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Abstract

Background: Structure delineation is a necessary, yet time-consuming manual procedure in radiotherapy. Recently,
convolutional neural networks have been proposed to speed-up and automatise this procedure, obtaining promising
results. With the advent of magnetic resonance imaging (MRI)-guided radiotherapy, MR-based segmentation is
becoming increasingly relevant. However, the majority of the studies investigated automatic contouring based on
computed tomography (CT).

Purpose: In this study, we investigate the feasibility of clinical use of deep learning-based automatic OARs
delineation on MRI.

Materials andmethods: We included 150 patients diagnosed with prostate cancer who underwent MR-only
radiotherapy. A three-dimensional (3D) T1-weighted dual spoiled gradient-recalled echo sequence was acquired with
3T MRI for the generation of the synthetic-CT. The first 48 patients were included in a feasibility study training two 3D
convolutional networks called DeepMedic and dense V-net (dV-net) to segment bladder, rectum and femurs. A
research version of an atlas-based software was considered for comparison. Dice similarity coefficient, 95% Hausdorff
distances (HD95), and mean distances were calculated against clinical delineations. For eight patients, an expert RTT
scored the quality of the contouring for all the three methods. A choice among the three approaches was made, and
the chosen approach was retrained on 97 patients and implemented for automatic use in the clinical workflow. For
the successive 53 patients, Dice, HD95 and mean distances were calculated against the clinically used delineations.
(Continued on next page)
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Results: DeepMedic, dV-net and the atlas-based software generated contours in 60 s, 4 s and 10-15 min, respectively.
Performances were higher for both the networks compared to the atlas-based software. The qualitative analysis
demonstrated that delineation from DeepMedic required fewer adaptations, followed by dV-net and the atlas-based
software. DeepMedic was clinically implemented. After retraining DeepMedic and testing on the successive patients,
the performances slightly improved.

Conclusion: High conformality for OARs delineation was achieved with two in-house trained networks, obtaining a
significant speed-up of the delineation procedure. Comparison of different approaches has been performed leading
to the succesful adoption of one of the neural networks, DeepMedic, in the clinical workflow. DeepMedic maintained
in a clinical setting the accuracy obtained in the feasibility study.

Keywords: Prostate cancer, Radiotherapy, Magnetic resonance imaging, MR-only treatment planning, Delineation,
Contouring, Segmentation, Artificial intelligence, Deep learning

Background
Structure delineation is a necessary, yet time-consuming
manual procedure in radiotherapy. Consistent and accu-
rate delineation of organs-at-risk (OARs) and target struc-
tures for prostate patients is vital when performing dose
escalation and treating patients with highly conformal
plans [1]. Traditionally, computed tomography (CT) has
been used for radiotherapy simulation and structure
delineation [2]. In the last few decades, magnetic reso-
nance imaging (MRI) has found its way for radiother-
apy simulation as it provides superior soft-tissue contrast
compared to CT [3, 4], thus enabling more accurate delin-
eation of target regions and critical structures compared
to CT [5–7].
The manual segmentation of anatomical structures is a

time-consuming process [8]. Besides, with the advent of
MR-guided radiotherapy [9–11], the accuracy and speed
of delineations become the weakest link [12] that hinders
the possibilities of online adaptive radiotherapy by being
responsible for longer fraction time [13].
To automatically perform delineations of target and

OARs for patients affected by prostate cancer, various
methods have been developed over the past years. For
example, three-dimensional (3D) deformable model sur-
face [14], organ-based modelling [15], and atlas-based
solutions [16, 17] have been demonstrated. For all these
methods, the time required to perform segmentation is
in the order of minutes, if not hours, which is exces-
sive to enable online adaptive treatments. To obviate this
limitation, currently in online treatments only the target
delineations and the OARs in the vicinity of the target (e.g.
within a ring of 3-5 cm) are adjusted due to the excessive
time needed for OARs segmentation [18–20].
Recently, deep learning has been proposed to speed-

up and automatise automatic segmentation obtaining
promising results [8, 21, 22]. Deep learning is a branch of
artificial intelligence and machine learning that involves

the use of neural networks to generate a hierarchical rep-
resentation of the input data to achieve a specific task
without the need of hand-engineered features [23, 24].
Many studies focused on target delineations [8] reach-

ing mean dice similarity coefficients compared to manual
delineations in the range 0.82-0.95 [25–31]. Automatic
delineation of OARs is also a crucial aspect to achieve full
online adaptive radiotherapy and to possibly save time to
manual contouring.
In this study, we aim at investigating the feasibility

of convolutional neural network-based automatic OARs
delineation on MRI. A preliminary retrospective study
was conducted to select a suitable network architecture
and prepare for clinical implementation. After having cho-
sen themost suitable convolutional network and perform-
ing clinical implementation, performances of automatic
deep learning-based OARs delineation from our clinic are
presented.

