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A B S T R A C T

Infectious disease agents can influence each other’s dynamics in shared host populations. We consider such
influence for two mosquito-borne infections where one pathogen is endemic at the time that a second pathogen
invades. We regard a setting where the vector has a bias towards biting host individuals infected with the
endemic pathogen and where there is a cost to co-infected hosts. As a motivating case study, we regard
Plasmodium spp., that cause avian malaria, as the endemic pathogen, and Usutu virus (USUV) as the invading
pathogen. Hosts with malaria attract more mosquitoes compared to susceptible hosts, a phenomenon named
vector bias. The possible trade-off between the vector-bias effect and the co-infection mortality is studied
using a compartmental epidemic model. We focus first on the basic reproduction number 𝑅0 for Usutu virus
invading into a malaria-endemic population, and then explore the long-term dynamics of both pathogens once
Usutu virus has become established. We find that the vector bias facilitates the introduction of malaria into
a susceptible population, as well as the introduction of Usutu in a malaria-endemic population. In the long
term, however, both a vector bias and co-infection mortality lead to a decrease in the number of individuals
infected with either pathogen, suggesting that avian malaria is unlikely to be a promoter of Usutu invasion. This
proposed approach is general and allows for new insights into other negative associations between endemic
and invading vector-borne pathogens.
1. Introduction

When a pathogen invades a community of its host species, other
pathogens may already be in circulation. The interaction between
resident and invading pathogens could influence invasion success of
the emerging pathogen and the subsequent combined dynamics. For
vector-borne pathogens, there is evidence that previous infections of
Zika or Dengue viruses can facilitate further infections of both diseases
due to 𝑇 cell cross-reactivity (Rothan et al., 2018). In tick-borne dis-
eases, it was observed that co-infections of up to six strains of Borrelia
afzelii may more easily evade the host immune response than a single
infection (Cutler et al., 2021).

Co-infections are possible when different infections in an ecological
community share the same reservoir host species. In the context of
vector-borne diseases, the vectors also play a role in establishing multi-
ple infections in the hosts they feed on. The co-circulation of pathogens
between vectors and hosts in an ecosystem can make prediction and
control more difficult (Vogels et al., 2019). This is further complicated
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when such pathogens interact in a synergistic way, leading to facili-
tation, or in a competitive way, leading to attenuation. An example
of facilitation is the case of the tick-borne pathogen responsible for
babesiosis promoting further infections with the pathogen that causes
Lyme disease (Dunn et al., 2014). An example of attenuation occurs
for different malaria strains participating in direct or immune-mediated
competition with one another (de Roode et al., 2005). In some cases,
relationships between pathogens can be observed without the exact
mechanisms behind them being clear, such as the observation of a
negative association between hosts infected with malaria parasites and
with West Nile virus (Medeiros et al., 2014).

Some relationships between pathogens can manifest themselves in
indirect ways, such as when one of the infections influences host choice
by the vectors (Gandon, 2018). For instance, birds infected with the
malaria parasite were shown to be more attractive to mosquitoes (Cor-
net et al., 2013a) - an effect called vector bias. This bias is independent
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Fig. 1. Hypothesized additional route for USUV transmission in a population
where Plasmodium is endemic. Vectors may become infected with USUV if the vector
bias caused by Plasmodium shifts bites from naive hosts to co-infected hosts. Red arrows
indicate increased attraction and the dashed arrow indicates a gained transmission
opportunity.

of the infection state of the mosquitoes, that is, Plasmodium-infected
hosts equally attract uninfected and Plasmodium-infected vectors (Cor-
net et al., 2013a). By altering the host’s body odours, the parasite
ensures its further transmission to other hosts (Puente et al., 2020).
From an evolutionary standpoint this could make sense: a feeding pref-
erence towards infected hosts increases the chances that the pathogen
keeps getting transmitted in a given population. If this vector-bias effect
is significant towards any host that carries malaria, we hypothesized
that any other pathogens co-infecting hosts and utilizing the same
vector species might also benefit. It is relevant, then, to further investi-
gate if the malaria-induced mosquito attractiveness could facilitate the
invasion of other diseases in a population.

In 2021, co-infections of Plasmodium spp. and Usutu virus (USUV)
were detected in many (𝑛 = 67∕119) dead Eurasian blackbirds (Turdus
merula) in the Netherlands (Giglia et al., 2021). Similar observations
were recorded earlier in Belgium (Rouffaer et al., 2018). Both Plas-
modium and USUV have vector and host species in common, making
co-infections more likely. Plasmodium, the genus of parasite species
responsible for avian malaria, is endemic in Europe (Bentz et al., 2006),
while USUV is expanding its range, invading into new areas (Ashraf
et al., 2015). Often, a host infected with two pathogens displays ad-
ditional symptoms or faster mortality rates than single-infected hosts.
The effect where the death rate caused by multiple infections is worse
than the sum of its parts is also known as synergistic mortality (Seabloom
et al., 2015). There is evidence that hosts co-infected with Plasmodium
and USUV suffer from more severe lesions (Giglia et al., 2021), and this
co-infection has been suggested to increase the likeliness of mortality
in infected blackbirds (Rijks et al., 2016), however the exact scale of
this effect remains unknown (Giglia et al., 2021). Perhaps due to this
synergistic mortality, in Giglia et al. (2021) more than half of the dead
Eurasian blackbirds were co-infected. It is still unclear, however, if this
is a result of a high co-infection prevalence in live birds, or due to the
co-infected birds being more likely to die.

We are interested in understanding how the vector bias and the
consequences of co-infection affect the transmission of co-circulating
pathogens such as USUV. The increased attraction caused by the vector
bias may influence how new viruses emerge and spread in populations
where Plasmodium is endemic (Fig. 1), hence Plasmodium could indi-
rectly act as a ‘wingman pathogen’ of USUV (Young and Fefferman,
2022). This potential interaction was also hinted at in Höfle et al.
(2022), where the bias towards Plasmodium infected red-legged par-
tridges (Alectoris rufa) could influence the transmission of Bagaza virus,
also from the Flavivirus genus like West Nile virus and USUV.

Interaction effects increase the difficulty of outbreak prediction
for both malaria and USUV. It is then of interest to explore them
in a modelling context to understand how relevant they are for the
119
dynamics of both diseases. We look at the initial risk of an outbreak by
studying the dependence of 𝑅0 on key parameters and at the long-term
population level consequences of the co-circulation and interaction.

There are several models in the literature focused on vector-borne
disease co-infections (Barley et al., 2007; Lawi et al., 2011), and others
that look into the effects of feeding preferences or vector bias (Cham-
chod and Britton, 2010; Kim et al., 2017). These have contributed to
our understanding of dynamics between different infections, such as
how a HIV-related susceptibility to malaria does not increase single
infections of either pathogen (Barley et al., 2007), or how a vector
bias affects the endemicity, and hence the control, of malaria (Kim
et al., 2017). But to the best of our knowledge, no study has looked
at both factors simultaneously. To investigate the interplay of these
two factors, we propose a general model that allows the study of the
trade-off between co-infections and the vector-bias effect.

In our study, we assume that one pathogen, in our case Plasmodium
spp. infecting birds, has invaded at some time in the past and has
become established in an endemic steady state of the (bird) host and
(mosquito) vector populations. The endemic prevalence is determined
by the specifics of the Plasmodium-only system, including a vector
bias for biting Plasmodium-infected host individuals. We introduce a
second pathogen (USUV) into that endemic steady state, transmitted
in the same host population by the same vector species. We first study,
in Section 2, the Plasmodium-only system, to determine the endemic
prevalence in terms of the model ingredients. This then sets the stage
for invasion of USUV. In Section 3, we study the invasion success of
USUV by characterizing the basic reproduction number 𝑅0 for USUV in
a Plasmodium-endemic state and we numerically explore the long-term
population dynamics of both pathogens.

