RESEARCH

T-independent B-cell effect of agents associated with swine growerfinisher diarrhea

Jéssica A. Barbosa^{1,3} • Christine T. Yang² • Arthur N. Finatto³ • Vinícius S. Cantarelli¹ • Matheus de Oliveira Costa^{3,4}

Received: 26 September 2023 / Accepted: 6 November 2023 / Published online: 4 December 2023 © Springer Nature B.V. 2023

Abstract

Swine dysentery, spirochetal colitis, and salmonellosis are production-limiting enteric diseases of global importance to the swine industry. Despite decades of efforts, mitigation of these diseases still relies on antibiotic therapy. A common knowledge gap among the 3 agents is the early B-cell response to infection in pigs. Thus, this study aimed to characterize the porcine B-cell response to *Brachyspira hyodysenteriae, Brachyspira hampsonii* (virulent and avirulent strains), *Brachyspira pilosicoli*, and *Salmonella* Typhimurium, the agents of the syndromes mentioned above. Immortalized porcine B-cell line derived from a crossbred pig with lymphoma were co-incubated for 8 h with each pathogen, as well as *E. coli* lipopolysaccharide (LPS) and a sham-inoculum $(n=3$ /treatment). B-cell viability following treatments was evaluated using trypan blue, and the expression levels of B-cell activation-related genes was profiled using reverse transcription quantitative PCR. Only *S.* Typhimurium and LPS led to increased B-cell mortality. *B. pilosicoli* downregulated B-lymphocyte antigen (CD19), spleen associated tyrosine Kinase (syk), tyrosine-protein kinase (lyn), and Tumour Necrosis Factor alpha (TNF-α), and elicited no change in immunoglobulin-associated beta (CD79b) and swine leukocyte antigen class II (SLA-DRA) expression levels, when compared to the sham-inoculated group. In contrast, all other treatments significantly upregulated CD79b and stimulated responses in other B-cell downstream genes. These findings suggest that *B. pilosicoli* does not elicit an immediate T-independent B-cell response, nor does it trigger antigen-presenting mechanisms. All other agents activated at least one trigger within the T-independent pathways, as well as peptide antigen presenting mechanisms. Future research is warranted to verify these findings in vivo.

Keywords Swine dysentery · Colitis · Salmonellosis · Humoral immunomodulation · Gene pathways

 Matheus de Oliveira Costa matheus.costa@usask.ca

- ¹ Animal Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
- ² Department of Integrated Sciences, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands

Introduction

Swine dysentery (SD), spirochetal colitis (SC) and swine salmonellosis (SS) are diarrheic diseases affecting swine in the grower-finisher stage, and are associated with decreased growth performance and increased production costs (Funk and Gebreyes [2004](#page-8-0); Alvarez-Ordóñez et al. [2013](#page-7-0); Vander-Waal and Deen [2018](#page-10-0)). SD is characterized by mucohaemorrhagic diarrhea and colitis. It is caused by *Brachyspira hyodysenteriae* (Harris et al. [1972](#page-8-1)), B. *suanatina* (Råsbäck et al. [2007](#page-9-0)) or *B. hampsonii* (Rubin et al. [2013](#page-9-1)). *Brachyspira pilosicoli* is the causative agent of SC, clinically described as mucoid, watery diarrhea linked to mild colitis when compared to SD (Taylor et al. [1980](#page-10-1)). *Salmonella enterica* subsp. *enterica* serovar Typhimurium causes watery diarrhea and enterocolitis in growing pigs (Levine et al. [1945](#page-8-2)). In practice, these three diseases are often controlled and treated using antimicrobial therapy in commercial operations.

Several different vaccine development strategies have been explored for SD (Song et al. [2009](#page-9-2); Mahu et al. [2017](#page-8-3); La et al. [2019](#page-8-4)), and SC (Casas et al. [2017](#page-7-1)). Despite these efforts, only partial protection has been induced and no effective vaccine for SD or SC is commercially available in the major pork producing countries. In contrast, commercial *Salmonella* vaccines are available in many countries, targeting sows (Denagamage et al. [2007](#page-7-2); Smith et al. [2018](#page-9-3); Peeters et al. [2020](#page-9-4); van der Wolf et al. [2021](#page-10-2)), piglets (Husa et al. [2009](#page-8-5); Farzan and Friendship [2010](#page-8-6); Schmidt et al. [2021](#page-9-5)) or market-agepigs (Denagamage et al. [2007](#page-7-2); Peeters et al. [2020](#page-9-4)), focusing not only in preventing clinical signs but in decreasing shedding and contamination of carcasses at slaughter. However, cross-protection between serovars is questionable, impacting vaccine uptake in commercial farms (Husa et al. [2009](#page-8-5); Farzan and Friendship [2010](#page-8-6); Moura et al. [2021](#page-9-6)). Thus, antimicrobials are still used for disease mitigation. Consequently, the emergence of antibiotic resistant strains is a concern given that salmonellosis is linked to animal welfare, food safety, and security (Lekagul et al. [2019](#page-8-7); Pholwat et al. [2020](#page-9-7)).

B-cells express multiple intra and extracellular receptors capable of recognizing antigens, including bacterial, that trigger signals to modulate the innate and adaptive immune responses (Rawlings et al. [2012](#page-9-8)). T-cell independent B-cell activation takes part in the early response against pathogens through the production of IgM and possible IgD, and serves as a gateway to immunotolerance or immune activation (Boes et al. [2000](#page-7-3)). The B-cell receptor (BCR) is an important player in this mechanism. It is formed by a membranebound immunoglobulin (Ig) and a heterodimeric signaling subunit (CD79a/CD79b) (Reth [1989](#page-9-9)). Upon BCR crosslinking by antigens, the proximal kinase lyn initiates the signaling cascade phosphorylating tyrosines in the CD79a/CD79b BCR subunits, which results in recruitment and activation of the spleen tyrosine kinase (syk) (Yamanashi et al. [1991](#page-10-3); Xu et al. [2005;](#page-10-4) Geahlen [2009](#page-8-8)). Syk leads to the phosphorylation and activation of downstream molecular pathways that lead to B-cell activation, proliferation and differentiation or quiescence (Niiro and Clark [2002](#page-9-10); Werner et al. [2010](#page-10-5)).

We hypothesized that B-cell exposure to *Brachyspira hyodysenteriae, Brachyspira pilosicoli, B. hampsonii* and *Salmonella* Typhimurium activates different triggers within the B-cell intrinsic activation pathways. The goal of this study was to investigate the initial mRNA B-cell response to swine enteric pathogens, independently of T-cells.

