Additionally, we counted the fraction of plausible tract path-
ays, i.e., trajectories having at least one endpoint in gray matter, and

he spatial coverage of tractography within GM when considering only
tart/endpoints of tracks. To qualitatively evaluate whether mFOD-WS
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Fig. 2. Results of simulation I. Five configurations of WM and GM mixtures simulating a) a WM-like fiber with CSF partial volume (20%), b) a GM-like fiber with CSF 
partial volume (20%), c) two crossing WM-like fibers and a GM-like fiber, d) a WM-like and a GM-like crossing fibers with equal volume fraction, and e) a WM-like 
and a GM-like crossing fibers with volume ratios 0.2/0.8, respectively. The simulations are designed to reproduce some physiologically plausible configurations, as 
schematically shown in the left sketch of a cortical gyrus. For each simulation, the top plot shows the 25th – 75th percentile (shaded area) and the median (solid 
line) of the signal fractions estimated with the mFOD approach for different SNR levels The bottom plot shows the angular error of the main direction of the WM and 
GM FODs as compared to the ground truth value. The solid line represents the median value, whereas the error bars the 25th and 75th percentile. The simulations 
were performed using anisotropic response functions for WM and GM, and an isotropic response function for CSF. The green dotted line corresponds to an angular 
error equal to 20° To properly detect the main peak orientation associated to GM, a high SNR ( ≥ 50) is required. 
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ould benefit fiber tractography of deep gray matter regions, we per-
ormed deterministic tractography of both mFOD-WS and MSCSD in an
xial sub-region of the thalamus. 

To qualitatively assess whether the mFOD framework can recon-
truct previously reported fibers tangential to the cortex ( McNab et al.,
013 ), we investigated the fiber tractography results with the mFOD-
S approach. Fiber tractography was seeded in a single axial slice, then

ompared to the cortical surface reconstructed with the CAT12 toolbox
 Seiger et al., 2018 ) for MATLAB. 

. Results 

.1. Simulations 

Figs. 2 and 3 show the signal fractions estimated with the mFOD ap-
roach in simulation I, where different mixtures of WM, GM and CSF
imulate 5 configurations at multiple SNR Levels. Fig. 2 highlights the
esults of configurations I, II, and V with crossing-angle 90°, which are
he main focus of this work. The figure shows that at SNR level equal
r greater than 20, the mFOD method disentangles mixtures of WM and
SF (configuration a) with signal fraction errors below 2.2% and angu-

ar errors below 3°. The separation of GM from both CSF (configuration
) and WM (configuration e) is more challenging and requires higher
NR to achieve an error below 10%. In configuration II, the signal frac-
ion errors at SNR 50 are about 9%, 11% and 2%, for WM, GM and CSF,
espectively, and the angular error on the GM FOD is 8°. In configura-
ion V, when WM and GM-like fibers cross with angle equal to 90°, the
orresponding signal fraction errors at SNR 50 are 7%, 10% and 2%, and
he angular errors on the WM and GM FODs are 4 and 11°, respectively.

Fig. 3 shows the results of simulation I for configurations c-d-e as
unction of the crossing angle between WM and GM for SNR levels. In
eneral, the crossing angle between the WM-like and the GM-like fibers
eems to marginally affect the signal fraction estimation. At SNR 50, the
in-max signal fraction errors of WM, GM and CSF in configuration c

re 7% (60°) – 7.1% (30°), 8.8% (45°) – 9.2% (30°) and 1.9% – 1.9%,
espectively. The min-max signal fraction errors at SNR 50 for config-
ration IV are 8.2% (60°) – 8.9% (10°) for f WM 

, 10.5% (90°) – 11.2%
10°) for f GM 

, 2.2% (90°) – 2.4% (10°) for f CSF . For configuration e, the
inimum signal fractions error was observed with a 90° crossing con-
guration, 7.8% for f WM 

, 10.0% for f GM 

and 2.1% for f CSF , whereas the
orst error was observed in correspondence of the 10° crossing, 8.4%

or f WM 

, 10.6% for f CSF and 2.2% for f CSF . 
When the SNR level is above 30, the angular error of the WM FOD is

elow 10° in configuration c and d independently from the crossing an-
le, and in configuration e for crossing angles of 45° or above. Achieving
 good estimate of the GM FOD at the GM/WM interface is challenging.
n configuration c and d, the angular error of the GM FOD is greater than
0° at SNR < 70, independently from the crossing angle with WM. More
eliable estimates of the GM FOD can be achieved in configuration e: at
NR 50, an angular error of about 9.6° is observed for crossing angles of
5° or greater. In Supplementary Figure S1, the simulation of configura-
ion d with crossing angle 45° was repeated with different values of the
ODDI parameter 𝜅. The figure shows that at SNR 50 it is possible to
stimate the GM FOD with angular errors equal to 8° and 5.6° in corre-
pondence of 𝜅 = 2 and 𝜅 = 3 , respectively, which are plausible settings
n-vivo at the WM/GM interface. The simulation also shows that the an-
ular resolution of the GM FOD improves with larger values of 𝜅 even
f a value 𝜅 = 1 is used to generate the mFOD signals. 