2. Methods

To set the scene for our analysis, we first specify the dynamics of
Plasmodium in the host/vector populations, including a bias of vectors
for malaria-infected hosts. We establish the endemic state for Plas-
modium in our model and explore how this state depends on selected
ingredients, especially the strength of the vector bias. After that, we
specify the next-generation matrix (Diekmann et al., 2010) for USUV
governing the introduction of USUV into a USUV-naive, Plasmodium-
endemic, steady state. We explore how 𝑅0 for USUV depends on the
strength of the vector bias and the additional death rate for co-infected
hosts.

2.1. Model for Plasmodium with vector bias

We describe the Plasmodium-only system by an Susceptible-Infected-
type model given by the following set of ordinary differential equa-
tions:

𝑆′
𝑣 = 𝛥𝑣 −

𝑘𝐼ℎ𝑝
𝑘𝐼ℎ𝑝 + 𝑆ℎ

𝑆𝑣𝛼𝑝 − 𝜇𝑣𝑆𝑣 (1)

𝑆′
ℎ = 𝛥ℎ −

𝑆ℎ
𝑘𝐼ℎ𝑝 + 𝑆ℎ

𝐼𝑣𝑝𝛽𝑝 − 𝜇ℎ𝑆ℎ

𝐼 ′𝑣𝑝 =
𝑘𝐼ℎ𝑝

𝑘𝐼ℎ𝑝 + 𝑆ℎ
𝑆𝑣𝛼𝑝 − 𝜇𝑣𝐼𝑣𝑝

𝐼 ′ℎ𝑝 =
𝑆ℎ

𝑘𝐼ℎ𝑝 + 𝑆ℎ
𝐼𝑣𝑝𝛽𝑝 − (𝜇ℎ + 𝛿𝑝)𝐼ℎ𝑝

where 𝑆𝑖 and 𝐼𝑖 are the susceptible and the infectious individuals. The
subscript 𝑝 refers to infection with Plasmodium, and the subscripts 𝑣
refer to the vector and ℎ refer to the host. See Table 1 for all parameters
and their default values. We make the following assumptions:

• Constant recruitment and death rates, given by 𝛥𝑣, 𝛥ℎ and 𝜇𝑣, 𝜇ℎ,
respectively.
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Table 1
Default parameter values for the Plasmodium and co-infection models. All rates are given per day.

Parameter Value Source

𝛥𝑣 Vector recruitment rate 500 Villela et al. (2017)
𝜇𝑣 Vector death rate 0.067 Hartemink et al. (2007)
𝛥ℎ Host recruitment rate 10 Blayneh et al. (2009)
𝜇ℎ Host mortality rate 0.0012 Rubel et al. (2008)
𝑏 Biting rate 0.2 Cruz-Pacheco et al. (2005)
𝑟𝑝 Transmission probability of Plasmodium (host to vector) 0.95 Woodworth et al. (2005)a

𝑞𝑝 Transmission probability of Plasmodium (vector to host) 0.98 Samuel et al. (2011)a

𝛼𝑝 Transmission rate of Plasmodium (host to vector) 0.19 –
𝛽𝑝 Transmission rate of Plasmodium (vector to host) 0.196 –
𝛿𝑝 Additional death rate caused by Plasmodium 0.07 Atkinson et al. (1995)a

𝑟𝑢 Transmission probability of USUV (host to vector) 0.125 Rubel et al. (2008)
𝑞𝑢 Transmission probability of USUV (vector to host) 1 Rubel et al. (2008)
𝛼𝑢 Transmission rate of USUV (host to vector) 0.025 –
𝛽𝑢 Transmission rate of USUV (vector to host) 0.2 –
𝑟𝑐 Co-transmission probability (host to vector) 0.0396 b

𝑞𝑐 Co-transmission probability (vector to host) 0.3267 b

𝛼𝑐 Co-transmission rate (host to vector) 0.0015 –
𝛽𝑐 Co-transmission rate (vector to host) 0.013 –
𝛿𝑢 Additional death rate caused by USUV 0.06 Rubel et al. (2008)

a Estimate from Hawaiian bird species — values could differ for blackbirds.
b Assumption.
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• Individuals follow Susceptible-Infectious dynamics, i.e., we ignore
the latency period and recovery from infection. We partially
explored, in Section S4 of the Supporting Information, the effect
of introducing a latency period in the vector and the effect of
introducing recovery in the host. Since these mechanisms did
not impact the effect of vector bias or disease mortalities on
transmission we decided it was a fair assumption to keep them
out of the model.

• Transmission of the pathogen is host-frequency dependent (Won-
ham et al., 2006), which we consider a fair assumption when the
hosts are present at such numbers that their abundances are not
limiting to the vectors.

• The transmission rate from host to vector is given by 𝛼𝑝 = 𝑏𝑟𝑝 and
the transmission rate from vector to host is given by 𝛽𝑝 = 𝑏𝑞𝑝. Both
are characterized by fixed biting rates and fixed probabilities per
bite that the pathogen is successfully transmitted.

• The biting behaviour is made heterogeneous through the coeffi-
cient 𝑘 as in Chamchod and Britton (2010), representing a vector
bias.

The vector bias gives the feeding preference of a vector towards
lasmodium-infected host individuals. It acts as a weight in the expres-
ions for the force of infection, increasing the biting to some hosts.
e assume that mosquitoes arrive randomly at each host and then

he biting rate is influenced by the infection status of the host, as
n Chamchod and Britton (2010), Mojeeb and Li (2019). In this case, the
ector bias 𝑘 can be defined as the ratio of the probability that a vector
ites a Plasmodium-infected host, 𝑤, and the complementary probability
hat a vector bites a susceptible host, 1−𝑤. If 𝑤 > 1−𝑤 ⇔ 𝑘 > 1 then the
ector preferentially bites infected hosts, while if 𝑤 < 1−𝑤 ⇔ 𝑘 < 1 the
ector prefers to bite susceptible hosts. Unlike the probabilities 𝑤 and
−𝑤, 𝑘 can theoretically take any value between (0,∞), but we restrict
ur analysis to the range [1, 10]. This parameter has a straightforward
nterpretation: for example, if 𝑘 = 2 then the probability of a mosquito
hoosing to bite an infected host is twice that of choosing a susceptible
ost. The probabilities 𝑤, and consequently 1 − 𝑤 and the ratio 𝑘,
re derived in the following way. Assume that 𝐴 is the event that a
ector bites the host, and that 𝐵 is the event that a vector arrives at a
lasmodium-infected host. Then 𝑃 (𝐵) = 𝐼ℎ𝑝

𝑁ℎ
, and 𝑃 (𝐵) = 𝑆ℎ

𝑁ℎ
= 1 − 𝐼ℎ𝑝

𝑁ℎ
.

So, 𝑤 = 𝑃 (𝐴|𝐵) and hence 1 − 𝑤 = 𝑃 (𝐴|𝐵). We are interested in the
probability that a host is infected with Plasmodium knowing that it was
bitten by a vector. That is given, according to Bayes’ theorem, by

𝑃 (𝐵|𝐴) =
𝑃 (𝐴|𝐵)𝑃 (𝐵)
120

𝑃 (𝐴|𝐵)𝑃 (𝐵) + 𝑃 (𝐴|𝐵)𝑃 (𝐵)
=
𝑤𝐼ℎ𝑝∕𝑁ℎ

𝑤𝐼ℎ𝑝∕𝑁ℎ + (1 −𝑤)(1 − 𝐼ℎ𝑝∕𝑁ℎ)
=

𝑘𝐼ℎ𝑝
𝑘𝐼ℎ𝑝 + 𝑆ℎ

and, likewise, the probability of a susceptible host being bitten by a
vector is given by

𝑃 (𝐵|𝐴) =
𝑃 (𝐴|𝐵)𝑃 (𝐵)

𝑃 (𝐴|𝐵)𝑃 (𝐵) + 𝑃 (𝐴|𝐵)𝑃 (𝐵)
=

𝑆ℎ
𝑘𝐼ℎ𝑝 + 𝑆ℎ

ater in Section 2.2 this will be extended to include the feeding pref-
rences in the presence of multiple host classes, where besides the
ompletely susceptible hosts and Plasmodium-carrying hosts, there are
lso hosts infected with USUV, and co-infected hosts.