Materials and methods

B-cell culture

An immortalized porcine B-cell line was established by isolating cells from a 6–7 months old, cross-bred commercial pig, clinically healthy but with splenomegaly identified at slaughter, linked to multicentric lymphoma(Rahe et al. [2020](#page-9-11)). Cells were cultured at 37 °C with 5% CO₂ in a standard bench-top $CO₂$ incubator (Thermo Fisher Scientific, Waltham, MA,USA) using high quality polystyrene flasks (Sarstedt, Numbest, Germany). Complete RPMI 1640 media with L-glutamine (Gibco Life Technologies, Co., Grand Island, NY, USA), supplemented with 10 mM HEPES buffer (Gibco Life Technologies, Co., Grand Island, NY, USA), 1X non-essential amino acids (Gibco Life Technologies, Co., Grand Island, NY, USA), 1 mM sodium pyruvate (Gibco Life Technologies, Co., Grand Island, NY, USA), 50 µg/mL gentamycin (Gibco Life Technologies, Co., Grand Island, NY, USA), 5,000 U/mL penicillin-streptomycin (Gibco Life Technologies, Co., Grand Island, NY, USA), and 5% fetal bovine serum (Gibco Life Technologies, Co., Grand Island, NY, USA) (Rahe et al. [2020](#page-9-11)). The confluence of the B-cell suspended cells was checked every day for the presence of cluster proliferation. Media was changed four times every 5 days. For passaging, the cells and media were pipetted in a 50 mL conical tube (VWR International, Radnor, PA, USA), and centrifuged at 500xg for 5 min at room temperature. The supernatant was decanted and cells resuspended in 10 mL of cRPMI. Then, 2 mL of a cell mixture were added into a flask with 12 ml of cRPMI. Once cells reached 90–100% confluency, they were passaged at a concentration of 1×10^5 cells/mL/flask for inoculation.

Bacterial inocula culture

Salmonella enterica serovar Typhimurium strain Χ4232 was cultured at 37 °C in Luria-Bertani broth (LB, BD Canada, Oakville, ON, Canada,Costa et al. [2020](#page-7-4)). *Brachyspira hyodysenteriae* strain G44 (*B. hyo*), the virulent *Brachyspira hampsonii* clade II strain 30,446 (*B. hampsonii*), the nonpathogenic *Brachyspira hampsonii* clade 2 strain KL-180 (*B.* KL180), and *Brachyspira pilosicoli* strain ATCC 51,139 *(B. pilosicoli)* were cultured in brain heart infusion (BHI) broth (Becton and Dickinson Company, Sparks, MD, USA) supplemented with 5% (v/v) of fetal bovine serum, 5% (v/v) of sheep's blood and 1% (w/v) of glucose. and incubated under anaerobiosis (Anaerogen, Oxoid Limited, Basingstoke, United Kingdom) at 39ºCA *B. pilosicoli* aliquot was sonicated (Vibracell Sonicator, Sonics & Materials Inc., Danbury, Connecticut, USA) for 2 min at 20 kHz to inactivate the bacteria (*B. pilo* dead) (Azuonwu et al. [2015](#page-7-5)).

Inoculation procedure25 mL flasks containing B-cells at 1×10^5 cells/mL were exposed to one of the following inocula: negative control (sham inoculated, $n=6$); positive control (100 µg/flask of *E. coli* O111:B4 lipopolysaccharide, LPS, $n=6$); *B. hyo* (1.69×10^7) genome equivalents $(GE)/mL$, $n = 6$); *B. hampsonii* (1.49 × 10⁹ GE/mL, $n = 3$), *B. pilosicoli* $(3.35 \times 10^{10} \text{ GE/mL}, n=6)$, *B.* KL180 $(4.79 \times 10^{9} \text{ Hz})$ GE/mL, $n=3$), *B. pilo* dead $(1.26 \times 10^{11} \text{ GE/mL}, n=3)$, and *S*. Typhimurium $(4.32 \times 10^9 \text{ CFU/mL}, n=6)$. Inocula were prepared by centrifuging bacterial culture broth at 10,000 rpm $(21,385 \times g)$ for 10 min. Next, cell pellets were resuspended in 6 mL of cRPMI and inoculated into the flasks containing B-cells. Co-incubation followed for 8 h at 37° C in 5% CO₂.

B-cell viability assay

Following the exposure period, B-cell viability was measured using trypan blue (Lonza, Walkersville, MD, USA). Briefly, 0.1 mL of 0.4% trypan blue was added to a 0.4 mL aliquot from each flask, incubated for 2 min at room temperature and counted using a hemocytometer chamber (Hausser Scientific, Horsham, PA, USA) and a light microscope at 40x magnification. Results are reported as total dead cells/total cell count x 100.

Bacterial viability

Before the co-incubation period, 100 µL of each *Brachyspira* inocula were plated on blood agar plates and incubated anaerobically using a commercial system (Anaerogen, Oxoid Limited, Basingstoke, United Kingdom) at 42 °C for 48 h. Similarly, 100 µL of *Salmonella* Typhimurium were plated on LB agar plates (Bectron, Dickinson and Company BD, Sparks, MD, USA) and incubated at 39ºC for 24 h. After the co-incubation period, 100 µL of cRPMI containing any of the *Brachyspira* inocula or cRPMI inoculated with *Salmonella* Typhimurium were plated on their respective medium plates and environmental conditions described above.

Table 1 Primer pairs used in this study

Relative mRNA expression levels

Expression of CD19 (B-lymphocyte antigen), CD79b (immunoglobulin-associated beta), lyn (tyrosine-protein kinase), syk (spleen associated tyrosine Kinase), SLA-DRA (swine leukocyte antigen class II), tumor necrosis factor alpha (TNF-*α*), interferon alpha (IFN-α), interferon beta (IFN-β), and interleukin 10 (IL-10) was evaluated by reverse transcriptase, reverse transcription quantitative PCR. Primers used for amplification are described in Table [1](#page-2-0).

The cytokines primers were previously published and validated (Alex Pasternak et al. [2020](#page-7-6)). All other primers were validated initially *in silico* by verifying primer nucleotide homology with the target template, followed by amplicon size verification and melt-curve analysis using the PCR conditions described below. Following the co-incubation period, flasks containing B-cells and a given inocula were centrifuged at 500 g for 5 min. The supernatant was discarded and 1 mL of RNAlater (Sigma-Aldrich Co., St. Louis, MO, USA) was added to the pellet and vortexed. Samples were stored at -80 °C until processing. RNA extraction was performed using a commercial kit (Qiagen RNeasy, Qiagen, Hilden, Germany) and cDNA was synthesized using QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions. PCR reactions were conducted in a Bio-Rad CFX instrument (Bio-Rad Laboratories Ltd., Mississauga, ON). Each 25 µL reaction contained 12.5 mL of SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories Ltd, Hercules, CA, USA), forward and reverse primers (20 μ M each), and 2 mL of cDNA template. Reactions were incubated at 94◦C for 3 min, followed by 40 cycles of 10 s at 95ºC, 10 s at 59ºC for SLA-DRA and IFN-β; 63.3ºC for IL-10 and CD19; and 65ºC for IFN-α, TNF-α, SYK, LYN and CD79b, and 30 s at 72ºC. Negative and no-template controls were included in each plate ran. All reactions were run in duplicates. Reaction duplicates that differed by more than 1 Ct were repeated.