Material andmethods
Patient data collection
Patients diagnosed with intermediate and high-risk
prostate cancer undergoing MR-only radiotherapy [32] in
the period between June 2018, and January 2020 were
included in the study. Further inclusion criteria were: the
presence of four gold fiducial markers for position verifi-
cation and absence of hip implants. The patients were also
scanned with a specific radio-frequency spoiled gradient-
recalled echo (SPGR) sequence that will be described
in more detail further on. The clinical exclusion crite-
ria for MR-only radiotherapy were: patients with more
than four positive lymph-nodes (N1, as on PET-CT or
after pelvic lymph-nodes dissection), life expectancy <10
years (as from WHO >3), prior pelvic irradiation, IPSS
>20, presence of prostatitis, active Crohn’s disease, colitis
ulcerosa or diverticulitis, an anastomotic bowel in the high
dose region and patients undergoing trans-rectal prostate
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resection less than three months before treatment. With
the application of these exclusion criteria, a total of 150
patients that were included in this study and treated with
external beam radiotherapy.
For all patients, 3TMRI (Ingenia MR-RT, v 5.3.1, Philips

Healthcare, the Netherlands) was acquired after request-
ing the patients to empty their bladder and drink 200-300
ml of water one hour before the acquisition. Patients
were positioned on a vendor-provided flat table using a
knee support cushion (lower extremity positioning sys-
tem, without adjustable FeetSupport, MacroMedics BV,
the Netherlands). Patients were tattooed at the MRI with
the aid of a laser system (Dorado3, LAPGmbHLaser App-
likationen, Germany) to facilitate treatment positioning.
Also, MR-visible markers (PinPoint� for Image Registra-
tion 128, Beekley Medical, USA) were used to identify
the set-up location on MRI. MR images were acquired
using anterior and posterior phased array coils (dS Torso
and Posterior coils, 28 channels, Philips Healthcare, the
Netherlands). Two in-house-built bridges supported the
anterior coil to avoid skin contour deformation.
OARs were contoured on Dixon images [33] obtained

with a dual-echo three-dimensional (3D) Cartesian radio-
frequency SPGR sequence. For each patient, in-phase (IP),
water (W), and fat (F) images [34] (Fig. 1) were recon-
structed as in [35]. Dixon images were generated as part of
a proprietary solution (MRCAT, rev. 257, Philips Health-
care, Finland) that enabled MR-based dose calculation
for patients with prostate cancer [36, 37]. The imag-
ing parameters, reported in Table 1, were locked by the
vendor; therefore, they were stable through the whole
study. Radiotherapy technicians (RTTs) with dedicated
experience in contouring delineated bladder, rectum and
femurs using IP, W and F Dixon images. The OARs delin-
eations were approved or revised by a radiation oncolo-
gist. Besides, the radiation oncologist delineated the target
structures. The delineation indications followed RTOG

Table 1 Image parameters of the sequences used for the OARs
contouring. The term FOV refers to the field-of-view, while AP to
anterior-posterior and LR to right-left

Imaging parameters Value

TE1/TE2/TR [ms] 1.2/2.5/3.9

Flip Angle [°] 10

FOV∗ [cm3] 55.2x55.2x30

AcquisitionMatrix∗ 324x324x120

ReconstructionMatrix∗ 528x528x120

Reconstructed Voxel∗ [mm3] 1x1x2.5

Bandwidth [Hz/px] 1072

Readout direction AP

Phase direction RL

Geometry correction 3D

Acquisition time 2 min 17 s

∗expressed in terms of anterior-posterior (AP), right-left (RL) and superior-inferior
directions

guidelines [38] requiring that the rectum was delineated
from the outer part of the sphincter (anus) until the sig-
moid fold (expected length of the rectum was 10-15 cm),
as described in [39], with the sphincter delineated as a sep-
arate structure. The bladder was entirely delineated, while
the femurs were delineated in the whole FOV of the image.
In the case of regional radiotherapy, the bowel bag was
also included .