The effect of the acquisition protocol on the performance of mFOD
s investigated in Supplementary Figure S2 and S3. Halving the num-
er of gradient directions as compared to the HCP protocol worsens the
ffective SNR of the data, resulting in larger spread of the signal frac-
ion estimates. The angular error of the WM FOD is minimally affected
y the halving of the gradients, whereas slightly worse performances
an be observed for the GM FOD. In Supplementary Figure S3, we in-
estigated whether the distribution of the gradients on the outer shell
nd its diffusion weighting affects the performance of mFOD. Among
he tested scenarios, only increasing the maximum diffusion weighting
o b = 4000 s/mm 

2 appreciably affects the performance of mFOD, sug-
esting a better estimation of the GM FOD ( − 21% angular error at SNR
0) and reduced uncertainty in the signal fractions estimates for larger
aximum diffusion weightings. 

Fig. 4 shows the signal fractions estimated in simulation II when lin-
arly varying the simulated WM, GM and CSF fractions at SNR 50. For
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Fig. 3. Results of simulation I. Five configurations of WM and GM partial volume simulating a) a WM-like fiber with CSF partial volume (20%), b) a GM-like fiber 
with CSF partial volume (20%), c) two crossing WM-like fibers and a GM-like fiber, d) a WM-like and a GM-like crossing fibers with equal volume fraction, and ee) 
a WM-like and a GM-like crossing fibers with volume ratios 0.2/0.8, respectively. For each simulation, the top plot shows the 25th – 75th percentile (shaded area) 
and the median (solid line) of the signal fractions estimated with the mFOD approach for different SNR levels The bottom plot shows the angular error of the main 
direction of the WM and GM FODs as compared to the ground truth value. The solid line represents the median value, whereas the error bars the 25th and 75th 
percentile. The simulations were performed using anisotropic response functions for WM and GM, and an isotropic response function for CSF. The green dotted line 
corresponds to an angular error equal to 20°. To properly detect the main peak orientation associated to GM, a high SNR ( ≥ 50) is required. 
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Fig. 4. The median value (solid line) and the 25th – 75th percentile (error bars) of the signal fractions estimated with the mFOD approach for the simulated anisotropic 
WM and GM response functions (columns 1–2) and the isotropic CSF response function (column 3). Different mixtures of the three tissue types were simulated with 
increasing partial volume and 1000 realizations of Rician noise at SNR 50. The largest errors were observed when mixing GM and CSF in correspondence of low GM 

signal fractions. 
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ll the three cases, the estimated average signal fractions show excellent
greement with the simulated values. The maximum errors observed for
M, GM and CSF are 13%, 20% and 4%, respectively. The Pearson cor-

elation coefficient between the simulated and estimated signal fractions
ave values between 0.99 and 1. 

.2. HCP data 

.2.1. Signal fractions 

The WM, GM and CSF signal fractions estimated with the MSCSD
nd mFOD methods, as well as those derived from the segmentation of
he T1-weighted image are shown for an example axial slice in Fig. 5 .
he maps estimated with the mFOD method exhibit excellent agreement
ith both MSCSD and the T1-derived segmentation, highlighting the
dequacy of the NODDI model and of the chosen parameters to represent
he in-vivo signal in GM. The Pearson correlation coefficient between
FOD and MSCSD were 0.96 and 0.95 for f WM 

and f GM 

, respectively.
otice that the WM fractional maps estimated with both the MSCSD and
FOD methods have non-zero values in some GM areas, in contrast to

he T1-derived segmentation. 
.2.2. FODs 

The FODs estimated with the MSCSD and mFOD methods in two cor-
ical areas are shown in Figs. 6 and 7 for an example axial slice and an
xample coronal slice, respectively. The WM fiber orientations estimated
ith the mFOD method (mFOD 1 ) show remarkable similarity to the ori-

ntations estimated with MSCSD. Both FODs have very sharp and com-
arable orientations in the vicinity of WM and tend to become smaller
owards deeper cortical GM. In contrast, the GM fiber orientations with
he mFOD method (mFOD 2 ) show dominant and anatomically plausible
eaks in most GM voxel, with orientations mostly perpendicular to that
f the underlying WM. When mFOD 1 and mFOD 2 are linearly combined
mFOD-WS), a continuous vector field from WM to deep cortical GM is
evealed. 

Fig. 8 shows the FODs determined with mFOD-WS and MSCSD in
n axial slice of the thalamus. The FODs derived with the two methods
ppear overall similar at visual inspection, but those determined with
FOD-WS appear sharper. A closer look (zoomed pane) reveals that

he FODs computed with mFOD-WS have less angular uncertainty than
hose derived with MSCSD, and a better resolution of the peaks can
e observed (white arrows). In the ROI shown in Fig. 8 , the average
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Fig. 5. An example axial slice of the signal fractions estimated with the MSCSD 

and mFOD methods in correspondence of different response functions as com- 
pared to the tissue segmentation obtained from the structural T1 image. Esti- 
mates with the MSCSD and mFOD approaches are remarkably similar and have 
high anatomical correspondence with the tissue types that they are designed to 
represent. 