Statistical analysis

Shapiro-Wilk test was used to evaluate the normality of data. Differences in B-cell mortality levels among the groups were analyzed using one-way ANOVA followed by post-hoc Tukey test. Real-time PCR data were analyzed using generalized linear mixed models based on lognormal-Poisson error distribution, fitted using Marcov chain Monte Carlo sampling (Matz et al. [2013](#page-9-12))(mcmc.qPCR package on R version 4.2.0, RStudio, Boston, MA, USA).

Results

B-cell viability

B-cell exposure to LPS $(P < 0.001, 8.8\% \pm 0.4\%)$ or *S*. Typhimurium $(P=0.001, 11.3\% \pm 0.5\%)$ significantly increased mortality when compared to the negative control group (5.3% \pm 0.2%) for all pairwise comparison. None of the other treatments led to a significant impact on B-cell viability. A summary of the data is presented in Fig. [1](#page-3-0).

Relative mRNA expression levels

B-cell exposure to *B. pilosicoli* led to no change in the expression of the BCR signaling component CD79b. In contrast, all other treatments significantly increased CD79b mRNA Veterinary Research Communications (2024) 48:991–1001

levels. Other components of the BCR activation pathway (CD19, syk, and lyn) were significantly downregulated only following *B. pilosicoli* exposure (-2.8 fold, *P*=0.0001; -2.1 fold, $P < 0.0001$; and -1.5 fold, $P = 0.03$, respectively). In contrast, syk mRNA levels was only increased when B-cells were exposed to *B. hampsonii* (2.2 fold, *P*=0.02) or *B. hyo* (1.7 fold, $P=0.02$), relative to the negative control group. None of the other treatments significantly altered the expression of lyn.

B. pilosicoli decreased B-cell expression of TNF-α (-2.4 fold, $P=0.03$), but increased IFN- β (5.5 fold, $P=0.01$) mRNA production relative to the negative control group. *B. hyo* exposure increased the mRNA levels of IFN-α (2.0 fold, *P*=0.02) and IFN-β (5.9, *P*=0.01). *S.* Typhimurium upregulated the expression of IFN- α (1.9 fold, $P=0.03$) and IL-10 (2.1 fold, $P = 0.03$), in relation to the negative control samples. SLA-DRA was upregulated following *B. hampsonii (*2.5 fold, *P*=0.01), *B. pilo* dead (2.4 fold, *P*=0.01), *B. hyo* (1.61 fold, *P*=0.05), *B. KL180* (1.90 fold, *P*=0.05), and *S.* Typhimurium (1.7 fold increased compared to control, $P=0.03$), but remained unaffected in the presence of *B. pilosicoli*. A summary of the RT-PCR data is presented in Fig. [2](#page-4-0).

Fig. 1 B-cell mortality after 8 h of exposure to sham-inoculated control $(n=6)$, LPS $(n=6)$, *B*. *hampsonii* clade II 30,466 (*B. hampsonii*, n=3), *B. hyodysenteriae* G44 strain (*B. hyo*, n=6), *B. pilosicoli* (*B. pilo*, n=6), *B. pilosicoli* sonified dead (*B. pilo* dead, n=3), non-pathogenic *B. hampsonii* clade 2 KL180 (*B.* KL180, n=3), and *Salmonella* Typhimurium (*S.* Typhimurium, n=6). *-Denotes statistical significance between *S.* Typhimurium and all groups, except LPS $(P = 0.001)$. **-Denotes statistical significance between LPS and all groups, except *S.* Typhimurium $(P<0.001)$

Fig. 2 Expression of B-cell activation and proliferation marker genes after 8 h of exposure to sham-inoculated control $(n=6)$, LPS $(n=6)$, *B*. *hampsonii* clade II 30,466 (*B.hampsonii*, n=3), *B. hyodysenteriae* G44 strain (*B. hyo*, n=6), *B. pilosicoli* (*B. pilo*, n=6), *B. pilosicoli* sonified dead (*B. pilo* dead, n=3), non-pathogenic *B. hampsonii* clade 2 KL180 (*B.* KL180, n=3), and *Salmonella* Typhimurium (*S.* Typhimurium,

n=6). measured by quantitative real-time RT-PCR. Bars depict mean fold change (log2) values from eight treatments, relative to the negative control group, and error bars represent 95% confidence intervals. **- Denotes statistical significance (*P<*0.05). * - Denotes statistical significance (*P=*0.05)

Bacterial viability

Post-inoculation evaluation of the viability of bacterial inocula resulted in no growth of the *Brachyspira* spp. and *S*. Typhimurium in their respective culture medium.

Discussion

Here we investigated the T-cell independent B-cell response to enteric pathogens associated with grower-finisher diarrhea in pigs. Surprisingly, B. *pilosicoli* downregulated genes involved in B-cell activation and differentiation, and did not trigger the expression of the major histocompatibility complex type II (MHC-II, SLA-DRA gene). *B. hyodysenteriae*, different strains of *B. hampsonii*, *S.* Typhimurium and killed *B. pilosicoli* triggered activating responses by the host cells. Grower-finisher infectious diarrhea directly impacts profit in commercial swine operations (Patterson et al. [2016;](#page-9-24) Burrough [2017](#page-7-11)). Understanding B-cell response to pathogens to which antibiotics are largely used in pigs may aid in the development of preventative tools.

Our data showed that B-cell exposure to all treatments other than *B. pilosicoli* upregulated CD79b expression. After antigen binding to BCR, CD79b is the initial signaling trigger involved in B-cell maturation and activation (Koyama et al. [1997](#page-8-14); Kraus et al. [2004](#page-8-15); Williams et al. [1994](#page-10-9)). Phosphorylation of the tyrosine-based activation motif (ITAM) on CD79b by Src-family kinases activates syk, followed by downstream signaling molecules, such as phospholipase C gamma 2 (PLC-γ2) and phosphoinositide 3-kinase (PI3K) (Marshall et al. [2000](#page-9-25); Niiro and Clark [2002](#page-9-10)). These molecules form the main BCR signaling cascade involved in B lymphocyte cell-cycle progression and survival pathways (Fruman et al. [1999](#page-8-16); Hikida et al. [2003](#page-8-17)). CD79b expression is up-regulated in mice kidneys infected with *Staphylococcus aureus* (Ziegler et al. [2011\)](#page-10-10), and in sheep mammary tissue infected with *Mycoplasma agalactiae* (Chopra-Dewasthaly et al. [2017](#page-7-12)). We hypothesize that *B. pilosicoli* likely did not lead to crosslinking of BCR, as no changes in CD79b expression were identified. CD19 is a co-receptor of the B-cell cell-surface signal-transduction complex (including CD21, CD81 and CD225) that plays an important role on B-cell activation by reducing the BCR activation threshold, and by promoting BCR-independent B-cell expansion through c-MYC protein stability (Fearon and Carroll [2003](#page-8-18); Scheuermann and Racila [2009](#page-9-26); Chung et al. [2012](#page-7-13)). CD19 deficient mice and humans respond poorly to transmembrane signals, leading to impaired humoral response (Engel et al. [1995](#page-8-19); Fujimoto et al. [2000](#page-8-20); van Zelm et al. [2006](#page-10-11)). In contrast, overexpression of CD19 leads to increased humoral response and disruption of tolerance mechanisms