Study design
The first 48 patients (treated until January 2019) were
included in a feasibility study training two state-of-the-
art 3D convolutional networks called DeepMedic [40]
and dense V-net (dV-net) [41] (“Networks architecture,
image processing and training” section). Three-fold cross-
validation was performed, splitting the patients in 32/16
for train/validation. The network hyperparameters were

Fig. 1 Transverse view of in-phase (IP), water (W) and fat (F) images for a patient (69 yo) diagnosed with T2b cancer. Note the large portion of void
space surrounding the patient body. Cropping has been applied as preprocessing to remove such void regions
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Fig. 2 Schematic of the study design representing the timeline and the number of patients included. Also, the length and the number of patients
for the preliminary study, the training of the final model and the patients used for testing the clinical implementation are reported

optimised on the first fold and maintained for the other
two folds. For example, the number of epochs was cho-
sen considering the loss function in the validation set
by performing early stopping when loss function did not
decrease after five consecutive epochs.
The performance of the networks was compared against

a research version of commercial software based onmulti-
atlases and deformable registration and against the clini-
cally used delineations (“Evaluation” section).
This preliminary study enabled us to choose among the

three automatic methods. The preferred approach was
retrained on 97 patients that were imaged and treated
until August 2019; it was implemented for automatic use
in the clinical workflow. The performances of the imple-
mented model were reported on the 53 successive consec-
utively treated patients. A schematic overview of the study
design is presented in Fig. 2.

Networks architecture, image processing and training

Three-dimensional network architectures were chosen
to investigate performance differences considering as per-
ceptive field the whole volumes or smaller patches. In
particular, DeepMedic [40] was the network chosen to
perform patch-based training, while dV-net [41] was cho-
sen to perform training on whole volumes. The two archi-
tectures, which will be described in detail in the next
sections, required similar pre-processing. Three chan-
nels were used as input: IP, W and F images. The OARs
that were considered as target are: bladder, rectum, right
and left femur; they were decoded as masks with val-
ues from 1 to 4 without overlapping each others. To
increase the amount of contextual information, the CTV
was also decoded with a value of 5, which means that
the networks also output CTV. Note that CTV was
not considered in our study given that CTV delineation

is clinically based on a different MRI, i.e. T2-weighted
turbo spin-echo sequences [42]. The networks were
trained on a graphical processing unit (GPU) Tesla P100
(NVIDIA Corporation, USA) with 16 GB of memory. To
allow the whole volume to fit on the GPU, the IP, W and F
images were initially cropped with 90 voxels at the borders
of the anterior-posterior and lateral directions obtaining
matrices of 348x348x120 voxels. Note that an observer
controlled the presence of femurs within the FOV. Also,
the image intensity of IP, W and F were clipped at their
respective 99.9 percentile per each patient volume. Images
were subsequently divided by the standard deviation (σ ),
and then a fixed value of 1 was subtracted.
After training and inference of the networks, the delin-

eations were post-processed generating four binary vol-
umes.Morphological operations of closure and hole filling
by one voxel were applied. The largest 3D connected
region was selected for each delineated structure. These
operations were performed to remove possible small-
sized delineations that may have been found by the net-
works.

DeepMedic
The DeepMedic [40] implementation employed was pro-
vided by the Kamnitsas et al.1 in Tensorflow v1.7. The
model employed a three-pathway architecture for multi-
resolution processing of 3D patches. A low, medium and
high-resolution pathway with receptive fields of 853, 513,
173 voxels were employed with each pathway consisting
of 11-layers. A fully connected network (FCN) was used
for combining the pathways and post-processing, as pre-
sented by Kamnitsas et al. [40]. Note that the size of
the receptive fields has been modified compared to the
original implementation.