Fig. 6. Fiber orientation distributions (FODs) obtained with MSCSD and the 
mFOD method in an axial slice. The middle and the right columns show in- 
creasing zoom levels to highlight details of FODs. The mFOD 1 and mFOD 2 refer 
to the FODs computed when using response functions meant to represent WM 

and GM, respectively. The mFOD-WS is the sum of mFOD 1 and mFOD 2 weighted 
by their corresponding signal fractions. The mFOD 2 is non-zero only in GM and 
its proximity, and shows dominant orientations also in the deeper cortex, in 
contrast to both MSCSD and mFOD 1 . The mFOD-WS combines the information 
content of mFOD 1 in WM with that of mFOD 2 in GM. 

Fig. 7. Fiber orientation distributions (FODs) obtained with MSCSD and the 
mFOD method in a coronal slice. The middle and the right columns show in- 
creasing zoom levels to highlight how the FODs change in vicinity of GM. The 
mFOD 1 and mFOD 2 refer to the FODs computed when using response functions 
meant to represent WM and GM, respectively. The mFOD 2 is non-zero only in 
proximity of GM, and shows dominant orientations also in the deeper cortex, in 
contrast to both MSCSD and mFOD 1 . The mFOD 1 provides directional informa- 
tion in strong agreement with MSCSD but occasionally shows more peaks. 
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umber of peaks detected with MSCSD is 2.31 ± 0.88 as compared to
.54 ± 1.03 with mFOD-WS. The average angle deviation between the
ain direction derived with mFOD-WS and MSCSD is 4.7 ± 4.5°. 

Fig. 9 shows the histogram of the peak deviations observed between
SCSD and mFOD-WS in WM, GM and at the WM/interface, as well as

he angle between the FODs and the normal to the cortical folding as
erived from the T1-weighted image with a structural tensor approach.
hen comparing the first peak direction of MSCSD and mFOD-WS in
M, we observe that more than 70% of the WM voxels have an angular

eviation smaller or equal than 10°. For the second and third peak we
bserved similar results, but also the presence of clusters of voxels with
ngle differences equal to 55° and 90° between the two methods. In GM
nd at the WM/GM interface, the angular deviation between the two
ethods is larger, up to 29°, and the peak of the distributions are cen-

ered at about 0.1° and 5°, respectively. When looking at the angle with
he cortex normal, the histogram of both peaks is centered at 20°, but
he mFOD-WS method results on average in a smaller angular deviation
han MSCSD. 

.3. Fiber tractography 

Fiber tractography results in a frontal lobe region computed with the
SCSD and mFOD-WS methods are shown in Fig. 10 . The fiber pathways

re color encoded according to the tissue type they are spatially travers-
ng, and show that the mFOD-WS method generates more dense trac-
ography results in GM. Further, the fiber bundles reconstructed with
he mFOD-WS approach cover the GM more uniformly and traverse the
issue with a more plausible shape and to a greater extent. 
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Fig. 8. Fiber orientation distributions (FODs) obtained with the mFOD method 
and MSCSD in an axial slice of the thalamus. The right column zooms in a 3 × 3 
neighborhood to better compare the visualized FODs. In general, the FODs in 
mFOD-WS appear sharper in the whole thalamus as compared to MSCSD. When 
looking into the zoomed region, the FODs in mFOD-WS appear sharper and 
appear to resolve complex configurations better than MSCSD (white arrows). 
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Subsequently, we performed the whole-brain fiber tractography with
he MSCSD and mFOD methods, both individually (mFOD 1 , mFOD 2 )
nd after the weighted sum procedure (mFOD-WS). The tracking with
FOD 1 produces a whole brain reconstruction that is largely compara-

le to that of MSCSD, suggesting preservation of the WM tracking per-
ormance. Conversely, the tracking of mFOD 2 results mostly in cortical
econstructions and short U-fibers, in-line with the GM-specific nature
f this FOD. For pathways reconstructed with the mFOD-WS approach,
2.1% have their end points in GM, as compared to 34.1% when per-
orming tractography with MSCSD. This is qualitatively visible in the
issue-type encoded reconstruction in Fig. 11 , which shows that trajec-
ories reconstructed with the mFOD-WS method cover the GM more ex-
ensively as compared to MSCSD. Note, however, that this also results
n introducing extra spurious fibers. 