(Sato et al. [1996](#page-9-13), [2000](#page-9-14); Inaoki et al. [1997](#page-8-9)). Through Akt kinase signaling and tyrosines phosphorylation, CD19 is required for MHC-II-mediated downstream signaling (Mills et al. [2007](#page-9-15)), and play a role in immunoglobulin-induced activation of B-cell or their antigen-independent development (Otero et al. [2001](#page-9-16); Wang et al. [2012](#page-10-6)). CD19 also plays a role in TLR9 signaling pathways in human B cells (Morbach et al. [2016](#page-9-17)), which is activated by bacterial DNA (Dalpke et al. [2006\)](#page-7-7). We found that *B. pilosicoli* exposure to B-cells downregulated CD19 expression. Although other molecules and receptors from CD19-activated pathways were not evaluated in the present studywe hypothesize that *B. pilosicoli* may increase the BCR activation threshold, repress B-cell expansion and impair pathogen recognition via MHC-II or TLR-9, thus crippling the early B-cell response to infection and potentially inducing tolerance to *B. pilosicoli* antigens – which would aid in its host-attached lifestyle.

One of the earliest events following BCR activation is phosphorylation of lyn and syk protein kinases (Stepanek et al. [2013](#page-10-7)). Lyn plays a crucial role in activating or inhibiting BCR signaling (Yamanashi et al. [1991](#page-10-3)). It can enhance B-cell downstream signaling, phosphorylating ITAMs on B-cell receptor Igα/Igβ (CD79a/CD79b) chains triggering the activation of the spleen tyrosine kinase (syk) (Kurosaki et al. [1994](#page-8-10); Johnson et al. [1995](#page-8-11)). Lyn also phosphorylates tyrosine-based inhibitory motifs (ITIMs) on inhibitory receptors (CD22 and FcγRIIB) that suppress BCR signaling (Cornall et al. [1998](#page-7-8); Nishizumi et al. [1998](#page-9-18)). Syk binds to the BCR (Rolli et al. [2002](#page-9-19)), phosphorylating not only ITAM tyrosines at CD79a/CD79b but also other proteins, including CD19 and BCAP, activating the PI3K pathway and the SH2 domain-containing leukocyte protein of 65 kDa (SLP-65) (Mócsai et al. [2010](#page-9-20); Heizmann et al. [2010](#page-8-12)). These signals support further development of B-cells from pro-B to pre-B-cell (Turner et al. [1997](#page-10-8); Saijo et al. [2003](#page-9-21)) Here we showed that the expression of lyn and syk were downregulated after B-cell exposure to live *B. pilosicoli.* Lyn-deficient mice have shown reduced numbers of mature follicular B-cells, absence of marginal zone and higher proportion of immature B-cells (Nishizumi et al. [1995](#page-9-22); Shahaf et al. [2012](#page-9-23)). Lyn deficiency is also involved in decreased phagocytosis and autophagy upon *Pseudomonas aeruginosa* infection of mice alveolar macrophages (Li et al. [2016](#page-8-13)). Syk deficiency also impaired the differentiation and maturation of B-lineage cells (Cheng et al. [1995](#page-7-9); Turner et al. [1997](#page-10-8); Cornall et al. [2000](#page-7-10)). Taken together, the decrease in CD19, lyn, and syk expression following *B. pilosicoli* suggest that the B-cell response to this pathogen is weakened from a BCR-dependent or independent activation perspective, potentially leading to tolerance.

SLA-DRA are expressed mainly in antigen presenting cells, and it is a key player in extracellular peptide antigen processing and presentation, T-cell dependent response and vaccine efficacy (López Fuertes et al. [1999](#page-8-26); Lunney et al. [2009](#page-8-27)). In our study, SLA-DRA was upregulated by B-cell treatment with all inocula, except for live *B. pilosicoli* and LPS. Replication of porcine epidemic diarrhea virus (PEDV) in bone marrow-derived dendritic cells inhibited expression of SLA-DRA, showing PEDV has mechanisms to evade the host immune response (Wang et al. [2021](#page-10-13)). Our results suggest that the cell line used recognized all the treatments as foreign antigens, except for live *B. pilosicoli*. The mechanism through which *B. pilosicoli* escapes antigen processing and presentation may be a key feature to enable vaccine development in the future.

We found increased expression of IFN-α upon B-cell exposure to *B. hyodysenteriae, S.* Typhimurium, and IFN-β following *B. hyodysenteriae* and *B. pilosicoli* exposure. Type I interferons (IFN-α/IFN-β, T1IFN) are early innate immunity cytokines and have pleiotropic effects on the immune response modulation, with direct and indirect effects on B-cells (Kiefer et al. [2012](#page-8-28)). Multiple studies have demonstrated the role of IFN-α/IFN-β as immunoregulatory B-cell stimulators during viral infections (Coro et al. [2006](#page-7-17); Fink et al. [2006](#page-8-29); Swanson et al. [2010](#page-10-14); Kiefer et al. [2012](#page-8-28)). T1IFN were found to enhance B-cell response and activation during the inflammatory process, increasing BCR sensitivity, which is suggested as a link between the innate and acquired immune responses (Morikawa et al. [1987](#page-9-33); Braun et al. [2002](#page-7-18)). In contrast, exacerbated exposure to T1IFN has been shown to be harmful to the host, promoting proliferation of self-reactive B-cells in autoimmune diseases in humans (Theofilopoulos et al. [2004](#page-10-15)). Thus, the role of T1IFN in response to bacterial infection remains to be clarified (Boxx and Cheng [2016](#page-7-19)). Here we found that *B. hyodysenteriae* and *S.* Typhimurium led to increased levels of IFN-α, when compared to the control group. Exogenous or endogenous IFN-α was found to modulate B-cell proliferation and their differentiation into antibody-secreting cells (Gujer et al. [2011](#page-8-30)). Interestingly, Domeier et al. ([2018\)](#page-8-31) found evidence that intrinsic B-cell T1IFN signaling causes loss of tolerance in germinal center cells. Also, IFN-α amplifies naïve B-cell activation and immunoglobulin production through TLR-9/MyD88-dependent signaling after stimulation with CpG motifs of bacterial DNA (Giordani et al. [2009](#page-8-32)). In parallel, IFN-β was upregulated by *B. hyodysenteriae* and *B. pilosicoli*. IFN-β exposure reduces B-cell capacity to respond to antigen mediated signals, focusing its response on immediate innate system measures (Khsheibun et al. [2014](#page-8-33)). We postulate that *S.* Typhimurium and *B. hyodysenteriae* triggered the observed B-cell responses due to, in part, the increased production of IFN-α. Oppositely, *B. pilosicoli* effect on IFN-β only may explain the lack of antigen-based B-cell response.