1as available at https://github.com/Kamnitsask/deepmedic.

https://github.com/Kamnitsask/deepmedic
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Fig. 3 Violin plots representing the mean (white dot), σ (black vertical rectangle), 95% percentile (black vertical line) and the probability distribution
for the dice similarity coefficient (DSC, top) and 95% Hausdorff distance (HD95, middle) and surface distance (bottom) for the OARs against clinical
contours in among the preliminary study. The statistical significance of the Wilcoxon signed-rank test is reported as well as the mean(±σ ) of each
metric. The asterisks represent p≤ 0.05 (∗), p≤ 0.01 (∗∗) and p≤ 0.001 (∗ ∗ ∗)

Fig. 4 Pie chart reporting the percentage of the qualitative scoring performed by the expert RTT for each auto-segmentation method
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Table 2 Comparison of performance between the preliminary study (PS) and after the clinical implementation (Clinic) for DeepMedic
in terms of (volumetric) dice similarity coefficient (DSC), 95% Hausdorff distance (HD95) and mean surface distance (MSD)

Site

DSC HD95 MSD

PS Clinic PS Clinic PS Clinic

[mm] [mm] [mm] [mm]

Bladder 0.95±0.03 0.96±0.02 3.8±3.4 2.5±1.1 1.0±0.6 0.6±0.3

Rectum 0.85±0.07 0.88±0.05 8.3±5.0 7.4±4.4 2.1±1.1 1.7±0.8

FemurL 0.96±0.01 0.97±0.01 2.2±1.4 1.6±0.5 0.6±0.2 0.5±0.1

FemurR 0.96±0.01 0.97±0.01 1.9±0.4 1.5±0.6 0.6±0.1 0.5±0.1

The training configuration was kept as the original, with
learning rate = 0.001, Adam optimiser with momentum
= 0.6, epochs = 35, batch size = 10 and L1 and L2 reg-
ularisations 2 weighted with factor 0.000001 and 0.0001,
respectively. The configuration file is reported in the
Supplementary Material. All the OARs were equally sam-
pled during training enforcing that the patches considered
in each epoch contains the four OARs the same amount
of times. Also, as in Kamnitsas et al. [40], volumetric dice
similarity coefficient was adopted as the loss function.
Data augmentation was applied in terms of random shifts
and rescaling perturbation of the intensity (I) by the fol-
lowing: I ′ = (I + s) ∗ m, where s and m where Gaussian
distributed with μ=0, 1 and σ=0.05, 0.01, respectively. For
training, DeepMedic made use of about 9 GB of GPU
memory.

Dense v-net
The dV-net implementation provided in NiftyNet was
employed3. It consisted of a 3D U-Net with a sequence
of three downsampling and dense upsampling feature
strided stacks with skip connections to propagate higher
resolution information to the final segmentation. Dilated
convolutions were employed to reduce the number of
features [41].
The training configuration was kept as the original, with

learning rate= 0.001, Adam optimiser with momentum
= 0.6, batch size = 6, L2 regularisation (weight = 0.001)
and epoch = 25. The configuration file is reported in
the Supplementary Material. Dice was adopted as loss
function, and data augmentation was applied in terms
of elastic deformation, as implemented within NiftyNet.
For training, dV-net made use of about 16 GB of GPU
memory.

Evaluation
Preliminary study
The first 48 patients treated between June 2018 and
August 2019 were included in a preliminary study to com-
pare the performance of the two networks and atlas-based

2Consult the https://niftynet.readthedocs.io/en/dev/config_spec.html#reg-
type for understanding the regularisation.
3as available at https://github.com/NifTK/NiftyNet.

approach to the delineation used during clinical treatment
planning.
The advanced medical imaging registration engine

(ADMIRE, research version 1.13.5, Elekta AB, Sweden)
was the software considered; ADMIRE is based on multi-
atlases [43, 44] and gradient-free dense mutual infor-
mation deformable registration [45]. In particular, the
rectum was delineated based on the F image, bladder
and femurs were delineated based on IP images using
an atlas of 9 patients that were previously acquired
with the same sequence. ADMIRE took about 10 to 15
minutes to generate automatic contouring on a Tesla
K20c GPU (NVIDIA Corporation, USA) with 6 GB of
memory.
Performances of the three automatic approaches were

