
Use of Ensemble Based on GA for Imbalance Problem 

L. Cleofas1, R. M. Valdovinos1, V. García2 and R. Alejo3 

 
1 Centro Universitario UAEM Valle de Chalco,  

56615 Valle de Chalco, México, {laura18cs,li_rmvr}@hotmail.com 
2Universitat Jaume I, 12071 Castelló de la Plana, España, vgarcia@hotmail.com. 

3 Centro Universitario UAEM Atlacomulco, 
50450 Atlacomulco, México, ralejoe@uaemex.mx. 

Abstract. In real-world applications, it has been observed that class imbalance 
(significant differences in class prior probabilities) may produce an important 
deterioration of the classifier performance, in particular with patterns belonging 
to the less represented classes. One method to tackle this problem consists to 
resample the original training set, either by over-sampling the minority class 
and/or under-sampling the majority class. In this paper, we propose two 
ensemble models (using a modular neural network and the nearest neighbor 
rule) trained on datasets under-sampled with genetic algorithms. Experiments 
with real datasets demonstrate the effectiveness of the methodology here 
proposed. 

Keywords: Genetic Algorithm, Imbalance, Nearest Neighbor Rule, Modular 
Neural Network. 

1   Introduction 

The class imbalance problem has received considerable attention in areas such as 
Machine Learning and Pattern Recognition. A two-class dataset is said to be 
imbalanced when one of the classes (the minority one) is heavily under-represented in 
comparison to the other class (the majority one) [9]. This issue is particularly 
important in real-world applications where it is costly to misclassify examples from 
the minority class, such as the diagnosis of rare diseases [5], the detection of 
fraudulent telephone calls [6], text categorization [7] and credit assessment [20], 
between others. Because of examples of the minority and majority classes usually 
represent the presence and absence of rare cases, respectively, they are also known as 
positive and negative examples.  

Basically, the research on this topic can be categorized into three groups: 
1. Solutions methods for handling the imbalance problem in two levels: the data level 

[4], or the algorithmic level [1]. 
2. Measuring the classifier performance in imbalanced domains [23], [24].  
3. Analyzing the relationship between class imbalance and other data complexity 

characteristics [21], [22]. 
Focusing on the first one, which is the most investigated, the data level methods, 

balancing the original data set by resampling the data space until the classes are 
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approximately equally represented. On the other hand, the algorithmic level methods, 
try to adapt existing learning algorithms to deal the imbalance problem, while keeping 
the original training data sets unchanged.  

Nowadays, the best strategy for handling this problem is not defined, however, 
several studies suggest to combine two or more strategies of the same level as the best 
option [4], [25]. For example, Barandela et al. [4] propose to use SMOTE [2] for 
over-sampling the minority class, and after that, applying Wilson Editing remove 
patterns which belong to the majority class.  

In this paper, we propose a methodology for handling the imbalance problem using 
a solution method, which consider two treatment level, the data and algorithmic level. 
Thus, in a first step (the data level), the original training set is under-sampled by a 
Genetic Algorithms (GA). Next, (the algorithm level) an ensemble is trained with the 
solutions given by the GA.  

In this way, using a GA we obtain subsamples whose chromosome considers four 
aspects: size reduction, diversity, good fitness and balance. After that, the GA method 
finds the best subsamples for train the ensemble.  

On the other hand, an ensemble is a set of individual classifiers whose decisions 
are combined when classifying new patterns [3]. In general, an ensemble is built in 
two steps, that is, training multiple individual classifiers and then combining their 
predictions. According to the styles of training the base classifiers, current ensemble 
algorithms can be roughly categorized into two groups, that is, algorithms where base 
classifiers must be trained sequentially, and algorithms where base classifiers could 
be trained in parallel. In this work, we employ two parallel ensembles using a mixture 
of experts (modular neural network) [8] and the 1-nearest neighbour rule as learning 
algorithm.    

From now, on the rest paper is organized as follows: Section 2 exposes the GA 
method. Section 3 describes the ME used in this paper. Next the experimental results 
are discussed in Section 4. Finally, Section 5 gives the main conclusions and points 
out possible directions for future research. 

2   Genetic Algorithms 

The most basic structure of the GA proposed by Holland [10], begins with a set of 
possible solutions (population) codified as a chain of bits (called chromosome), later 
with the use of a method to evaluate the behavior (fitness) of each chromosome, the 
parents of the next population are determined. 

In this work we modify the GA proposed by [11]. Diaz et al., to reduce the 
processing time of the GA, in addition to the 0�s, some chromosomes are reduced in 
20%, that is to say, during the evolutive process, several genes marked with a 
different value of 0 or 1 were ignored. The leaving-one-out method was used as 
fitness method and, an elitist method select the best solutions in each step and uses 
these chromosomes to apply the genetic operators: crossover and mutation. The 
former, consists of the uniform crossover and, next, randomly change 10% of the 
genes in each chromosome. 