The Plasmodium-free steady state with both vector and host present
s given by 𝑆∗

𝑣 = 𝐾𝑣 = 𝛥𝑣∕𝜇𝑣 and 𝑆∗
ℎ = 𝐾ℎ = 𝛥ℎ∕𝜇ℎ, where 𝐾𝑣 and 𝐾ℎ

re the carrying capacities for vectors and hosts.
The next-generation matrix 𝑲𝒑 (Diekmann et al., 2010) for this

ystem is given by

𝒑 =
⎛

⎜

⎜

⎝

0 𝛼𝑝𝑘𝐾𝑣
(𝜇ℎ+𝛿𝑝)𝐾ℎ

𝛽𝑝
𝜇𝑣

0

⎞

⎟

⎟

⎠

The spectral radius of 𝑲𝒑 evaluated at the Plasmodium-free steady state
corresponds to the basic reproduction number 𝑅0(P) and is given by

𝑅0(P) =

√

𝛼𝑝𝛽𝑝𝑘𝐾𝑣

(𝜇ℎ + 𝛿𝑝)𝜇𝑣𝐾ℎ
(2)

In the Supporting Information we show that the Plasmodium-only
ystem reaches a unique endemic steady state with susceptible and
nfectious sub-populations of both vector and host positive.

.2. Model for USUV in a Plasmodium endemic state

We now regard a system consisting of a vector species, a host
pecies, and two pathogens: Plasmodium and USUV. For this, we model
he dynamics and interactions with the following ODE-system

𝑁 ′
𝑣 = 𝛥𝑣 − 𝜇𝑣𝑁𝑣 (3)
′
ℎ = 𝛥ℎ − 𝜇ℎ𝑁ℎ − 𝛿𝑝𝐼ℎ𝑝 − 𝛿𝑢𝐼ℎ𝑢 − 𝛿𝑐𝐼ℎ𝑐

𝐼 ′𝑣𝑝 = 𝛼𝑝
𝑘𝐼ℎ𝑝 + 𝑘𝐼ℎ𝑐

𝑁𝑘
𝑆𝑣 − 𝛼𝑢

𝐼ℎ𝑢 + 𝑘𝐼ℎ𝑐
𝑁𝑘

𝐼𝑣𝑝 − 𝜇𝑣𝐼𝑣𝑝

𝐼 ′𝑣𝑢 = 𝛼𝑢
𝐼ℎ𝑢 + 𝑘𝐼ℎ𝑐

𝑁𝑘
𝑆𝑣 − 𝛼𝑝

𝑘𝐼ℎ𝑝 + 𝑘𝐼ℎ𝑐
𝑁𝑘

𝐼𝑣𝑢 − 𝜇𝑣𝐼𝑣𝑢

𝐼 ′ = 𝛼𝑐
𝑘𝐼ℎ𝑐 𝑆𝑣 + 𝛼𝑝

𝑘𝐼ℎ𝑝 + 𝑘𝐼ℎ𝑐 𝐼𝑣𝑢 + 𝛼𝑢
𝐼ℎ𝑢 + 𝑘𝐼ℎ𝑐 𝐼𝑣𝑝 − 𝜇𝑣𝐼𝑣𝑐
𝑣𝑐 𝑁𝑘 𝑁𝑘 𝑁𝑘
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𝐼 ′ℎ𝑝 = 𝛽𝑝
𝑆ℎ
𝑁𝑘

(𝐼𝑣𝑝 + 𝐼𝑣𝑐 ) − 𝛽𝑢
𝑘𝐼ℎ𝑝
𝑁𝑘

(𝐼𝑣𝑢 + 𝐼𝑣𝑐 ) − (𝜇ℎ + 𝛿𝑝)𝐼ℎ𝑝

𝐼 ′ℎ𝑢 = 𝛽𝑢
𝑆ℎ
𝑁𝑘

(𝐼𝑣𝑢 + 𝐼𝑣𝑐 ) − 𝛽𝑝
𝐼ℎ𝑢
𝑁𝑘

(𝐼𝑣𝑝 + 𝐼𝑣𝑐 ) − (𝜇ℎ + 𝛿𝑢)𝐼ℎ𝑢

𝐼 ′ℎ𝑐 = 𝛽𝑐
𝑆ℎ
𝑁𝑘

𝐼𝑣𝑐 + 𝛽𝑢
𝑘𝐼ℎ𝑝
𝑁𝑘

(𝐼𝑣𝑢 + 𝐼𝑣𝑐 ) + 𝛽𝑝
𝐼ℎ𝑢
𝑁𝑘

(𝐼𝑣𝑝 + 𝐼𝑣𝑐 ) − (𝜇ℎ + 𝛿𝑐 )𝐼ℎ𝑐

where the indexes 𝑝, 𝑢, and 𝑐 stand for infection of Plasmodium, USUV,
and co-infection by both, respectively. 𝑁𝑣 = 𝑆𝑣+𝐼𝑣𝑝+𝐼𝑣𝑢+𝐼𝑣𝑐 and 𝑁ℎ =
ℎ+𝐼ℎ𝑝+𝐼ℎ𝑢+𝐼ℎ𝑐 are the total vector and host abundances, respectively,
nd 𝑁𝑘 is the total host abundance weighted by 𝑘, i.e., 𝑁𝑘 = 𝑁ℎ +

(𝑘 − 1)(𝐼ℎ𝑝 + 𝐼ℎ𝑐 ). This term expresses the frequency dependence in the
resence of vector bias towards Plasmodium-infected hosts. This virtual

number of hosts as experienced by the vector, with vector bias 𝑘, is
𝑆ℎ + 𝑘𝐼ℎ𝑝 + 𝐼ℎ𝑢 + 𝑘𝐼ℎ𝑐 . If we then substitute the actual number of naive
hosts 𝑆ℎ = 𝑁ℎ − 𝐼ℎ𝑝 − 𝐼ℎ𝑢 − 𝐼ℎ𝑐 , we obtain 𝑁𝑘 as above. Similar to
ection 2.1, the transmission rates of USUV from host to vector are
iven by 𝛼𝑢 = 𝑏𝑟𝑢, and from vector to host by 𝛽𝑢 = 𝑏𝑞𝑢. On top of the

assumptions made for system 2.1 we also assume that:

• The two pathogens do not directly interact with each other within
host (for example, there is no competition, nor an influence on
transmission success per bite) except for the additional death rate
in co-infected hosts.

• Plasmodium and USUV are transmitted independently from and
to co-infected individuals during feeding. From the literature
data we found, the transmission probabilities for Plasmodium
and USUV are high (i.e., near 1, see Table 1). If we simply
assume that the two diseases are independently transmitted from
co-infected individuals, that means that the introduction of a co-
infected individual, however rare, into a completely susceptible
population will lead to a decrease in the susceptibles that is three
times larger than the biting rate. So, to avoid this, we adjust
the co-transmission probabilities to be three times lower, that is
𝑟𝑐 = 𝑟𝑝𝑟𝑢∕3 and 𝑞𝑐 = 𝑞𝑝𝑞𝑢∕3, for host to vector and vector to host
transmission respectively.

• Neither vectors nor hosts acquire immunity, and the vectors do
not die from either infection. The death rates of the hosts are in-
creased by an additional quantity 𝛿𝑝 if infected with Plasmodium;
𝛿𝑢 if infected with USUV; or 𝛿𝑐 if they are co-infected. The death
rate of co-infection is assumed to be at least as severe as the sum
of both individual disease death rates, 𝛿𝑐 ≥ 𝛿𝑝 + 𝛿𝑢. That is, we
will explore a range of values for 𝛿𝑐 ≥ 0.13.

• Co-infected hosts attract vectors in the same way as hosts infected
only with Plasmodium.