An example sagittal slab of the trajectories reconstructed with
SCSD and the mFOD-WS approach was obtained by cropping the
hole brain fiber tractography, as shown in Fig. 12 . In the first col-
mn, the trajectories are color encoded according to their distance from
he WM/GM interface (blue) to the GM/CSF interface (red). It can be
ig. 9. The first three histograms show the normalized frequency (probability) of th
nd at the WM/GM interface, respectively. The right histogram shows the probabilit
nd the main direction with MSCSD or mFOD-WS. With regards to the left plots, the fi
ver 70% of voxels, whereas larger differences are observed in GM and at the WM/G
ith a subset of the voxels showing an angle of 60° between the two methods. mFO

he structural tensor technique) as compared to MSCSD. 
een that the fiber bundles reconstructed with the mFOD-WS method
onsistently travel a longer distance within the cortical GM than with
SCSD, in-line with observations in Fig. 10 . Further, the frontal, pari-

tal and occipital side of the cortex appear to be better reconstructed
ith the mFOD-WS method. 

While the mFOD framework has been primarily developed to target
he cortical GM, deep GM regions as the thalamus have a central role in
rain connectivity. In Fig. 13 , we investigated the application of fiber
ractography with mFOD-WS and MSCSD using a seed region covering
art of the thalamus in one single axial slice. The fiber tractography
btained with both methods reveal the existence of thalamic – tempo-
al and thalamic-sensory motor connections. With mFOD-WS, however,
e also observe a remarkably larger number of streamlines reaching

he brainstem, and the occipital cortex. Additionally, mFOD-WS results
n longer reconstructions of the fiber tracts from the thalamus to both
he sensory-motor and the frontal/pre-frontal cortex, in agreement with
revious population studies ( Cox et al., 2016 ). 

Fiber tractography of the mFOD-WS method using the HCP data is
hown in Fig. 14 for different choices of tracking criteria. Good coverage
f the cortical structure is observed for all settings, even when enforcing
 minimum length of 50 mm, ensuring that most of the reconstructions
riginating in GM can reach the WM. When using an FOD threshold
qual to 0.1, more spurious reconstructions are revealed as compared
o a more restrictive threshold (0.3), but a denser tract reconstruction
n the cortical ribbon and more extensive coverage of the contralateral
emisphere can be observed. Allowing for trajectories as short as 10 mm,
esults in a very dense reconstruction of the cortical gyri, showing short
undles that seem to travel tangentially to GM, as well as many short
adial reconstructions. 

. Discussion 

In this work, we have introduced the mFOD framework to per-
orm spherical deconvolution of multiple anisotropic response functions.

ith simulations and HCP data, we have shown that it is possible to
econstruct two anisotropic FODs, specific to WM and GM, while also
ccounting for the CSF partial volume effect. Further, we have shown
hat the mFOD approach improves the reconstruction of FODs in GM
s compared to existing state-of-the-art methods, and that this results
n improved fiber tractography reconstruction in regions near or in the
M. 
e angle between each mFOD-WS peak and the closest MSCSD peak in WM, GM 

y of the angle difference between the normal direction to the GM/WM surface 
rst peak of two methods has very small angle differences in WM, within 10° in 
M border. Larger differences were observed for the second and the third peak, 
D-WS resulted in lower angle deviation with the surface normal (derived with 
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Fig. 10. On the left, the FODs obtained with MSCSD and mFOD-WS in a frontal region. On the right, the fiber pathways obtained with the MSCSD and mFOD-WS 
methods by seeding in the shown axial slice (shown in yellow in the bottom left corner) with identical tracking parameters and FOD thresholds. The fiber pathways 
are color encoded according to the tissue type they transverse, as determined on the structural T1 image. The tracking with the mFOD-WS method resulted in a more 
complete tracking of the frontal cortex as compared to MSCSD, with the reconstructed trajectories covering a larger distance within the cortex. 
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.1. Feasibility of mFOD 

The reconstruction of multiple anisotropic FODs is a complicated,
umerical challenge that requires the inversion of a matrix whose rank
number of independent rows/columns) is much lower than the number
f possible solutions (FOD amplitudes on the unit sphere), a recurring
hallenge in deconvolution problems. Previous studies, as Tournier et al.
2007 ) and Jeurissen et al. (2014 ) used an L2 regularization term en-
orcing continuity (smoothness) in the FOD amplitudes. In this work,
e used a non-negative least-squares solver with L2 regularization en-

apsulated in an iterative solver ( Guo et al., 2020 ). Taking into consid-
ration that the mFOD formulation ( Eq. (2) ) hosts multiple FODs, this
ight be suboptimal and introduce discontinuities in the solution. Nev-

rtheless, our results suggest that the mFOD approach does not propa-
ate smoothness between multiple FODs, likely due to the attenuation of
mall perturbations imposed by the median operator ( Guo et al., 2018 ).
ndeed, the results of simulations, shown in Figs. 2 , 3 and 4 , suggest
hat this approach allows to effectively disentangle the partial volume
ffects between mixtures of isotropic ( n = 1) and anisotropic ( n = 2)
ignal mixtures, if sufficient SNR is provided. In particular, the partial
olume effects between WM and CSF are the easiest to disentangle, and
n SNR equal or greater than 20 is sufficient to obtain accurate sepa-
ation of signal fractions and minimal angular error on the WM FODs.
n contrast, the separation of GM from both WM and CSF is a harder
ask, probably as a result of the limited anisotropy of this tissue type. In
ig. 4 , we observe that the GM estimation shows a small but consistent
ffset from the simulated values. This is very likely caused by the above-
entioned median operator in the deconvolution framework (GRL) on
hich mFOD is built. Such operator is designed to be used in combina-