TNF- α is one of the earliest responses by B-cells following crosslinking of surface immunoglobulins (Goldfeld et al. [1992](#page-8-21)). This molecule is a required autocrine factor for B-cell growth, promoting cell differentiation (Boussiotis et al. [1994](#page-7-14)). Our results revealed that TNF- α was significantly downregulated following B-cell exposure to *B. pilosicoli*, but not killed *B. pilosicoli* or any other treatment. In contrast, a previous study using Caco-2 cells found that inactivated *B. pilosicoli* led to the upregulation of TNF-α, while live *B. pilosicoli* did not significantly change its expression levels (Naresh et al. [2009](#page-9-27)). Caco-2 are epithelial cells derived from human samples, not pigs. This may explain the differences observed here. Multiple bacterial pathogens have evolved to directly or indirectly supress the production of TNF-α, thus facilitating parasitism (Rahman and McFadden [2006;](#page-9-28) Luo et al. [2018](#page-8-22)). It is plausible that *B. pilosicoli* suppresses lymphocyte TNF-α production to support its periplasmatic lifestyle through a mechanism that remains to be clarified.

IL-10 plays a role enhancing B-cell proliferation and differentiation, and regulates MHC-II antigen presentation (Go et al. [1990](#page-8-23); Burdin et al. [1997](#page-7-15); Vazquez et al. [2015](#page-10-12)). We found that *S.* Typhimurium was the only pathogen evaluated in this study to increase IL-10 expression after co-exposure with B-cells. Mice infected with *Salmonella* showed rapid differentiation of IL-10-expressing B cells in the spleen by a mechanism involving the myeloid differentiation primary response gene 88 (MyD88) and TLR2 and/or TLR4 (Neves et al. [2010](#page-9-29)). Although we did not investigate those pathways genes, our results corroborate previous findings that *S.* Typhimurium may hijack IL-10-signalling to favour its intracellular lifestyle.

S. Typhimurium significantly increased B-cell mortality when compared to the negative control group. Previous research in vivo and in vitro indicated that *Salmonella* is able to infect and survive in B-cell endosomal-lysosomal compartments (Rosales-Reyes et al. [2005](#page-9-30); Castro-Eguiluz et al. [2009](#page-7-16)). These cells act as a reservoir for persistence, dissemination and evasion of CD8⁺ T-cell-mediated responses (Lopez-Medina et al. [2014](#page-8-24)). This mechanism is linked to a negative regulation in NLRC4, inhibiting the secretion of IL-1β and its cytotoxic effects, preventing B-cell death by pyroptosis (Rosales-Reyes et al. [2012](#page-9-31); Perez-Lopez et al. [2013](#page-9-32)). A second study showed that *Salmonella* could also inhibit B-cell autophagy by activating mTORC1 by secreting its virulence protein SopB (Luis et al. [2022](#page-8-25)). This may be linked to the overwhelmingly high amount of bacteria to which B-cells were exposed to in our study.

We recognize that there are multiple steps involved in T-independent B-cell activation, and the work presented here focused only on a few key players of these complex mechanisms. Further work dissecting the downstream effects of the pathways found affected in this study is warranted, especially regarding *B. pilosicoli* interaction with the host. In addition, protein quantification or data on downstream steps other than mRNA expression will help validate the findings presented here.Our findings revealed that *B. pilosicoli* has a profound impact on B-cell activation, both in T-dependent and T-independent manners. An antigenicity spectrum among the other *Brachyspira* tested was also identified, helping explain their varied virulence. *S.* Typhimurium was the only agent to induce B-cell death, among those tested. Further studies on the consequences of the pathogen-B-cell interactions identified here are suggested to help clarify pathogenesis mechanisms, and may fill in gaps leading to vaccine development.

Acknowledgements The authors would like to thanks Arely Hernandez Davila, Champika Fernando, Ruwini Dharmasiri Gamage and Noreen Rapin for technical assistance.

Author contributions Jéssica A. Barbosa: Methodology, validation, formal analysis, investigation, data curation, writing – original draft, visualization. Christine T. Yang: Methodology, validation, investigation, writing – review & editing. Arthur Silva: Methodology, validation, investigation, writing – review & editing. Vinícius Cantarelli: Funding acquisition, writing – review & editing. Matheus Costa: Conceptualization, methodology, validation, formal analysis, investigation, data curation, writing – original draft, writing – review & editing, visualization, project administration, supervision, funding acquisition. All authors have read and approved the final version of the manuscript.

Funding This work was supported by Coordination of Superior Level Staff Improvement – Brazil (CAPES, Barbosa), and a Natural Sciences and Engineering Research Council – Discovery Grant (Costa).

Data availability The data that support the findings of the current study are available from the corresponding author on reasonable request.

Declarations

Ethical approval Not applicable.

Informed consent Not applicable.

Conflict of interest The authors declare no conflict of interest.

Competing interests The authors declare no competing interests.