The force of infection from a vector infected only with Plasmodium
to a susceptible host is equal to 𝛽𝑝𝐼𝑣𝑝∕𝑁𝑘. This represents the proba-
bility per unit of time that an infected vector with Plasmodium infects

susceptible host if there is a preference towards biting hosts that are
lready infected with Plasmodium. Like in system (1), the transmission
ates from host to vector 𝛼𝑖 and from vector to host 𝛽𝑖 are given
y the product of the biting rate 𝑏 with the probability of successful
ransmission from host to vector 𝑟𝑖 or from vector to host 𝑞𝑖. The default
alues of additional parameters can be found in Table 1; Fig. 2 describes
he model schematically.

For consistency, we check that the interpretation of the vector bias
arameter 𝑘 still holds in the presence of more host classes, namely
hose infected with USUV only, 𝐼ℎ𝑢, and those co-infected, 𝐼ℎ𝑐 . The
uxiliary parameter 𝑤, and hence 1−𝑤, have the same interpretation as
efore since we assume that USUV has no influence on the vector bias.
ere 𝑤 gives the probability that a vector bites a Plasmodium-infected
ost (either single or co-infected), and 1 −𝑤 gives the probability that
vector bites a host susceptible for Plasmodium (either in a completely
aive state or infected with USUV only). Again 𝑤 = 𝑃 (𝐴|𝐵) and 1−𝑤 =
(𝐴|𝐵). Assume that 𝐴 is the event that a vector bites the host, and

hat 𝐵 is the event that a vector arrives at a host already infected with
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Plasmodium, regardless of whether it is single or co-infected. We have
𝑃 (𝐵) = 𝐼ℎ𝑝+𝐼ℎ𝑐

𝑁ℎ
, and 𝑃 (𝐵) = 𝑆ℎ+𝐼ℎ𝑢

𝑁ℎ
= 1 − 𝐼ℎ𝑝+𝐼ℎ𝑐

𝑁ℎ
. The probability of a

host being infected with Plasmodium knowing that it was bitten by a
vector is now given by

𝑃 (𝐵|𝐴) =
𝑤(𝐼ℎ𝑝 + 𝐼ℎ𝑐 )

𝑤(𝐼ℎ𝑝 + 𝐼ℎ𝑐 ) + (1 −𝑤)(𝑆ℎ + 𝐼ℎ𝑢)
=

𝑘(𝐼ℎ𝑝 + 𝐼ℎ𝑐)
𝑘(𝐼ℎ𝑝 + 𝐼ℎ𝑐 ) + 𝑆ℎ + 𝐼ℎ𝑢

=
𝑘(𝐼ℎ𝑝 + 𝐼ℎ𝑐 )

𝑁𝑘

Later we will explore the long-term dynamics of the system (3), for
the case that USUV successfully invaded into a Plasmodium-endemic
steady state. First, we need to establish the conditions under which
such USUV invasion is successful, i.e., we need to characterize 𝑅0
for invasion of USUV into a vector-host population where Plasmodium
is in an endemic steady state. We consider the situation where all
abundances are positive. For the characterization of 𝑅0 for USUV in that
context, we consider the ODE-system, linearized around the {USUV-
free, Plasmodium-endemic}-steady state where the values of the steady
state abundances for the total number of vectors and hosts and for the
Plasmodium-infected vectors and host, (𝑁∗

𝑣 , 𝑁
∗
ℎ , 𝐼

∗
𝑣𝑝, 𝐼

∗
ℎ𝑝), are given in

Section 2.1, for the case with vector bias. All other states involve USUV-
infected individuals and these are therefore zero in the USUV-free
steady state, 𝐼𝑣𝑢 = 𝐼𝑣𝑐 = 𝐼ℎ𝑢 = 𝐼ℎ𝑐 = 0.

Starting from system (3), the standard approach to characterize 𝑅0
distinguishes four states-at-infection (Diekmann et al., 2010) from the
USUV point of view. An individual vector can start ‘USUV-infected
life’ in one of two ways: a naive vector individual acquires USUV (‘U-
vector’, state-at-infection 1) or a vector that is already infected by
Plasmodium acquires USUV (‘PU-vector’, 2). Similarly, for host individ-
uals we distinguish naive hosts acquiring USUV (‘U-host’, 3) or a host
already infected with Plasmodium acquires USUV (‘PU-host’, 4). Hence,
the next-generation matrix is four-dimensional.

From system (3), with Plasmodium in its pre-USUV steady state, we
can write the partial Jacobian matrix for the four states-at-infection as

𝑱 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇𝑣 −
𝛼𝑝𝑘𝐼∗ℎ𝑝
𝑁∗

𝑘
0

𝛼𝑢(𝑁∗
𝑣−𝐼

∗
𝑣𝑝)

𝑁∗
𝑘

𝛼𝑢𝑘(𝑁∗
𝑣−𝐼

∗
𝑣𝑝)

𝑁∗
𝑘

𝛼𝑝𝑘𝐼∗ℎ𝑝
𝑁∗

𝑘
−𝜇𝑣

𝛼𝑢𝐼∗𝑣𝑝
𝑁∗

𝑘

𝛼𝑢𝑘𝐼∗𝑣𝑝+𝛼𝑐𝑘(𝑁
∗
𝑣−𝐼

∗
𝑣𝑝)

𝑁∗
𝑘

𝛽𝑢(𝑁∗
ℎ−𝐼

∗
ℎ𝑝)

𝑁∗
𝑘

𝛽𝑢(𝑁∗
ℎ−𝐼

∗
ℎ𝑝)

𝑁∗
𝑘

−𝜇ℎ − 𝛿𝑢 −
𝛽𝑝𝐼𝑣𝑝
𝑁∗

𝑘
0

𝛽𝑢𝑘𝐼∗ℎ𝑝
𝑁∗

𝑘

𝛽𝑢𝑘𝐼∗ℎ𝑝+𝛽𝑐 (𝑁
∗
ℎ−𝐼

∗
ℎ𝑝)

𝑁∗
𝑘

𝛽𝑝𝐼∗𝑣𝑝
𝑁∗

𝑘
−𝜇ℎ − 𝛿𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

from which we separate the transmission terms into a matrix 𝑻 and the
transition terms into a matrix 𝜮:

𝑻 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
𝛼𝑢(𝑁∗

𝑣−𝐼
∗
𝑣𝑝)

𝑁∗
𝑘

𝛼𝑢𝑘(𝑁∗
𝑣−𝐼

∗
𝑣𝑝)

𝑁∗
𝑘

0 0
𝛼𝑢𝐼∗𝑣𝑝
𝑁∗

𝑘

𝛼𝑢𝑘𝐼∗𝑣𝑝+𝛼𝑐𝑘(𝑁
∗
𝑣−𝐼

∗
𝑣𝑝)

𝑁∗
𝑘

𝛽𝑢(𝑁∗
ℎ−𝐼

∗
ℎ𝑝)

𝑁∗
𝑘

𝛽𝑢(𝑁∗
ℎ−𝐼

∗
ℎ𝑝)

𝑁∗
𝑘

0 0
𝛽𝑢𝑘𝐼∗ℎ𝑝
𝑁∗

𝑘

𝛽𝑢𝑘𝐼∗ℎ𝑝+𝛽𝑐 (𝑁
∗
ℎ−𝐼

∗
ℎ𝑝)

𝑁∗
𝑘

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝜮 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇𝑣 −
𝛼𝑝𝑘𝐼∗ℎ𝑝
𝑁∗

𝑘
0 0 0

𝛼𝑝𝑘𝐼∗ℎ𝑝
𝑁∗

𝑘
−𝜇𝑣 0 0

0 0 −𝜇ℎ − 𝛿𝑢 −
𝛽𝑝𝐼𝑣𝑝
𝑁∗

𝑘
0

0 0
𝛽𝑝𝐼∗𝑣𝑝
𝑁∗

𝑘
−𝜇ℎ − 𝛿𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The next-generation matrix, 𝑲 = −𝑻𝜮−1, then has the following
form (denoted with subscript ‘u’ to indicate the fact that we are
regarding USUV-invasion):