ion with deconvolution matrices containing highly anisotropic signal
asis. When spherical deconvolution is performed with a deconvolution
atrix including moderately anisotropic elements (e.g. generated with
he NODDI model with 𝜅 = 1 ), this is likely to produce some genuine
mall amplitudes which are discarded by the median filtering, causing a
mall but consistent bias in the f GM 

estimate. Of note, in our simulations
e did not compare the performance of mFOD to MSCSD, because such
ethod is data-driven, e.g. it estimates its deconvolution matrix from the
ata, which is not feasible in a single-voxel simulation. Furthermore, we
elieve that such comparison would not be completely fair, as by design
he MSCSD method lacks the ability to fit the anisotropic GM-like signal
hat we introduce in the simulated signals. 

If an SNR equal or above 50 is achieved, the mFOD framework can
reserve the ratios between different tissue types and can estimate their
ixtures with minimal biases ( Figs. 2 and 3 ). While an SNR of about 50
ight be difficult to achieve in clinical settings, accurate pre-processing

nd denoising ( Veraart et al., 2016 ), or even deep-learning based re-
onstructions ( Koppers et al., 2017 ) might mitigate this need. Accord-
ng to Fig. 3 , the crossing angle between a WM bundle entering into
he cortex and the cortical folding itself is likely to have an impact
n the performance of mFOD. Generally, white matter bundles travel
o their cortical endpoint perpendicularly ( Budde and Annese, 2013 )
o the cortical folding, with exceptions such as the primary visual cor-
ex ( Kleinnijenhuis et al., 2013 ) or the U-fibers adjacent to the cortex
 Schilling et al., 2018 ). If the direction of the axons leaving the cortex
to the WM) would not match that of intra-cortical axons, the results of
he simulations suggest that the GM FOD would be estimated with an
ngular error between 15 (SNR 30) and 10° (SNR 50), which are likely
o perturbate the tracking trajectory. In practice, very high SNR is likely
equired to reconstruct fiber pathways tangential to the cortical fold-
ng, but less critical to detect radial trajectories. In light of the insights
rovided by simulation I, we conclude that mFOD can estimate the GM
OD with reasonable angular error in the cortex itself (configuration V
n Fig. 3 ) and in the case of limited partial volume with a single WM
ber (configuration e in Fig. 3 ). The performance of mFOD at separat-
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Fig. 11. Whole-brain tracking with MSCSD and the mFOD methods. The first row shows the fiber pathways color encoded with the conventional color scheme, 
whereas the second row shows the same tracking color encoded by traversed tissue type (subsampled with factor 8). MSCSD and mFOD 1 provide similar tracking results 
with the latter showing better characterization of the cerebellar cortex, as shown by the more homogeneous red coloring in the tissue type encoded tractography. 
The tracking with mFOD 2 resulted exclusively in cortical and short (U-fibers) connections. With mFOD-WS, a more complete coverage of the GM is achieved as 
compared to both mFOD 1 and MSCSD. 

Fig. 12. A sagittal slab (red line in the bottom left picture) of the fiber tractography results obtained with MSCSD and the mFOD-WS method. The first column 
shows the fiber pathways color encoded according to their normalized distance from the GM/WM and the GM/CSF interfaces. The distance was determined in 3D as 
flow (linear interpolation field) between the two surfaces using the same method we previously used to determine the cortex normal. The central and right column 
show the same sagittal slab color encoded by reconstruction method, and its zoom in a cortical region. The WM-GM flow color encoding shows that a deeper cortical 
tracking was achieved with the mFOD-WS method as compared to MSCSD, especially in the frontal and occipital areas, as well as a more contiguous coverage of the 
cortex (white arrows). When looking at the tissue type encoded images, mFOD-WS resulted in a more extensive and contiguous reconstruction of the cortical folding, 
and the tracts travelled deeper into the cortical GM, although a larger number of spurious reconstructions can also be observed. 

i  

a  

v  

c  

i  

t  

u  

t  

t  

G  

r  

t  

𝜅  

h

ng WM-like and GM-like FODs is also confirmed by the in-vivo results,
s the signal fraction map associated to GM is zero-valued in all non-GM
oxels and has values of 1 in almost all GM voxels, which suggests ex-
ellent separation of the two tissue types. In proximity of the WM/GM
nterface, however, the possible presence of an additional crossing with
he superficial U-fibers is likely to generate unreliable estimates (config-
ration c of Fig. 3 ), suggesting that further research is needed to address
he challenge of crossing the superficial WM ( Reveley et al., 2015 ). On
he other hand, it should be noted that the above result corresponds to a
M-like signal generated with the NODDI parameter with 𝜅 = 1 , which

esults in low signal anisotropy. While such value seems appropriate in
he cortex, i.e., when f GM 

= 1, at the WM/GM interface, higher values of
are typically observed. According to Supplementary Figure S2, with a
igher value of 𝜅, the angular error of the GM FOD drops drastically. 