References

- Alex Pasternak J, MacPhee DJ, Harding JCS (2020) Fetal cytokine response to porcine reproductive and respiratory syndrome virus-2 Infection. Cytokine 126:154883. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.cyto.2019.154883) [cyto.2019.154883](https://doi.org/10.1016/j.cyto.2019.154883)
- Alvarez-Ordóñez A, Martínez-Lobo FJ, Arguello H et al (2013) Swine Dysentery: aetiology, pathogenicity, determinants of transmission and the fight against the Disease. Int J Environ Res Public Health 10:1927.<https://doi.org/10.3390/ijerph10051927>
- Azuonwu O, Azuonwu G, Obire O (2015) Impact of low frequency ultrasound on pathogens in polluted potable water. Sch J Appl Med Sci 3:1978–1984
- Boes M, Schmidt T, Linkemann K et al (2000) Accelerated development of IgG autoantibodies and autoimmune Disease in the absence of secreted IgM. Proc Natl Acad Sci 97:1184–1189. <https://doi.org/10.1073/pnas.97.3.1184>
- Boussiotis VA, Nadler LM, Strominger JL, Goldfeld AE (1994) Tumor necrosis factor alpha is an autocrine growth factor for normal human B cells. Proc Natl Acad Sci U S A 91:7007. [https://doi.](https://doi.org/10.1073/pnas.91.15.7007) [org/10.1073/pnas.91.15.7007](https://doi.org/10.1073/pnas.91.15.7007)
- Boxx GM, Cheng G (2016) The roles of type I Interferon in bacterial Infection. Cell Host Microbe 19:760. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.chom.2016.05.016) [chom.2016.05.016](https://doi.org/10.1016/j.chom.2016.05.016)
- Braun D, Caramalho I, Demengeot J (2002) IFN-α/β enhances BCR‐ dependent B cell responses. Int Immunol 14:411–419. [https://doi.](https://doi.org/10.1093/intimm/14.4.411) [org/10.1093/intimm/14.4.411](https://doi.org/10.1093/intimm/14.4.411)
- Burdin N, Rousset F, Banchereau J (1997) B-cell-derived IL-10: production and function. Methods 11:98–111. [https://doi.](https://doi.org/10.1006/meth.1996.0393) [org/10.1006/meth.1996.0393](https://doi.org/10.1006/meth.1996.0393)
- Burrough ER (2017) Swine Dysentery: etiopathogenesis and diagnosis of a reemerging Disease. Vet Pathol 54:22–31. [https://doi.](https://doi.org/10.1177/0300985816653795) [org/10.1177/0300985816653795](https://doi.org/10.1177/0300985816653795)
- Casas V, Rodríguez-Asiain A, Pinto-Llorente R et al (2017) *Brachyspira hyodysenteriae* and *B. pilosicoli* proteins recognized by sera of challenged pigs. Front Microbiol 8:723. [https://doi.](https://doi.org/10.3389/fmicb.2017.00723) [org/10.3389/fmicb.2017.00723](https://doi.org/10.3389/fmicb.2017.00723)
- Castro-Eguiluz D, Pelayo R, Rosales-Garcia V et al (2009) B cell precursors are targets for *Salmonella* Infection. Microb Pathog 47:52–56. <https://doi.org/10.1016/j.micpath.2009.04.005>
- Cheng AM, Rowley B, Pao W et al (1995) Syk tyrosine kinase required for mouse viability and B-cell development. Nat 1995 3786554 378:303–306.<https://doi.org/10.1038/378303a0>
- Chopra-Dewasthaly R, Korb M, Brunthaler R, Ertl R (2017) Comprehensive RNA-Seq profiling to evaluate the sheep mammary gland transcriptome in response to experimental *Mycoplasma agalactiae* Infection. PLoS ONE 12:e0170015. [https://doi.org/10.1371/](https://doi.org/10.1371/journal.pone.0170015) [journal.pone.0170015](https://doi.org/10.1371/journal.pone.0170015)
- Chung EY, Psathas JN, Yu D et al (2012) CD19 is a major B cell receptor–Independent activator of MYC-driven B-lymphomagenesis. J Clin Invest 122:2257.<https://doi.org/10.1172/jci45851>
- Cornall RJ, Cyster JG, Hibbs ML et al (1998) Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8:497–508. [https://doi.org/10.1016/s1074-7613\(00\)80554-3](https://doi.org/10.1016/s1074-7613(00)80554-3)
- Cornall RJ, Cheng AM, Pawson T, Goodnow CC (2000) Role of Syk in B-cell development and antigen-receptor signaling. Proc Natl Acad Sci 97:1713–1718. <https://doi.org/10.1073/pnas.97.4.1713>
- Coro ES, Chang WLW, Baumgarth N (2006) Type I IFN receptor signals directly stimulate local B cells early following Influenza virus Infection. J Immunol 176:4343–4351. [https://doi.](https://doi.org/10.4049/jimmunol.176.7.4343) [org/10.4049/jimmunol.176.7.4343](https://doi.org/10.4049/jimmunol.176.7.4343)
- Costa MO, Fouhse J, Silva APP et al (2020) Putting the microbiota to work: epigenetic effects of early life antibiotic treatment are associated with immune-related pathways and reduced epithelial necrosis following Salmonella Typhimurium challenge in vitro. PLoS ONE 15:e0231942. [https://doi.org/10.1371/journal.](https://doi.org/10.1371/journal.pone.0231942) [pone.0231942](https://doi.org/10.1371/journal.pone.0231942)
- Dalpke A, Frank J, Peter M, Heeg K (2006) Activation of Toll-Like receptor 9 by DNA from different bacterial species. Infect Immun 74:940.<https://doi.org/10.1128/iai.74.2.940-946.2006>
- Denagamage TN, O'Connor AM, Sargeant JM et al (2007) Efficacy of vaccination to reduce *Salmonella* prevalence in live and slaughtered swine: a systematic review of literature from 1979 to 2007. Foodborne Pathog Dis 4:539–549. [https://doi.org/10.1089/](https://doi.org/10.1089/fpd.2007.0013) [fpd.2007.0013](https://doi.org/10.1089/fpd.2007.0013)
- Domeier PP, Chodisetti SB, Schell SL et al (2018) B-cell-intrinsic type 1 Interferon signaling is crucial for loss of tolerance and the development of autoreactive B cells. Cell Rep 24:406–418. <https://doi.org/10.1016/j.celrep.2018.06.046>
- Engel P, Zhou LJ, Ord DC et al (1995) Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3:39–50. [https://doi.org/10.1016/1074-7613\(95\)90157-4](https://doi.org/10.1016/1074-7613(95)90157-4)
- Farzan A, Friendship RM (2010) A clinical field trial to evaluate the efficacy of vaccination in controlling *Salmonella* Infection and the association of *Salmonella*-shedding and weight gain in pigs. Can J Vet Res 74:258
- Fearon DT, Carroll MC (2003) Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol 18:393–422. [https://doi.org/10.1146/annurev.](https://doi.org/10.1146/annurev.immunol.18.1.393) [immunol.18.1.393](https://doi.org/10.1146/annurev.immunol.18.1.393)
- Fink K, Lang KS, Manjarrez-Orduno N et al (2006) Early type I interferon-mediated signals on B cells specifically enhance antiviral humoral responses. Eur J Immunol 36:2094-2105. [https://doi.](https://doi.org/10.1002/eji.200635993) [org/10.1002/eji.200635993](https://doi.org/10.1002/eji.200635993)