evaluated in terms of (volumetric) dice similarity coeffi-
cients (DSC), 95% boundary Hausdorff distances (HD95)
[46], mean surface distance (MSD) against clinical
delineations. All the metrics were calculated using
Plastimatch4, except for the surface distance, which was
calculated as from https://github.com/deepmind/surface-
distance. In particular, violin plots [47] representing the
mean, σ , 95% percentile and the probability distribu-
tion were obtained for the three metrics. Also, Wilcoxon
signed-rank tests were conducted among the three evalu-
ation metrics with a confidence interval of 0.05.
For a subset of 8 patients, an RTT with five years of

experience in contouring scored the quality of the delin-
eations for all three methods. The delineations were clas-
sified from zero to three, which corresponds to clinically
acceptable, small modifications, large modifications, or
clinically unacceptable contours. In total, the RTT scored
96 delineations. The percentage of each score over all the
contours was reported for the three methods and visu-
alised in a pie chart. Also, the most challenging structures
(structures with an average score ≥2) were reported for
each method.

Clinical implementation
After a choice was made among the three automatic
approaches, the best performing network was retrained

4as available at https://plastimatch.org/

https://niftynet.readthedocs.io/en/dev/config_spec.html#reg-type
https://niftynet.readthedocs.io/en/dev/config_spec.html#reg-type
https://github.com/NifTK/NiftyNet
https://github.com/deepmind/surface-distance
https://github.com/deepmind/surface-distance
https://plastimatch.org/
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Fig. 5 Example of in-phase MRI after cropping along with segmentations (OARs) obtained with DeepMedic (contours) versus clinical segmentations
(filled contours) in the transverse (left), coronal (centre) and sagittal (right) view for a patient in the test. For this patient, average performance was
obtained in terms of DSC: 0.96, 0.86, 0.97 and 0.97 for bladder, rectum, and femurs, respectively. Note that DeepMedic also outputs CTV, but it was
not considered for clinical evaluation

for the first 97 patients that were included up to August
2019. The hyperparameters were identical to the pre-
liminary study. The network was implemented for clin-
ical use complying with the medical device regulation
(MDR 2017/745)5. Quantitative evaluation was perfomed
in terms of DSC, HD95 and MSD for the 53 consecutive
patients undergoing MR-only radiotherapy from August
2019 to January 2020. The delineations adopted for clin-
ical use, i.e. delineated by RTTs and approved or re-
adjusted by a radiation oncologist, were considered as
reference. Also, surface dice similarity coefficient (SDSC)
[48] was calculated6 to enable comparison with previous
work [49]. Besides, the performance of the network clini-
cally implemented was compared with the performance of
the same network obtained during the preliminary study.

Results
Timing performance
The inference time of the network was about 60 s for
DeepMedic and approximately 4 s for dV-net using the
full resolution images of 328x328x120 voxels on GPU.
ADMIRE generated contours in approximately 14 min on
GPU.

Preliminary study
Figure 3 represents the violin plots for DSC, HD95 and the
MSD. One can observe that performances were higher for
5European regulation 2017/745 of the European Parliament and of the
Council of 5 April 2017 on medical devices, https://eur-lex.europa.eu/eli/reg/
2017/745/oj.
6as available in https://github.com/deepmind/surface-distance.

both the networks compared to ADMIRE. For the bladder,
no significant differences were observed between the net-
works, but significant differences were observed between
the networks and ADMIRE. For the rectum, no signifi-
cant differences were observed among the three automatic
methods. When considering the femurs, DeepMedic out-
performed both dV-net and ADMIRE. For example, for
the right femur, the mean (±σ ) HD95 was 2.2±1.4,
2.5±1.8 and 3.2±1.4 mm for DeepMedic, dV-net and
ADMIRE, respectively.
The qualitative scoring by an RTT expert (Fig. 4)

demonstrated that delineations fromDeepMedic required
fewer adaptations, followed by dV-net and then ADMIRE.
Specifically, the expert RTT stated that, for all the struc-
tures, the number of delineations that were acceptable
or needed small adjustment was 81%, 59% and 3% for
DeepMedic, dV-net and ADMIRE, respectively. For both
the networks, the rectum followed by bladder were
indicated as the most challenging structures, while for
ADMIRE, the bladder followed by rectum and femurs
(same scoring) were the structures considered as the most
challenging (score ≥ 2).