A. De Luca, F. Guo and M. Froeling et al. NeuroImage 222 (2020) 117206 

Fig. 13. Results of fiber tractography of MSCSD and of the mFOD-WS method 
with a seed ROI located the Thalamus in one single axial slice. The streamlines 
reconstructed with mFOD-WS reached a larger extent of the cortex, especially 
in the occipital and frontal cortex. While the connection between the Thalamus 
and the sensory motor cortex was observed with both MSCSD and mFOD-WS, 
streamlines reconstructed with the latter branched more plausibly into the cor- 
tex (red tracts). When looking at the thalamic-frontal projection (yellow tracts), 
the fiber reconstructions with mFOD-WS covered a remarkably larger extent of 
the frontal cortex as compared to those obtained with MSCSD. 
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.2. GM modeling 

While recent work has introduced the reconstruction of multiple WM
ODs ( Pietsch et al., 2019 ) to account for inadequacies in WM modeling
n infants, the mFOD framework has the unique characteristic of recon-
tructing multiple FODs that are specific of remarkably different tissue
ypes as WM and GM, as shown in Figs. 6 and 7 . The figure shows that

M fiber orientations estimated with mFOD (mFOD 1 ) and MSCSD are
ery similar in WM, and that both exhibit very small values in GM. In
ontrast, the GM fiber orientations estimated with mFOD 2 show con-
istent and well-defined diffusion directions for a large extent of the
ortical GM. The performance improvement over MSCSD of the mFOD
ramework in GM is explained by considering the improved tissue mod-
ling. Approaches as MSCSD essentially describe the WM and GM mix-
ure as the sum of an anisotropic and an isotropic signal, similarly to the
all-and-stick model ( Behrens et al., 2003 ), where the anisotropic signal
s modelled with properties extracted from single fiber population WM
 Tournier et al., 2007 ; Tax et al., 2014 ; Dell’Acqua et al., 2007 ). There-
ore, in practice, by applying any constrained spherical deconvolution
ethod in GM, one assumes the axonal component of GM to produce
 similar signal to that of a WM bundle without crossing fibers. How-
ver, assuming the axons and dendrites of the cortex to be identical to
he axons in the corpus callosum or other major WM bundles seems a
tretch given their different diffusion signature ( Westin et al., 2016 ). In
his work, we represent the GM signal with a special case of the NODDI
odel ( Zhang et al., 2012 ), which represents a first approach to take

nto account additional effects as tortuosity ( Sen and Basser, 2005 ) and
ntra-to-extra neurite signal ratios into the deconvolution problem. 

.3. How to use multiple FODs 

One of the open challenges in the mFOD framework regards how
o combine the multiple FODs computed by the method. In this work,
e adopted a pragmatic approach and considered their weighted sum
mFOD-WS). This choice produces convincing and contiguous FODs, as
hown in Figs. 6 and 7 . However, this might be sub-optimal for fiber
racking approaches, as it might blur the peaks detected in individual
ODs. Future work is needed to establish whether dynamically tracking
he locally larger FOD, or dynamically choosing the FODs most aligned
o the tracking direction might represent better alternatives. Addition-
lly, sparsity constraints as L1 or L0 norm ( Daducci et al., 2014 ) could be
aken into consideration to improve the FOD separation and minimize
verfit. Nevertheless, when we compared the main peaks of mFOD-WS
o those obtained with MSCSD ( Fig. 9 ), we observed remarkable simi-
arity between the two in WM. Further, the average angular error be-
ween the two techniques was below 10° in over 70% of WM voxels,
uggesting that the mFOD-WS approach does not affect the performance
f spherical deconvolution in WM. In GM, the mFOD-WS approach re-
ulted in smaller angular deviations with respect to the cortex normal
s compared to MSCSD. While the cortex normal might not always be
epresentative of the direction with which axons are organized in the
ortex, they represent an accepted assumption ( Tozer et al., 2012 ), and
ight serve as a comparison term between the two methods. The aver-

ge angular deviation between the cortex normal and mFOD-WS is 20°,
hich is in-line with the angular error predicted in case of WM and GM
ixtures at SNR 50 ( Fig. 3 ). 