- Fruman DA, Snapper SB, Yballe CM et al (1999) Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science 283:393–397. [https://doi.org/10.1126/](https://doi.org/10.1126/science.283.5400.393) [science.283.5400.393](https://doi.org/10.1126/science.283.5400.393)
- Fujimoto M, Fujimoto Y, Poe JC et al (2000) CD19 regulates src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13:47–57. [https://doi.](https://doi.org/10.1016/s1074-7613(00)00007-8) [org/10.1016/s1074-7613\(00\)00007-8](https://doi.org/10.1016/s1074-7613(00)00007-8)
- Funk J, Gebreyes WA (2004) Risk factors associated with *Salmonella* prevalence on swine farms. J Swine Heal Prod 12:246–251
- Geahlen RL (2009) Syk and pTyr'd: signaling through the B cell antigen receptor. Biochim Biophys Acta (BBA)-Molecular Cell Res 1793:1115–1127. <https://doi.org/10.1016/j.bbamcr.2009.03.004>
- Giordani L, Sanchez M, Libri I et al (2009) IFN-alpha amplifies human naive B cell TLR-9-mediated activation and ig production. J Leukoc Biol 86:261–271.<https://doi.org/10.1189/jlb.0908560>
- Go NF, Castle BE, Barrett R et al (1990) Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 172:1625–1631. [https://](https://doi.org/10.1084/jem.172.6.1625) doi.org/10.1084/jem.172.6.1625
- Goldfeld AE, Flemington EK, Boussiotis VA et al (1992) Transcription of the Tumor necrosis factor alpha gene is rapidly induced by anti-immunoglobulin and blocked by cyclosporin A and FK506 in human B cells. Proc Natl Acad Sci U S A 89:12198–12201. <https://doi.org/10.1073/pnas.89.24.12198>
- Gujer C, Sandgren KJ, Douagi I et al (2011) IFN-α produced by human plasmacytoid dendritic cells enhances T cell-dependent naïve B cell differentiation. J Leukoc Biol 89:811. [https://doi.](https://doi.org/10.1189/jlb.0810460) [org/10.1189/jlb.0810460](https://doi.org/10.1189/jlb.0810460)
- Harris DL, Glock RD, Christensen CR, Kinyon JM (1972) Swine Dysentery. I. Inoculation of pigs with *Treponema hyodysenteriae* (new species) and reproduction of the Disease. Vet Med Small Anim Clin. 61–64
- Heizmann B, Reth M, Infantino S (2010) Syk is a dual-specificity kinase that self-regulates the signal output from the B-cell antigen receptor. Proc Natl Acad Sci 107:18563–18568. [https://doi.](https://doi.org/10.1073/pnas.1009048107) [org/10.1073/pnas.1009048107](https://doi.org/10.1073/pnas.1009048107)
- Hikida M, Johmura S, Hashimoto A et al (2003) Coupling between B cell receptor and phospholipase C-gamma2 is essential for mature B cell development. J Exp Med 198:581–589. [https://doi.](https://doi.org/10.1084/jem.20030280) [org/10.1084/jem.20030280](https://doi.org/10.1084/jem.20030280)
- Husa JA, Edler RA, Walter DH et al (2009) A comparison of the safety, cross-protection, and serologic response associated with two commercial oral *Salmonella* vaccines in swine. J Swine Heal Prod 17:10–21
- Inaoki M, Sato S, Weintraub BC et al (1997) CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. J Exp Med 186:1923. [https://doi.](https://doi.org/10.1084/jem.186.11.1923) [org/10.1084/jem.186.11.1923](https://doi.org/10.1084/jem.186.11.1923)
- Johnson SA, Pleiman CM, Pao L et al (1995) Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. J Immunol 155:4596– 4603.<https://doi.org/10.4049/jimmunol.155.10.4596>
- Khsheibun R, Paperna T, Volkowich A et al (2014) Gene expression profiling of the response to Interferon Beta in Epstein-Barrtransformed and primary B cells of patients with multiple sclerosis. PLoS ONE 9:e102331. [https://doi.org/10.1371/journal.](https://doi.org/10.1371/journal.pone.0102331) [pone.0102331](https://doi.org/10.1371/journal.pone.0102331)
- Kiefer K, Oropallo MA, Cancro MP, Marshak-Rothstein A (2012) Role of type I interferons in the activation of autoreactive B cells. Immunol Cell Biol 90:498.<https://doi.org/10.1038/icb.2012.10>
- Koyama M, Ishihara K, Karasuyama H et al (1997) CD79 alpha/CD79 beta heterodimers are expressed on pro-B cell surfaces without associated mu heavy chain. Int Immunol 9:1767–1772. [https://](https://doi.org/10.1093/intimm/9.11.1767) doi.org/10.1093/intimm/9.11.1767
- Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K (2004) Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117:787–800. [https://doi.](https://doi.org/10.1016/j.cell.2004.05.014) [org/10.1016/j.cell.2004.05.014](https://doi.org/10.1016/j.cell.2004.05.014)
- Kurosaki T, Takata M, Yamanashi Y et al (1994) Syk activation by the src-family tyrosine kinase in the B cell receptor signaling. J Exp Med 179:1725–1729.<https://doi.org/10.1084/jem.179.5.1725>
- La T, Phillips ND, Coiacetto F, Hampson DJ (2019) An atypical weakly haemolytic strain of *Brachyspira hyodysenteriae* is avirulent and can be used to protect pigs from developing swine Dysentery. Vet Res 50:1–16.<https://doi.org/10.1186/S13567-019-0668-5>
- Lekagul A, Tangcharoensathien V, Yeung S (2019) Patterns of antibiotic use in global pig production: a systematic review. Vet Anim Sci 7:100058.<https://doi.org/10.1016/j.vas.2019.100058>
- Levine ND, Peterson EH, Graham R (1945) Studies on swine enteritis; *Salmonella* and other enteric organisms isolated from diseased and normal swine. Am J Vet Res 242–246
- Li X, He S, Zhou X et al (2016) Lyn delivers bacteria to lysosomes for eradication through TLR2-initiated autophagy related phagocytosis. PLoS Pathog 12. [https://doi.org/10.1371/journal.](https://doi.org/10.1371/journal.ppat.1005363) [ppat.1005363](https://doi.org/10.1371/journal.ppat.1005363)
- López Fuertes L, Doménech N, Alvarez B et al (1999) Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome Infection. Virus Res 64:33–42. [https://doi.org/10.1016/s0168-1702\(99\)00073-8](https://doi.org/10.1016/s0168-1702(99)00073-8)
- Lopez-Medina M, Perez-Lopez A, Alpuche-Aranda C, Ortiz-Navarrete V (2014) *Salmonella* modulates B cell biology to evade CD8 + T cell-mediated immune responses. Front Immunol 5:586. [https://](https://doi.org/10.3389/fimmu.2014.00586) doi.org/10.3389/fimmu.2014.00586
- Luis LB, Ana GT, Carlos GE et al (2022) *Salmonella* promotes its own survival in B cells by inhibiting autophagy. Cells 11. [https://doi.](https://doi.org/10.3390/cells11132061/s1) [org/10.3390/cells11132061/s1](https://doi.org/10.3390/cells11132061/s1)
- Lunney JK, Ho CS, Wysocki M, Smith DM (2009) Molecular genetics of the swine major histocompatibility complex, the SLA complex. Dev Comp Immunol 33:362–374. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.dci.2008.07.002) [dci.2008.07.002](https://doi.org/10.1016/j.dci.2008.07.002)