Clinical implementation
On the basis of the preliminary analysis, we decided to
implement DeepMedic for our clinic. Clinical implemen-
tation was performed in August 2019.
The performance of DeepMedic in the prelimi-

nary study and after clinical implementation are pre-
sented in Table 2. After retraining DeepMedic and

https://eur-lex.europa.eu/eli/reg/2017/745/oj
https://eur-lex.europa.eu/eli/reg/2017/745/oj
https://github.com/deepmind/surface-distance
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testing on the successive patients, the performances
slightly improved. For example, it can be observed
that, on average, the performance of DSC, HD95 and
MSD after retraining the network on a more exten-
sive set was ameliorated by 0.01-0.03, 1.2-1.4 mm and
0.1-0.4 mm, respectively. Delineations obtained with
DeepMedic for a patient in the test set are presented in
Fig. 5.
Also, the SDSCwas calculated for several threshold, τ =

0.5, 1, 1.5, 2 and 3 mm as reported in Fig. 6. The mean
(±σ ) DSCS was 0.98±0.03, 0.92±0.05, 0.989±0.008 and
0.997±0.003 for τ = 2 mm for bladder, rectum, left and
right femur, respectively.

Discussion
The use of MRI for prostate radiotherapy delineation
is becoming increasingly common among radiotherapy

Fig. 6 Boxplots for each structure of surface Dice similarity coefficient
(SDSC) as a function of threshold (τ ) for the 53 patients after clinial
implementation. The data is plotted for the range of τ from sub-pixel
(0.5 mm) to above the voxel size (3 mm). Box plots are shown with an
inter-quartile range from 25 to 75% with the horizontal line
representing mean value. Upper and lower whisker represent the 2.5
and 97.5 percentiles

departments [50]. MRI are used to plan radiotherapy
[32, 51]. Besides, use of MRI is also accelerated by the
adoption of new advancements in linear accelerator tech-
nology, whereby daily MR imaging in treatment position
is possible [9–11].
In this study, we demonstrated that deep learning-

based approaches can utilise MRI to automatically seg-
ment OARs achieving high conformality. Also, a con-
volutional network has been implemented for clinical
use, demonstrating the capability to maintain the perfor-
mances obtained in a preliminary study.
Table 3 compiles previous work based on the use of

convolutional networks and a selection of conventional
approaches [16, 17, 52] for OARs delineation in the pelvic
area. One can notice that CT-based segmentation [53–55]
achieved mean DSC in the range 0.88-0.95 for prostate,
rectum and bladder. Also, MRI-based segmentation [27,
49, 56] achieved mean DSC in the range 0.82-0.95. This
study seems to outperform previous studies in almost
all the metrics (in bold in the Table) except for the rec-
tum, as obtained by Kazemifar et al. [54] and the HD95
and MSD as obtained by Kazemifar et al. and Dong et
al. [56]. Comparing the results of automated contour-
ing methods should be done with caution. For exam-
ple, the guidelines used for clinical delineation may be
different, and the impact of inter-observer variability on
deep learning-based methods is not generally investigated
[57]. In this sense, our study is novel given that a com-
parison of approaches based on CNNs to an atlas-based
method is presented.
In this study, a qualitative assessment by a manual

observer has been presented. Unfortunately, it has not
been recorded whether the overall time for the delin-
eation has been reduced. Previous studies investigated
this aspect [58] when introducing deep learning-based
techniques in their clinic. Also, it is unclear whether the
performance of the network may further improve when a
dataset larger than 97 patients is used for training. This
may be an object of future research.
The time necessary for automatic delineation on full

FOV is within a minute. Such time-scale can be of inter-
est for conventional radiotherapy and for MR-guided
treatments. On the one hand, for conventional radiother-
apy, fast automatic OAR segmentation may facilitate the
reducing delays in the start of the treatments that may lead
to hampered clinical outcomes [59]. On the other hand,
for online adaptive MR-guided radiotherapy, fast OAR
segmentationmay relieve clinicians from dedicating effort
in OARs segmentation while facilitating the delineation of
the target [60]. Currently, it has been reported that about
5-10 min is necessary for the for delineation in an online
setting [19]. The time frame reported in our work may
facilitate online adaptive radiotherapy, especially with an
integrated automatic workflow.
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Table 3 Overview of the performance of automatic OARs delineations based on MRI and CT subdivided in convolutional
network-based and conventional approaches. The number of patients included in the study (Pts), the imaging modality, a brief
description of the method and metrics as dice similarity coefficient (DSC), 95% boundary Hausdorff distance (HD95) and mean surface
distance (MSD) were reported for each study. HD95 and MSD are expressed in mm