𝑲𝒖 =

⎛

⎜

⎜

⎜

⎜

0 0 𝑘13 𝑘14
0 0 𝑘23 𝑘24
𝑘31 𝑘32 0 0

⎞

⎟

⎟

⎟

⎟

(4)
⎝

𝑘41 𝑘42 0 0
⎠
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Fig. 2. Flow diagram of the population dynamics in the full model (3). Transitions between compartments are given by solid black arrows and recruitment and death related
transitions in solid grey arrows. The different types of pathogen transmissions are given by orange dashed arrows for Plasmodium transmission, blue dotted arrows for USUV
transmission, and purple dash-dotted arrows for co-transmission. 𝑆𝑣 , 𝐼𝑣𝑝 , 𝐼𝑣𝑢, and 𝐼𝑣𝑐 are vectors that are susceptible, infected with Plasmodium, infected with USUV, and co-infected,
and 𝑆𝑣 , 𝐼𝑣𝑝 , 𝐼𝑣𝑢, and 𝐼𝑣𝑐 represent the same but for the hosts. The total host population weighted by the vector bias is given by 𝑁𝑘 = 𝑆ℎ + 𝑘𝐼ℎ𝑝 + 𝐼ℎ𝑢 + 𝑘𝐼ℎ𝑐 .
The non-zero elements 𝑘𝑖𝑗 , are the expected number of new in-
fections with state-at-infection 𝑖 caused by one individual which has
just become infected as type 𝑗, during its entire infectious period.
Apart from deriving expressions for the 𝑘𝑖𝑗 from the Jacobian at the
USUV-free steady state, these can also be found by reasoning from
the epidemiological interpretation (see Diekmann et al. (2010)). This
reasoning is insightful for the interpretation of the 𝑘𝑖𝑗 terms. In the
setting of system (3), they are the product of (i) the number of contacts
per unit of time between individuals of type 𝑗 and USUV-susceptibles
that can become type 𝑖 upon infection; (ii) the probability of successful
transmission per contact; (iii) the duration of the period that an infected
individual is of type 𝑗. For example, to get state-at-infection 1, a naive
vector can either have contact with a U-host (leading to 𝑘13) or with
a ‘PU-host’ (leading to 𝑘14). The situation is more complicated for
individuals starting infected life in state-at-infection 2. Here, there
are three possibilities. A Plasmodium-infected vector can acquire USUV
from a U-host (leading to 𝑘23), or from a ‘PU-host’ when only USUV is
transmitted (contributing to 𝑘24), or a naive vector can acquire USUV
and Plasmodium from a ‘PU-host’ (also contributing to 𝑘24). Similar
reasoning applies for states-at-infection 3 and 4.

There are two subtleties to consider, related to changes in the
current state of individuals that have a state-at-infection where they
are not infected with Plasmodium. The state-at-infection is a label that
is fixed to the individual at the moment it gets infected with USUV.
In the Plasmodium transmission dynamics running in the background
in steady state, individuals with state-at-infection 1 (U-vector) and
3 (U-host) can become infected with Plasmodium during their USUV-
infectious period. The USUV-infectious period of ‘PU-vectors’ (state 2)
ends by death of the individual and the expected duration is 1∕𝜇𝑣.
The USUV-infectious period of ‘PU-hosts’ (state 4) ends by death of the
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individual and the expected duration is 1∕(𝜇ℎ + 𝛿𝑐 ). The subtlety is in
the duration of state-at-infection 1 and 3. These individuals also end
their USUV-infectious period with death, but can, in addition, leave
their state by becoming infected with Plasmodium. For a U-host, this
happens with exponential rate 𝛽𝑝𝐼∗𝑣𝑝∕𝑁

∗
𝑘 in the steady state at which

we assess USUV-invasion. The duration of the period spent in state 3
therefore is 1∕(𝜇ℎ + 𝛿𝑢 + 𝛽𝑝𝐼∗𝑣𝑝∕𝑁

∗
𝑘 ). For a U-vector, similar reasoning

leads to a duration 1∕(𝜇𝑣+𝑘𝛼𝑝𝐼∗ℎ𝑝∕𝑁
∗
𝑘 ). The second subtlety arises from

this change in current state. The individuals that change their current
state from U-vector to ‘PU-vector’ (or U-host to ‘PU-host’), instead of
dying as U-vector (or U-host), can continue to make new cases, but with
the different rates that characterize the ‘PU-state’. Therefore, additional
transmission terms arise for elements 𝑘13, 𝑘23, 𝑘31, 𝑘41. For example,

𝑘31 = 𝛽𝑢
𝑁∗

ℎ − 𝐼∗ℎ𝑝
𝜇𝑣𝑁∗

𝑘 + 𝑘𝛼𝑝𝐼∗ℎ𝑝
+ 𝛽𝑢

(𝑁∗
ℎ − 𝐼∗ℎ𝑝)𝑘𝛼𝑝𝐼

∗
ℎ𝑝

𝜇𝑣𝑁∗
𝑘 (𝜇𝑣𝑁

∗
𝑘 + 𝑘𝛼𝑝𝐼∗ℎ𝑝)

= 𝛽𝑢
𝑁∗

ℎ − 𝐼∗ℎ𝑝
𝜇𝑣𝑁∗

𝑘

The second term is the product of three factors: (i) the rate of en-
countering naive hosts and infecting them with U, 𝛽𝑢(𝑁∗

ℎ − 𝐼∗ℎ𝑝)∕𝑁
∗
𝑘 ;

(ii) the expected time this continues, 1∕𝜇𝑣; and (iii) the probability
that the vector individual we are considering from the moment it
became infected with U indeed transitions to the ‘PU-state’ before dying
of natural causes. This probability is: (rate of transition from U to
UP)/(total rate of leaving U-state):

𝑘𝛼𝑝𝐼∗ℎ𝑝
𝑁∗

𝑘

𝑘𝛼𝑝𝐼∗ℎ𝑝
𝑁∗

𝑘
+ 𝜇𝑣

=
𝑘𝛼𝑝𝐼∗ℎ𝑝

𝑘𝛼𝑝𝐼∗ℎ𝑝 + 𝜇𝑣𝑁∗
𝑘

The other three elements with such an additional transmission term can
be found by similar reasoning.
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𝑘

𝑘

w

𝐴

a
v

n
c
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The epidemiological route and the route via the linearization of
system (3), based on the matrices 𝑻 and 𝜮, lead to the following
expressions for the 𝑘𝑖𝑗 :

𝑘13 = 𝛼𝑢
𝑁∗

𝑣 − 𝐼∗𝑣𝑝
(𝜇ℎ + 𝛿𝑢)𝑁∗

𝑘 + 𝛽𝑝𝐼∗𝑣𝑝
+ 𝛼𝑢𝑘

(𝑁∗
𝑣 − 𝐼∗𝑣𝑝)𝛽𝑝𝐼

∗
𝑣𝑝

(𝜇ℎ + 𝛿𝑐 )𝑁∗
𝑘

(

(𝜇ℎ + 𝛿𝑢)𝑁∗
𝑘 + 𝛽𝑝𝐼∗𝑣𝑝

)

𝑘14 = 𝑘𝛼𝑢
𝑁∗

𝑣 − 𝐼∗𝑣𝑝
(𝜇ℎ + 𝛿𝑐 )𝑁∗

𝑘

23 = 𝛼𝑢
𝐼∗𝑣𝑝((𝜇ℎ + 𝛿𝑐 )𝑁∗

𝑘 + 𝑘𝛽𝑝𝐼∗𝑣𝑝)

(𝜇ℎ + 𝛿𝑐 )𝑁∗
𝑘 ((𝜇ℎ + 𝛿𝑢)𝑁∗

𝑘 + 𝛽𝑝𝐼∗𝑣𝑝)

+ 𝛼𝑐
𝑘𝛽𝑝𝐼∗𝑣𝑝(𝑁

∗
𝑣 − 𝐼∗𝑣𝑝)

(𝜇ℎ + 𝛿𝑐 )𝑁∗
𝑘 ((𝜇ℎ + 𝛿𝑢)𝑁∗

𝑘 + 𝛽𝑝𝐼∗𝑣𝑝)