Here, this algorithm was modified using a threshold h in order to identify the 
minority classes and for obtain a balanced chromosome. The threshold is obtained 
according to the following function: 

c
t

h =  (1) 

were t is the number of training samples and c is the number of classes in the 
problem.  

In the GA process, after to obtain de first population, if the number of patterns in 
any class is higher than h, the genes corresponds to that class which is adjusted to h. 
With this, we obtain balanced chromosomes, in other words, balanced subsamples. It 
is right to suppose that in the complete GA process the balance caught change, but on 
some way, we guaranteed a similar distribution between the classes. 

When the evolutionary process was finished, the best five solutions of the all 
epochs are used for building the ensemble. 

3   Mixture of Experts 

A Mixture of Experts (ME) or modular network solves a complex computational task 
by dividing it into a number of simpler subtasks and then combining their individual 
solutions. Thus, a ME consists of several expert neural networks (modules), where 
each expert is optimized to perform a particular task of an overall complex operation. 
An integrating unit, called gating network, is used to select or combine the outputs of 
the modules (expert networks) in order to form the final output of the modular 
network. In the more basic implementation of these networks, all the modules are of a 
same type [12], [13], but different schemes could be also used. 

There exist several implementations of the modular neural network, although the 
most important difference among them refers to the nature of the gating network. In 
some cases, this corresponds to a single neuron evaluating the performance of the 
other expert modules [13]. Other realizations of the gating network are based on a 
neural network trained with a data set different from the one used for training the 
expert networks [12]. In this work, all the modules (the experts and the gating 
network) will be trained with a unique data set [8], [14] (see Fig. 1). 

All modules, including the gating network, have n input units, that is, the number 
of features. The number of output units in the expert networks is equal to the number 
of classes c, whereas that in the gating network is equal to the number of experts, say 
r. The learning process is based on the stochastic gradient algorithm, where the 
objective function is defined as: 
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where s is the output desired for input x, zj = xwj is the output vector of the j'th expert 
network, gi is the normalized output of the gating network, ui is the total weighted 
input received by output unit j of the gating network, and gj can be viewed as the 
probability of selecting expert j for a particular case. 
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Fig. 1. Graphical representation of the ME architecture. Each module (including the 
gating network) is a feedforward network and receives the same input vector. The 
final output of the whole system is the sum of zjgj. 

4   The Nearest Neighbor Rule 

The Nearest Neighbor (NN) rule [19] is one of the most celebrated algorithms in 
machine learning. In recent years, interest in these methods has flourished again in 
several science fields, due to their conceptual simplicity and to an asymptotic error 
rate conveniently bounded in terms of the optimal Bayes error, they are revealed as 
powerful nonparametric classification systems in real-world problems. 

In its classical manifestation, given a set of n previously labelled prototypes or 
training sample (TS), this classifier assigns a given sample to the class indicated by 
the label of the closest prototype in the TS. 

5   Experimental Results 

This section expose the experimental results obtained with two ensemble models: 
using mixture of experts and using the NN rule, both of them trained on under-
sampled subsamples by a GA. The section was dividing in three parts. The first one, 
describe the method used for transform the datasets in a problem with two classes. 
The second part exposes the evaluation criterion for the imbalance problem here used. 
Finally, the experimental results are shown in the third part. 



5.1   Datasets 

The results here reported correspond to the experiments over seven real datasets taken 
from the UCI Machine Learning Database Repository [15]. For each data set, the 5-
fold cross-validation error estimate method was employed: 80% of the available 
patterns were for training purposes and 20% for the test set. 

Some datasets were transformed in a problem of two classes. In the Glass dataset 
the problem was transformed for discriminate class 7 against all the other classes and 
in the Vehicle dataset the task was to classify class 1 against all the others. Satimage 
dataset was also mapped to configure a two-class problem: the training patterns of 
classes 1, 2, 3, 5 and 6 were joined to form a unique class and the original class 4 was 
left as the minority one. Phoneme, Cancer and German are a two-class datasets. Table 
1 presents the positive and negative samples in the datasets.  

Table 1.  Description of the data sets. 

Dataset Positive samples Negative samples Majority class 
Cancer 191 355 1 
Pima 268 500 1 
Glass 17 197 1,2,3,4,5,6,8,9 
German 300 700 1 
Phoneme 1586 3818 1 
Vehicle 212 634 2,3,4 
Satimage 626 5809 1,2,3,5,6 

5.2   Performance Evaluation in Class Imbalance Problem 

To evaluate the performance of learning systems, a confusion matrix like that in Table 
2 (for a two-class problem) is usually employed. The elements in this table 
characterise the classification behaviour of the given system.  