Study Pts Modality Method(s)

Bladder Rectum FemurL FemurR

DSC DSC DSC DSC

HD95 HD95 HD95 HD95

MSD MSD MSD MSD

Convolutional network-based

Men2017 [53]

218/60∗ CT

2D 0.92 0.93 0.92

dilated

VGG-16

Feng2018 [27]

30/10∗ MRI

Multi-task 0.952±0.007 0.88±0.03

residual

2D FCN

Kazemifar2018 [54]

51/9/20∗ CT

2D 0.95±0.04 0.92 ± 0.06

U-net 0.4 ± 0.6 0.2 ± 0.3

1.1±0.8a 0.8 ± 0.6a

Balagopal2018 [55] 108/28

CT

2D U-net 0.95±0.02 0.84±0.04 0.96±0.03 0.95±0.01

mean + 3D U-net 17.0±14.6 4.9±3.9

4 models (ResNeXT) 0.5±0.7 0.8±0.7

Dong2019 [56]

140x5+ MRI

3D Cycle-GAN 0.95±0.03 0.89±0.04

+ deep attention 6.81±9.25 10.84±15.59

U-net 0.52 ± 0.22 0.92±1.03

Elguindi2019 [49] 40/10/50 MRI 0.93±0.04 0.82±0.05

DeepLabV3+

0.92±0.1b 0.87±0.07b

This study

97/53∗

MRI 3D 0.96 ± 0.02 0.88±0.05 0.97 ± 0.01 0.97 ± 0.01

multi-scale 2.5±1.1 7.4±4.4 1.6 ± 0.5 1.5 ± 0.5

DeepMedic 0.6 ± 0.3 1.7±0.8 0.5 ± 0.1 0.5 ± 0.1

0.98±0.03c 0.92±0.05c 0.989 ± 0.008c 0.997 ± 0.003c

Conventional

LaMacchia2012 [16] 5 CT ABAS 2.0 0.93±0.03 0.77±0.07 0.94±0.04 0.94±0.04

VelocityAI 2.6.2 0.72±0.15 0.75±0.04 0.92±0.02 0.92±0.03

MIM 5.1.1 0.93±0.02 0.87±0.05 0.94±0.02 0.94±0.01

Dowling2015 [17] 39 MRI multi-atlas 0.86±0.12 0.84±0.06 0.91±0.03

voting

diffeomorphic reg 5.1±4.6 2.4±1.0 1.5±0.5

Delpon2016 [52] 10/10∗ CT Mirada 0.76±0.12 0.73±0.07 0.89±0.05 0.91±0.03

15±9 10±3 0.2±6.4 8.1±5.6

MIM 0.80±0.14 0.75±0.07 0.89±0.08 0.92±0.02

14.0±6.3 9.9±3.4 9.9±7.9 8.2±5.3

ABAS
0.81±0.13 0.75±0.09 0.91±0.04 0.92±0.02

13.6±7.9 9.9±4.4 8.6±6.9 8.5±6.1

SPICE
0.76±0.26 0.68±0.12 0.70±0.05 0.72±0.03

9.2±11.7 13±5 29.7±9.0 30±6.5

Raystation
0.59±0.15 0.49±0.12 0.91±0.03 0.92±0.02

28.5±13.1 16.5±3.7 8.8±7.2 6.4±5.0
∗ training/(validation)/test; + indicating x... cross-fold validation; a mean surface Hausdorff distance; b,c surface dice similarity coefficient as in [48] with τ =3 or 2 mm,
respectively
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Conclusion
High conformality for OARs delineation was achieved
with two in-house trained networks, obtaining a sig-
nificant speed-up of the delineation procedure. One of
the networks, DeepMedic, was successfully adopted in
the clinical workflow maintaining in the clinical setting
the accuracy obtained in the feasibility study conducted
before clinical implementation.
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