𝑘24 = 𝑘𝛼𝑐
𝑁∗

𝑣 − 𝐼∗𝑣𝑝
(𝜇ℎ + 𝛿𝑐 )𝑁∗

𝑘
+ 𝑘𝛼𝑢

𝐼∗𝑣𝑝
(𝜇ℎ + 𝛿𝑐 )𝑁∗

𝑘

𝑘31 = 𝛽𝑢
𝑁∗

ℎ − 𝐼∗ℎ𝑝
𝜇𝑣𝑁∗

𝑘 + 𝑘𝛼𝑝𝐼∗ℎ𝑝
+ 𝛽𝑢

(𝑁∗
ℎ − 𝐼∗ℎ𝑝)𝑘𝛼𝑝𝐼

∗
ℎ𝑝

𝜇𝑣𝑁∗
𝑘 (𝜇𝑣𝑁

∗
𝑘 + 𝑘𝛼𝑝𝐼∗ℎ𝑝)

= 𝛽𝑢
𝑁∗

ℎ − 𝐼∗ℎ𝑝
𝜇𝑣𝑁∗

𝑘

32 = 𝛽𝑢
𝑁∗

ℎ − 𝐼∗ℎ𝑝
𝜇𝑣𝑁∗

𝑘

𝑘41 = 𝑘𝛽𝑢
𝐼∗ℎ𝑝

𝜇𝑣𝑁∗
𝑘 + 𝑘𝛼𝑝𝐼∗ℎ𝑝

+
(𝑘𝛽𝑢𝐼∗ℎ𝑝 + 𝛽𝑐 (𝑁∗

ℎ − 𝐼∗ℎ𝑝))𝑘𝛼𝑝𝐼
∗
ℎ𝑝

𝜇𝑣𝑁∗
𝑘 (𝜇𝑣𝑁

∗
𝑘 + 𝑘𝛼𝑝𝐼∗ℎ𝑝)

𝑘42 = 𝑘𝛽𝑢
𝐼∗ℎ𝑝

𝜇𝑣𝑁∗
𝑘
+ 𝛽𝑐

𝑁∗
ℎ − 𝐼∗ℎ𝑝
𝜇𝑣𝑁∗

𝑘

The equation for the eigenvalues of (3) is given by

𝜆4 − (𝑘13𝑘31 + 𝑘14𝑘41 + 𝑘23𝑘32 + 𝑘24𝑘42)𝜆2

+ (𝑘13𝑘24 − 𝑘14𝑘23)(𝑘31𝑘42 − 𝑘41𝑘32) = 0

Hence, the eigenvalues are given by

𝜆2 = 𝐴
2
(1 ±

√

1 − 𝐵)

ith

∶= 𝑘13𝑘31 + 𝑘14𝑘41 + 𝑘23𝑘32 + 𝑘24𝑘42 (5)

and

𝐵 ∶=
4(𝑘13𝑘24 − 𝑘14𝑘23)(𝑘31𝑘42 − 𝑘41𝑘32)

𝐴2
(6)

We see that 𝐴 > 0. Hence, if 𝐵 < 1 all four eigenvalues are real, and the
dominant eigenvalue is positive. One can see easily that indeed 𝐵 < 1
by writing

(𝑘13𝑘31 + 𝑘14𝑘41 + 𝑘23𝑘32 + 𝑘24𝑘42)2 − 4(𝑘13𝑘24 − 𝑘14𝑘23)(𝑘31𝑘42 − 𝑘41𝑘32)

= (𝑘13𝑘31 − 𝑘24𝑘42)2 + (𝑘14𝑘41 − 𝑘23𝑘32)2

+ 2(𝑘13𝑘31 + 𝑘24𝑘42)(𝑘14𝑘41 + 𝑘23𝑘32)

+ 4(𝑘14𝑘23𝑘31𝑘42 + 𝑘13𝑘24𝑘32𝑘41) > 0.

The basic reproduction number for USUV-invasion into a Plasmod-
ium-endemic and USUV-free steady state of system (3) is therefore given
by:

𝑅0(U) =
√

𝐴
2
(1 +

√

1 − 𝐵) (7)

3. Results

3.1. Impact of vector bias on Plasmodium transmission

Before exploring the effect of the vector bias and disease-related
death rates on the invasion of USUV, we first investigate these effects
on the invasion risk of Plasmodium into a naive population, expressed
by 𝑅0(P). We consider for the vector bias the range 𝑘 ≥ 1 and for the
dditional death rate caused by Plasmodium the range 𝛿𝑝 ≥ 0.035. We
ary 𝛿 since it may be different from the value in Table 1 which was
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𝑝

ot specific for blackbirds (Himmel et al., 2020). For each particular
ombination of 𝑘 and 𝛿𝑝, the endemic steady state of Plasmodium is
ecalculated if 𝑅0(P) > 1. Fig. 3a shows the impact of 𝑘 and 𝛿𝑝, with

all other parameters fixed to the values in Table 1. For any 𝛿𝑝, a vector
bias always leads to higher 𝑅0(P) values, and with higher 𝛿𝑝 leading to
lower 𝑅0(P) values.

However, in the long term, as shown in Fig. 3b, a higher vector
bias leads to a lower prevalence of Plasmodium in the hosts. A higher
𝑘 leads to a slight increase in 𝐼∗𝑣𝑝∕𝑁

∗
𝑣 (not shown) and a decrease in

𝐼∗ℎ𝑝∕𝑁
∗
ℎ . Theoretically, in the limit as 𝑘 → ∞, 𝑆∗

ℎ → 𝛥ℎ∕𝜇ℎ, that is, if
the vector bias is infinitely large, the vectors are essentially ignoring
the susceptible hosts and the infection prevalence decreases to zero. As
for 𝛿𝑝, its effect on the endemic prevalence of Plasmodium in hosts is
the following. For the parameter values in Table 1, and assuming 𝑘 = 5
to guarantee the existence of the endemic steady state, 𝑆∗

ℎ = 7 and
𝐼∗ℎ𝑝 = 140 when 𝛿𝑝 = 0.07, and 𝑆∗

ℎ = 2 and 𝐼∗ℎ𝑝 = 47 when 𝛿𝑝 = 0.21.
That is, the additional death rate caused by the disease affects not only
the endemic prevalence of the infected hosts, but also of the susceptible
ones. The higher 𝛿𝑝 is, the faster the infected hosts are being removed.
This gives a larger probability that mosquitoes bite susceptible hosts,
since the contact is given by 𝛽𝑝𝐼𝑣𝑝∕(𝑘𝐼ℎ𝑝 + 𝑆ℎ). So if the infected hosts
are removed faster, this also means a faster conversion of susceptibles
into infecteds. This leads to what we observe in Fig. 3(b), where an
increase in 𝛿𝑝 for constant 𝑘 leaves the prevalence 𝐼∗ℎ𝑝∕𝑁

∗
ℎ practically

unaffected.

3.2. Impact of vector bias on USUV transmission

We investigate the potential trade-off between the vector bias and
the additional death rate caused by the co-infection. Fig. 4a shows how
the context of a co-infection matters for the introduction of USUV in a
population where Plasmodium is already endemic.

We observe from Fig. 4a that 𝑅0(U) is hardly affected by 𝑘 for
the ranges shown, in contrast to the case of 𝑅0(P) in Fig. 3a. From
(2) one can see that 𝑅0(P) scales with

√

𝑘. In 𝑅0(U) given by (7) the
relationship with 𝑘 is not at all straightforward. Fig. 4a shows, however,
that for values of 𝑘 < 10, a vector bias hardly influences USUV invasion
potential.