.4. Improved fiber tractography in GM 

Fiber tractography is one of the main applications of spherical decon-
olution techniques. Here, we used a deterministic approach to facilitate
he interpretation of pathway reconstructions. As shown in Fig. 10 , we
btained a higher percentage of tract pathways reaching a GM region
ith the mFOD-WS approach than with MSCSD given identical track-

ng parameters. Furthermore, the fiber pathways reconstructed with the
FOD-WS method covered the cortical structure more extensively, and

heir geometrical configuration appeared more similar to previous re-
orts of high resolution cortical dMRI ( Setsompop et al., 2018 ). While
 similar tractography result might also be achievable with MSCSD by
uning the FOD threshold ( Aerts et al., 2019 ), this is likely to intro-
uce not only false positives in WM, but also to worsen the tracking
n GM itself due to a larger number of spurious peaks ( Parker et al.,
013 ). One important application of fiber tractography is the study of
eep GM structures, due to their central role as hubs for many brain
onnections. In Fig. 8 , we investigated the performance of mFOD-WS
n the thalamus. We observe that the use of mFOD-WS seems also ben-
ficial in deep GM, as it provides FOD estimates that are sharper and
etter resolved than those provided by MSCSD, which is desirable in
ber tractography applications. Furthermore, in the thalamus, we found
 small but consistent angular bias of about 5° between the main direc-
ions estimated with the two methods, and a higher number of detected
eaks with mFOD-WS, 3.5 vs 2.3. When performing fiber tractography
rom the thalamus ( Fig. 13 ), the fiber tracts reconstructed with mFOD-

S covered a larger extent of the brain as compared to the fiber tracts
econstructed with MSCSD, including previously reported connections
o the occipital, sensory-motor and frontal cortices, although a larger
umber of spurious fibers was also observed. Furthermore, the recon-
truction of the thalamic-frontal tract with mFOD-WS appears more in
ine with previous reports. 

When performing whole-brain tractography, the use of the mFOD-
S approach resulted in more tract pathways having a start or endpoint

n the GM ( + 8%), and generally in more extensive GM coverage, as
hown in Fig. 11 . This was even more apparent when looking at a sagit-
al slab ( Fig. 12 ), which showed how fiber bundles could be followed in
M up to the GM/CSF interface, at the price of potentially more spuri-
us reconstructions as compared to MSCSD. In practice, mFOD could be
eneficial to applications such as pre-surgical planning ( Mormina et al.,
016 ) or structural connectivity studies ( Beare et al., 2017 ), where prop-
gating fiber pathways from the deep WM into the cortex is crucial. Ex-
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Fig. 14. Results of fiber tractography of the 
mFOD-WS method with a seed ROI in an ax- 
ial slice including the left central superior cor- 
tex. The tractography results are shown for two 
choices of FOD thresholds and minimum tract 
length. Reconstruction of WM bundles reach- 
ing the cortex can be observed with all tested 
settings. A lower FOD threshold (0.1) results in 
a more contiguous representation of the gyri 
as compared to the more restrictive setting 
(0.3), but also in more false positive recon- 
structions. Lowering the minimum tract length 
from 50 mm to 10 mm allows one to recon- 
struct short fibers tangent to the cortex (white 
arrows) that appear to travel within the cortical 
ribbon. 
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sting fiber tractography methods do not generally define the seed points
n the cortex, but rather at the GM/WM interface or in the adjacent WM,
otentially introducing a number of false positives ( Maier-Hein et al.,
017 ). For similar reasons, connectivity studies are often performed by
rst seeding in WM or at the WM/GM interface, then filtering the tra-

ectories with anatomical constraints ( Smith et al., 2012 ), and finally
ssigning the fiber bundles to the closest GM node after spatial dilation,
otentially introducing uncertainty in the assignment ( Wei et al., 2017 ).
o overcome these limitations and reconstruct complete fiber pathways
o/from the cortical start/endpoints, 4 major steps are required: i) the
stimation of reliable FODs in WM, ii) crossing the superficial WM at the
M/GM interface, iii) overcoming the gyral bias in fiber tractography

nd iv) the estimation of reliable FODs in GM. The mFOD framework is
 first step towards the solution of this comprehensive challenge, as it al-
ows to robustly determine the FODs in cortical areas. This problem has
lso been investigated in previous studies and has been addressed with
omputational approaches based on the geometry of the cortex itself.
hile such methods have the advantage of not requiring elaborate dif-

usion acquisition schemes as mFOD, they simplify the structure of the
ortex, enforcing fiber tractography to proceed radially to the cortex,
hich does not take into account the potential presence of tangential
bers or the adverse effects related to disease or abnormal development
f the cortex organization. Taking into account the results shown in
ig. 14 , it seems possible with mFOD to also effectively reconstruct some
rossing bundles in the GM itself, where radial projections cross previ-
usly reported tangential fibers ( Kleinnijenhuis et al., 2013 ; Leuze et al.,
014 ; J. A McNab et al., 2013 ). Fig. 14 also highlights the importance
f the FOD threshold parameter in fiber tractography. When the FOD
hreshold is lowered, a larger number of fiber tracts is reconstructed.
hese fiber reconstructions are also generally longer and can become
rratic when the FOD is not well-defined, such as in the outer cortex
here the partial volume with CSF dominates the signal. Increasing the
alue of the FOD threshold reduces the number of spurious fibers, but
ikely also the number of genuine pathways that are discarded ( Maier-
ein et al., 2017 ). The accurate estimation of FODs at the WM/GM in-
 t  
erface is more challenging than for GM itself according to the results of
imulation I ( Fig. 3 ). In our in-vivo experiments with mFOD, fiber trac-
ography generally reached the cortex, but this might be more challeng-
ng in datasets with lower SNR. In that case, the mFOD approach might
e further enhanced by taking into account geometric frameworks such
s the “Surface Enhanced Tractography ” ( St-Onge et al., 2018 ) or the
Structure Tensor Informed Fiber Tractography ” ( Kleinnijenhuis et al.,
012 ), or with hybrid acquisition strategies aimed to better resolve the
ODs at the WM/GM interface ( Fan et al., 2017 ). In this manuscript,
e have employed a deterministic tractography method to focus on the
OD estimation step. However, mFOD could also be used in combina-
ion with probabilistic fiber tractography ( Tournier et al., 2010 ), multi-
eak tractography ( Descoteaux et al., 2009 ) or even global tractography
 Christiaens et al., 2015 ), as shown in Supplementary Material Figure
4. 