Table 2.  Description of the data sets. 

 Predictive positive  Predictive negative 
Positive class True positive (TP) False Negative (FN) 
Negative class False Positive (FP) True Negative (TN) 

 
From this, four simple measures can be directly obtained: TP and TN denote the 

number of positive and negative cases correctly classified, while FP and FN refer to 
the number of misclassified positive and negative examples, respectively. 

The most widely used metrics for measuring the performance of learning systems 
are the error rate and the accuracy, which can be computed as: 

FPTNFNTP
TNTP

Accuracy
+++

+=  (4) 

 Nevertheless, as pointed out by many authors, overall accuracy is not the best 
criterion to assess the classifier’s performance in imbalanced domains. For instance, 



consider a domain where only 5% of the patterns belong to the minority class. In such 
a situation, labeling all new patterns as members of the majority class would give an 
accuracy of 95%. Obviously, this kind of system would be useless. Consequently, 
other criterion has been proposed. One of the most widely accepted criterion is the 
geometric mean: 

−+ ⋅= aag  (5) 

where a+ is the accuracy on cases from the minority class:  

FNTP
TP

a
+

=+  (6) 

and a- is the accuracy on cases from the majority one [9].  

FPTN
TN

a
+

=−  (7) 

This measure tries to maximize the accuracy on each of the two classes while keeping 
these accuracies balanced.  

5.3   Results 

The ensemble consists of five members trained on subsamples obtained with two 
variants of GA: with patterns reduction (GA1) and without pattern reduction (GA2). 
The experimental results given in Table 3 correspond to the averages of the geometric 
mean; values in parenthesis indicate the standard deviation. This table has three parts. 
In the first one, the results when employing the original TS, both with ME and 1-NN 
classifiers are included for comparison purposes. In the second and the third part, we 
present the geometric mean values observed when the ME and 1-NN were trained on 
subsamples under-sampled through GA1 and GA2.  

Table 3. Geometric mean values. 

Original TS ME 1-NN Dataset 
ME 1-NN GA1 GA2 GA1 GA2 

Cancer 86.4(6.8) 94.0(4.1) 87.7(5.8) 85.3(6.9) 95.8(3.3) 96.5(2.4) 
Pima 50.4(13.8) 58.4(8.1) 53.9(4.8) 58.5(2.4) 65.1(4.9) 64.9(5.2) 
Glass 85.8(9.9) 86.7(12.2) 81.5(6.3) 86.2(9.5) 84.6(16.3) 84.9(16.0) 
German 56.3(27.6) 49.8(8.0) 59.3(9.9) 59.8(2.0) 54.1(5.3) 55.8(5.2) 
Phoneme 73.9(6.8) 73.8(6.0) 74.8(7.0) 73.6(5.6) 74.1(8.3) 73.6(5.6) 
Vehicle 58.2(5.6) 55.8(7.2) 61.2(5.9) 58.0(7.9) 55.5(4.5) 59.4(12.2) 
Satimage 69.8(10.6) 70.9(15.1) 71.0(16.4) 65.3(10.5) 68.6(18.4) 66.4(19.4) 

 
From results reported in this section, some preliminary conclusions can be drawn. 

First, except for Glass dataset, for all data sets there are at least one classifier 
ensemble whose classification g is higher than the obtained when using the original 
TS. Second, comparing the two learning algorithms, in general the ME outperforms 
(five datasets) the 1-NN rule, independent on the GA strategy adopted.  



Finally, with respect to differences in g value between the GA1 and GA2, it has to 
be especially remarked the fact that results of the GA2 strategy are inferior to those of 
the GA1 approach. As can be seen, although differences are not significant, the GA2 
does not seem to present any advantage with respect to the GA1. That can be because 
in the GA2 approach the subsample obtained caught lost training samples which 
provide useful information for the classifier algorithm. 

6   Concluding Remarks 

In many real-world applications, supervised pattern recognition methods have to cope 
with imbalanced TSs. In the present paper we propose a new methodology focused on 
the solution methods approach, which combines an under-sampling method using a 
GA and an ensemble trained with the solutions given by the GA.  

The experiments on seven real-problem datasets have been through as a way of 
demonstrating the behavior and competitively of this methodology. From the 
experiments carried out, it seems that in general, the ME provide better levels of 
geometric mean than the NN rule. On the other hand, we also show that the method 
for reducing the computational cost of the GA (GA2) when some genes are ignored, 
does not favour substantially the precision of the ensemble. 

Future works, pointing to validate the proposal using another neural network model 
and with ensembles based on resampling methods which including weighting 
measures in the combining decision schema are in line. More comparisons on others 
problems form the UCI repository as treatment of the dimensionality and the noisy 
patterns contained in the database will be developed as soon as possible. 
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