In the long term, system (3) starts from the {Plasmodium-endemic,
USUV-free} steady state, with 𝑅0 for USUV larger than 1. We focus
on the prevalence of infected hosts with USUV, both in the single-
and co-infected forms, (𝐼ℎ𝑢 + 𝐼ℎ𝑐 )∕𝑁ℎ. Since we cannot derive analytic
expressions for the endemic steady state as in Section 2.1, we take
the prevalence of USUV-infected hosts after 500 days from numerical
simulations. After such point in time the prevalence stays constant,
given the parameters in Table 1 (see also Section 3 of the Supporting
Information for further numerical explorations). Fig. 4b shows this
prevalence for different values of the vector bias 𝑘 and the additional
death rate caused by the co-infection 𝛿𝑐 . The simulations start at the
Plasmodium-endemic steady state and an additional vector infected
with only USUV. That is, the starting conditions of the full model are
{𝑆𝑣, 𝑆ℎ, 𝐼𝑣𝑝, 𝐼𝑣𝑢, 𝐼𝑣𝑐 , 𝐼ℎ𝑝, 𝐼ℎ𝑢, 𝐼ℎ𝑐} = {𝑆∗

𝑣 , 𝑆
∗
ℎ , 𝐼

∗
𝑣𝑝, 1, 0, 𝐼

∗
ℎ𝑝, 0, 0}, and the re-

maining parameters are fixed at the values shown in Table 1. For these
parameter values, 𝑅0(U) > 1, so USUV is able to invade. The long-term
dynamics show that a stronger vector bias leads to a lower prevalence
of USUV (slightly more hosts with USUV-only but substantially fewer
with USUV and Plasmodium). In Fig. 4b we can see that there is no
trade-off between the vector bias and the additional death rate from
co-infection in the ranges considered here. Both parameters lead to a
decrease in USUV prevalence in the long term.

The impacts of a latency period in vectors and recovery from infec-
tion in hosts were studied in Section S4 of the Supporting Information.
They do not qualitatively affect the patterns of the vector bias and
co-infection mortality on the invasion risk of USUV, so they may be
omitted for simplicity.
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Fig. 3. The vector bias increases the invasion risk of Plasmodium, but leads to a decrease of its endemic prevalence in hosts. (a) Impact of vector bias 𝑘 and Plasmodium-
induced death rate 𝛿𝑝 on Plasmodium-invasion risk 𝑅0(P). (b) Endemic steady state prevalence of Plasmodium in hosts (see Section 1 of the Supporting Information) for values
where Plasmodium invaded the population. The ranges considered are [1, 10] for 𝑘 and [0.035, 0.35] for 𝛿𝑝.
Fig. 4. A vector bias does not facilitate the invasion of USUV into a Plasmodium endemic steady state, and leads to a decrease of its long-term prevalence in hosts.
(a) Impact of vector bias 𝑘 and the additional co-infection-induced death rate 𝛿𝑐 on USUV invasion risk 𝑅0(U). (b) Prevalence of USUV in hosts (single or co-infected) close to an
endemic steady state (𝑡 = 500 days).
4. Discussion

Pathogen transmission dynamics are influenced by many factors,
including direct or indirect interaction with other pathogens. There has
been a substantial amount of work in modelling the population dynam-
ics with co-infections. Examples of such analyses relate to interaction
between Zika-dengue (Bonyah et al., 2019), malaria-meningitis (Lawi
et al., 2011), malaria-typhoid fever (Mutua et al., 2015), malaria-
cholera (Okosun and Makinde, 2014; Egeonu et al., 2021), malaria-
lymphatic filariasis (Slater et al., 2013), malaria-Zika (Amoah-Mensah
et al., 2018), malaria-rotavirus (Omondi et al.), malaria-HIV (Bar-
ley et al., 2007; Mukandavire et al., 2009; Pinto and Rocha, 2012;
Mohammed-Awel and Numfor, 2017), HIV-tuberculosis (Naresh and
Tripathi, 2005). Most of these studies focus on the long-term dynamics
of the interaction between the two pathogens/parasites. They generally
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start by introducing both infectious agents into the population simul-
taneously and then study the situation where both invade and where,
after a while, the precise nature of the introduction no longer influences
the dynamics of the agents and their interaction. We, in contrast, were
interested in the common situation where a pathogen invades into
an area where other pathogens already established. In this study, we
considered that one pathogen has become endemic in a vector and host
community, and then another pathogen invades. Here we investigated
two indirect mechanisms of interaction in the context of vector-borne
pathogens in a joint host population. The existence of mechanisms such
as an additional death rate in co-infected hosts or vector bias induced
by one pathogen, opens up non-trivial epidemiological outcomes.

For Plasmodium and USUV, the additional death rates caused by
each infection separately and by the co-infection decrease the inva-
sion risk of both pathogens. A higher Plasmodium-related death rate
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Fig. 5. Understanding the conditions that make the vector bias act as an amplifier or as an attenuator of Plasmodium transmission. In scenarios (a) and (b) the vector ends
up biting the susceptible host, while in (c) and (d) it bites the infected host, promoted by the vector bias. At the onset of an epidemic, the majority of the hosts are susceptible, so
any bias towards the few infected hosts (c) contributes to a higher pathogen invasion risk. At the latter stages, when there is a depletion of the susceptible hosts, a bias towards
the infected hosts (d) wastes an opportunity for transmission to a naive host.
was shown to hardly affect the long-term prevalence of hosts with
malaria. In the context of multiple circulating infections, an additional
death rate of co-infected hosts leads to a decrease of co-infected hosts.
We observed that the overall USUV-prevalence in the long term de-
creases with increasing co-infection death rate, since that leads to fewer
USUV-infected hosts to contribute to its transmission.

For the Plasmodium parasite, a higher vector bias increases invasion
success, but leads to an overall lower long-term malaria prevalence
among hosts, consistent with Abboubakar et al. (2016) and Wang and
Zhao (2017). A vector bias promotes the invasion of Plasmodium into
a naive population by increasing the attractiveness of naive vectors
towards the initially scarce Plasmodium-infected hosts. This can be
visualized as a switch from scenario (a) in Fig. 5 towards scenario (c).
This early benefit is no longer observed in the long term, since there are
now wasted opportunities to transmit Plasmodium to the less preferred
susceptible hosts. The switch from scenario (b) in Fig. 5 to scenario
(d) results in a dilution effect. This split influence of the vector bias at
invasion and in the long term is analogous to the differences observed
between areas of low and high transmission in Kim et al. (2017). The
vector bias was shown to increase the endemic prevalence of infected
humans with Plasmodium in low transmission areas, but decrease it in
high transmission areas.

The relationship between pathogen co-circulation and the presence
of a strong vector-bias effect therefore presents trade-offs, with po-
tential epidemiological consequences. From the viral point-of-view, a
vector bias towards infected hosts is advantageous if there are more
susceptible than infected vectors. If, however, there is a high abundance
of infected vectors compared to susceptible ones, and this vector-bias
effect persists, then the vectors are wasting bites on already infected
hosts. The ideal scenario for the pathogen would be if susceptible
vectors were more attracted to infected hosts, and infected vectors
to susceptible hosts. This happens in some plant diseases such as the
barley yellow dwarf virus, or the potato leaf roll virus (Gandon, 2018)
but we do not know of any example in animal or human infections.
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In the case of malaria, this vector-bias effect simply makes infected
hosts more attractive to vectors, regardless if the vectors themselves
are susceptible or infected (Cornet et al., 2013a; Gandon, 2018).