.5. Methodological considerations 

The models used here to describe WM and GM properties were cho-
en from current popular methods, but their combination might not be
he optimal representations to estimate multiple FODs. The DKI model,
ere used in its simplified version with isotropic kurtosis ( De Luca et al.,
017 ), efficiently represents non-Gaussian signals with a limited num-
er of parameters but is sub-optimal to account for direction dependent
ignal restrictions. Alternatively, geometric representations of the WM
ignal ( Ferizi et al., 2014 ), as well as data driven methods ( Tax et al.,
014 ) could also be explored. Furthermore, in this work we focused on
he modeling of the cortical GM, but mFOD can theoretically be used
lso with multiple WM response functions to account, for instance, for
ifferently myelinated WM in infants ( Pietsch et al., 2019 ), or for other
nisotropic tissues such as lesioned WM ( Ban et al., 2019 ) or malig-
ancies ( Aerts et al., 2019 ). Note that the diffusion approaches sug-
ested for WM (DKI) and GM (NODDI) could be further adjusted or
ven replaced by other more specific tissue models to further improve
he mFOD framework. In name of clarity, we fixed the parameters of the
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ODDI model to the average values observed in GM, but these values
ould be suboptimal at voxel level. In Supplementary Figure S1, we have
riefly investigated the impact of mis-estimating the NODDI parameters
n mFOD, observing that overestimating the value of 𝜅 in mFOD results
n worse angular errors in the GM FOD but minimal or no effects on
he signal fraction estimates. Conversely, underestimating the value of
has marginal effects on the angular error, but biases the signal fraction

stimates. 
The dMRI acquisition protocol is expected to have a major influence

n the performance of the mFOD framework. Here, however, we aimed
o show a proof-of-concept of the feasibility of the mFOD approach, and
herefore relied on the high-quality HCP data. Nevertheless, in the Sup-
lementary Material we briefly investigated with simulations the impact
n the performance of mFOD of specific changes to the acquisition pro-
ocol. Supplementary Figure S3 shows that halving the acquisition pro-
ocol with respect to the HCP gradient schemes would minimally affect
he estimation of the WM FOD and of the signal fractions, but would
orsen the precision of the estimates, as expected. The reduced acquisi-

ion protocol negatively impacts also the angular error of the GM FOD,
ncreasing the error of about 5° for the 90° WM-GM crossing simula-
ion. In Supplementary Figure S2, we investigated how different distri-
utions of HCP-like multi-shell diffusion weightings would impact the
FOD performance. We observe that acquiring more directions in the

uter shell or reducing its diffusion weighting to b = 2500s/mm 

2 does
ot improve nor worsen the angular error of the GM FODs. Conversely,
ncreasing the maximum diffusion weighting to b = 4000 s/mm 

2 seems
o improve the estimation of the GM FOD, in line with recent reports
sing ultra-high diffusion weightings ( Palombo et al., 2020 ; Tax et al.,
020 ). 

In Fig. 9 , we used the cortex normal direction as a comparison for
ODs computed with both MSCSD and mFOD. While it is reasonable
o assume that most axonal projections will traverse the cortex with
 perpendicular trajectory, this is not always the case. Furthermore,
he method employed to compute the normal trajectory is not accurate
hen the sulci are separated by less than 2 voxels and should therefore
e interpreted cautiously. The performance of the mFOD framework has
een shown for two subjects and, although promising, should be further
valuated on larger cohorts and with more clinically achievable proto-
ols. Finally, while we have shown that the mFOD framework improves
he performance of spherical deconvolution and fiber tractography in
M, it remains to be shown to which extent such improvements will
enefit clinical studies and structural connectivity investigations. 

In conclusion, we have presented the mFOD framework to perform
issue-specific spherical deconvolution which can simultaneously recon-
truct multiple distributions of fiber orientations per voxel. By integrat-
ng specific WM and GM models, we have shown that the mFOD ap-
roach can improve the performance of spherical deconvolution in GM
hile retaining the performance of state-of-the-art methods designed for
M. 
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