The hypothesis that USUV transmission is promoted by the vector
bias due to Plasmodium in co-infected hosts is also not supported in
the long term. In fact, we observe the opposite, with a higher vector
bias leading to a lower long-term prevalence of USUV (see Fig. 4b).
One might think that this is due to the additional death rate caused by
the co-infection, but this is not the case. By setting 𝛿𝑐 = 𝛿𝑝 + 𝛿𝑢 (that
is, no additional death rate on top of the increase due to Plasmodium
and USUV infection), we still observe a decrease in long-term USUV
prevalence as vector bias increases. Our explanation for the negative
influence of a vector bias on USUV transmission is the following. For
the sake of argument, consider a starting population consisting only of
uninfected hosts and hosts with Plasmodium, and that the vector bias
𝑘 → ∞. In this extreme scenario, the vectors are exclusively biting
hosts already infected with Plasmodium. This means that the only new
Plasmodium infections are in the class of uninfected vectors becoming
infected with Plasmodium. No new infections in the hosts occur in this
case since the vectors never get a chance to bite them. With time, the
hosts in the starting population that were infected with Plasmodium
die out. Now consider the same extreme situation with USUV also
in circulation. We start with a population with a certain amount of
susceptible, Plasmodium-infected, USUV-infected, and co-infected hosts.
If 𝑘 → ∞, then vectors bite only hosts already infected with Plasmodium
or co-infected. The only way to produce new USUV infections in hosts
is in the specific case where a vector infected with USUV (either single-
or co-infected) bites a Plasmodium-infected host and these decline over
time. This is in stark contrast of a scenario where 𝑘 ≈ 1, i.e., when
there is no vector bias. In this case, there are more opportunities to
generate USUV infections in hosts: (i) that are susceptible when bitten
by an USUV-infected vector; (ii) that are Plasmodium-infected when
bitten by an USUV-infected vector. Therefore, in the long term we

expect USUV prevalence to be negatively affected by a strong vector
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Fig. 6. How the potential promotion of USUV due to the vector bias is self-negated. (a-d) For every biting possibility, an opportunity to transmit USUV happens always at
the expense of missing a different opportunity to transmit it. For example, in (a) a susceptible vector may become infected with USUV if the vector bias shifts its preference from
a susceptible host, but not if it shifts its preference from a host with USUV. At the onset of an epidemic, co-infected hosts are rare so a vector bias can produce new infections in
the case where the mosquito ‘wanted’ to choose a susceptible host rather than a host carrying USUV. However, a high vector bias also leads to a lower prevalence of Plasmodium,
making co-infections even more rare to begin with.
preference towards Plasmodium-infected hosts. Logically, this extreme
scenario is simply an argument we employ to explain the patterns in
Fig. 4. In reality, if 𝑘 → ∞, then before USUV is even introduced, the
Plasmodium prevalence would already be zero. As explained before, the
prevalence of hosts infected with Plasmodium would decrease to zero
in this scenario, and any questions related to co-infections would no
longer apply.

Contact heterogeneity plays a big role in the invasion of vector-
borne diseases (Simpson et al., 2012; Miller and Huppert, 2013; Smith
et al., 2007). It is also known that contact clustering can, under
certain conditions, promote the spread of infections and even co-
infections (Hébert-Dufresne and Althouse, 2015; Mann et al., 2021). In
the indirect interaction between Plasmodium and USUV, the contacts
between vectors and hosts are made more clustered, but only tran-
siently. That is, when the hosts become infected with Plasmodium, the
biting patterns of the vectors are affected by the vector bias and hence
the network structure is temporarily changed. Here we showed how
changes in contact structure by a vector bias promote the invasion and
spread of the pathogen responsible for such bias, but do not further
facilitate the invasion and spread of further pathogens that share a
similar transmission cycle.

In Fig. 6 we illustrate the transmission possibilities of USUV. Unlike
the case of Plasmodium invasion into a naive population, the invasion
of USUV is not always promoted by a vector bias. Such transmission
opportunities are only promoted if the mosquito preference is shifted
from hosts not carrying USUV towards co-infected hosts. If that at-
tractiveness for Plasmodium single-infected hosts and co-infected hosts
competes with the attractiveness towards USUV single-infected, then
the vector bias promotion effect is self-negated.

Our model neglects some ecological mechanisms that could be
relevant in the transmission of Plasmodium and USUV. For example,
malaria is caused by several types of Plasmodium, while we considered
only the one that has the strongest burden on blackbirds as this was
our population of interest. Future studies could investigate how the
different strains differ in transmission behaviour and burdens on the
host and how that in turn can affect co-circulation of other vector-
borne diseases. The consequences of Plasmodium infection on birds are
quite severe, with individuals in some cases suffering from sudden
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death. This may impede co-infections to ever becoming common, even
in the absence of an even stronger effect on mortality caused by both
infections occurring at the same time.

Due to lack of information in the literature on the co-transmission
rates of these diseases, assumptions had to be made. Given that the
transmission rates of each disease were relatively high, there is an
argument to be made that the co-transmission rate, under the assump-
tion of independent transmission, would also be unrealistically high.
This would mean that co-infected individuals would have the chance
to transmit only the first disease, only the second, or both with the
same chance, which would also be near the biting rate. To limit this,
one could add a penalty in the transmission of each disease or in
the co-transmission. Since we had data on the transmission of each
disease, but not on the co-transmission, we believe this it is a fair
choice to add a penalty to the co-transmission rates. The decision to
divide co-transmission rates by 3, rather than independently decreasing
the transmission rates of each disease, could introduce a limitation
in our model. While the chosen approach simplifies the modelling
process, it may not fully capture the nuanced dynamics of individual
disease transmissions. Ideally, we would have detailed data on the
transmission probabilities for each disease in the appropriate species,
but in the absence of that decreasing transmission rates independently
could be an alternative strategy, potentially offering a more detailed
representation of how each disease contributes to overall transmission.
Both options have their merits, and the choice between them depends
on the specific goals of the modelling study and the desired level of
detail in representing disease interactions.

We only included fitness costs to the hosts, reflected by the addi-
tional death rate parameters. There is evidence, however, that vectors
also suffer consequences when biting infected hosts. For co-infections
between Plasmodium and lymphatic filariasis the mosquitoes suffer
increased mortality. This has been shown to decrease the long-term
prevalence of Plasmodium in both hosts and vectors (Slater et al., 2013).
Even though there is no study showing a vector disease-induced addi-
tional death rate for either Plasmodium or USUV, there is a reduction
in fecundity when infected with Plasmodium (Vézilier et al., 2012).

More fine-tuned models could then investigate if this fitness burden
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out-weights the facilitation of introduction of USUV (or another vector-
borne disease) due to a vector bias. A study (Cornet et al., 2013b)
found that a vector bias was detected only during the chronic phase,
that is after approximately 24 days post infection in the host. Our
model, however, assumes an immediate effect as soon as the host gets
infected with malaria. This could lead to overestimation of 𝑅0(P) and
accelerated transmission dynamics at the long term for both Plasmodium
and USUV.

Our formulation did not consider explicitly multiple infections of
the same pathogen. In other words, we assume that a host already
infected with malaria is indistinguishable from a host that was by
chance infected with malaria two or more times. Repeated malaria
infections in birds have been reported and carry additive costs (Marzal
et al., 2008), which were not accounted for in our model. Alternatively,
a co-infection model that allows for repeated infection of the same (van
Baalen and Sabelis, 1995) or different strains could be applied (Choisy
and de Roode, 2010). The added fitness cost of multiple malaria infec-
tions leads to overall fewer hosts that are more attractive to mosquitoes
(essentially having a lower vector bias), potentially promoting USUV in
the long term.

After co-circulations of Plasmodium and West Nile virus were de-
tected in suburban Chicago (Medeiros et al., 2014), it was pointed
out how endemic Plasmodium, and the heterogeneous biting patterns it
causes, may influence WNV transmission (Medeiros et al., 2016). How-
ever, as pointed out earlier, a negative association between Plasmodium
and WNV has been observed (Medeiros et al., 2014). It is unclear
whether this is a result of a direct interaction between Plasmodium and
WNV, or due to the decreased survival of the co-infected hosts. Since
WNV and USUV are closely related viruses, one can hypothesize that
a negative interaction similar to the one discussed here may happen
between Plasmodium and USUV. This would make any potential ampli-
fication caused by co-infections even less significant. A recent study
observed that co-infected blackbirds had lower levels of Plasmodium
than single-infected ones (Himmel et al., 2020). This all seems to
suggest that co-infections are an unlikely major driver for the USUV
spread, which is consistent with our results.

The invasion success of a new pathogen depends on a vast array
of factors. Our model provided a way to include indirect interactions
with an endemic infection and the invading disease. The increased
attractiveness caused by the endemic pathogen does not necessarily
facilitate the invasion of a new one, nor does it lead to a higher
prevalence in the long term. This showed that one needs to take a closer
look at community interactions and history of infections when trying
to understand the risk of establishment of new vector-borne diseases.
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