- Luo X, Zhang X, Wu X et al (2018) *Brucella* downregulates Tumor necrosis factor-α to promote intracellular survival via Omp25 regulation of different microRNAs in porcine and murine macrophages. Front Immunol 8:2013. [https://doi.org/10.3389/](https://doi.org/10.3389/fimmu.2017.02013) [fimmu.2017.02013](https://doi.org/10.3389/fimmu.2017.02013)
- Mahu M, Boyen F, Canessa S et al (2017) An avirulent *Brachyspira hyodysenteriae* strain elicits intestinal IgA and slows down spread of swine Dysentery. Vet Res 48:1–13. [https://doi.org/10.1186/](https://doi.org/10.1186/s13567-017-0465-y) [s13567-017-0465-y](https://doi.org/10.1186/s13567-017-0465-y)
- Marshall AJ, Niiro H, Yun TJ, Clark EA (2000) Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase cgamma pathway. Immunol Rev 176:30–46. <https://doi.org/10.1034/j.1600-065x.2000.00611.x>
- Matz MV, Wright RM, Scott JG (2013) No control genes required: bayesian analysis of qRT-PCR data. PLoS ONE 8:e71448. [https://](https://doi.org/10.1371/JOURNAL.PONE.0071448) doi.org/10.1371/JOURNAL.PONE.0071448
- Mills DM, Stolpa JC, Cambier JC (2007) Modulation of MHC class II signal transduction by CD19. Adv Exp Med Biol 596:139–148. https://doi.org/10.1007/0-387-46530-8_12
- Mócsai A, Ruland J, Tybulewicz VLJ (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10:387. <https://doi.org/10.1038/nri2765>
- Morbach H, Schickel JN, Cunningham-Rundles C et al (2016) CD19 controls toll-like receptor 9 responses in human B cells. J Allergy Clin Immunol 137:889–898e6. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jaci.2015.08.040) [jaci.2015.08.040](https://doi.org/10.1016/j.jaci.2015.08.040)
- Morikawa K, Kubagawa H, Suzuki T, Cooper MD (1987) Recombinant interferon-alpha, -beta, and -gamma enhance the proliferative response of human B cells. J Immunol 139:761–766. [https://](https://doi.org/10.4049/jimmunol.139.3.761) doi.org/10.4049/jimmunol.139.3.761
- Moura EAG, de O DG, Turco CH et al (2021) *Salmonella* bacterin vaccination decreases shedding and colonization of *Salmonella Typhimurium* in pigs. Microorganisms 9. [https://doi.org/10.3390/](https://doi.org/10.3390/microorganisms9061163/S1) [microorganisms9061163/S1](https://doi.org/10.3390/microorganisms9061163/S1)
- Naresh R, Song Y, Hampson DJ (2009) The intestinal spirochete *Brachyspira pilosicoli* attaches to cultured Caco-2 cells and induces pathological changes. PLoS ONE 4. [https://doi.](https://doi.org/10.1371/journal.pone.0008352) [org/10.1371/journal.pone.0008352](https://doi.org/10.1371/journal.pone.0008352)
- Neves P, Lampropoulou V, Calderon-Gomez E et al (2010) Signaling via the MyD88 adaptor protein in B cells suppresses protective immunity during *Salmonella* Typhimurium Infection. Immunity 33:777–790. <https://doi.org/10.1016/j.immuni.2010.10.016>
- Niiro H, Clark EA (2002) Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2002 212 2:945–956. [https://doi.](https://doi.org/10.1038/nri955) [org/10.1038/nri955](https://doi.org/10.1038/nri955)
- Nishizumi H, Taniuchi I, Yamanashi Y et al (1995) Impaired proliferation of peripheral B cells and indication of autoimmune Disease in lyn-deficient mice. Immunity 3:549–560. [https://doi.](https://doi.org/10.1016/1074-7613(95)90126-4) [org/10.1016/1074-7613\(95\)90126-4](https://doi.org/10.1016/1074-7613(95)90126-4)
- Nishizumi H, Horikawa K, Mlinaric-Rascan I, Yamamoto T (1998) A double-edged kinase Lyn: a positive and negative regulator for antigen receptor-mediated signals. J Exp Med 187:1343–1348. <https://doi.org/10.1084/jem.187.8.1343>
- Otero DC, Omori SA, Rickert RC (2001) CD19-dependent activation of akt kinase in B-lymphocytes. J Biol Chem 276:1474–1478. <https://doi.org/10.1074/jbc.M003918200>
- Patterson SK, Kim HB, Borewicz K, Isaacson RE (2016) Towards an understanding of *Salmonella enterica* serovar typhimurium persistence in swine. Anim Heal Res Rev 17:159–168. [https://doi.](https://doi.org/10.1017/s1466252316000165) [org/10.1017/s1466252316000165](https://doi.org/10.1017/s1466252316000165)
- Peeters L, Dewulf J, Boyen F et al (2020) Bacteriological evaluation of vaccination against *Salmonella* Typhimurium with an attenuated vaccine in subclinically infected pig herds. Prev Vet Med 182:104687. <https://doi.org/10.1016/j.prevetmed.2019.04.016>
- Perez-Lopez A, Rosales-Reyes R, Alpuche-Aranda CM, Ortiz-Navarrete V (2013) *Salmonella* downregulates nod-like receptor family CARD domain containing protein 4 expression to promote its survival in B cells by preventing inflammasome activation and cell death. J Immunol 190:1201–1209. [https://doi.org/10.4049/](https://doi.org/10.4049/jimmunol.1200415) [jimmunol.1200415](https://doi.org/10.4049/jimmunol.1200415)
- Pholwat S, Pongpan T, Chinli R et al (2020) Antimicrobial resistance in swine fecal specimens across different farm management systems. Front Microbiol 11:1238. [https://doi.org/10.3389/](https://doi.org/10.3389/fmicb.2020.01238) [fmicb.2020.01238](https://doi.org/10.3389/fmicb.2020.01238)
- Rahe MC, Dvorak CMT, Wiseman B et al (2020) Establishment and characterization of a porcine B cell Lymphoma cell line. Exp Cell Res 390:111986.<https://doi.org/10.1016/j.yexcr.2020.111986>
- Rahman MM, McFadden G (2006) Modulation of Tumor Necrosis factor by microbial pathogens. PLOS Pathog 2:e4. [https://doi.](https://doi.org/10.1371/journal.ppat.0020004) [org/10.1371/journal.ppat.0020004](https://doi.org/10.1371/journal.ppat.0020004)
- Råsbäck T, Jansson DS, Johansson KE, Fellström C (2007) A novel enteropathogenic, strongly haemolytic spirochaete isolated from pig and mallard, provisionally designated *Brachyspira suanatina* sp. nov. Environ Microbiol 9:983–991. [https://doi.](https://doi.org/10.1111/j.1462-2920.2006.01220.x) [org/10.1111/j.1462-2920.2006.01220.x](https://doi.org/10.1111/j.1462-2920.2006.01220.x)
- Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A (2012) Integration of B cell responses through toll-like receptors and antigen receptors. Nat Rev Immunol 12:282. [https://doi.](https://doi.org/10.1038/nri3190) [org/10.1038/nri3190](https://doi.org/10.1038/nri3190)
- Reth M (1989) Antigen receptor tail clue. Nature 338:383–384. [https://](https://doi.org/10.1038/338383b0) doi.org/10.1038/338383b0
- Rolli V, Gallwitz M, Wossning T et al (2002) Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 10:1057–1069. [https://doi.org/10.1016/](https://doi.org/10.1016/s1097-2765(02)00739-6) [s1097-2765\(02\)00739-6](https://doi.org/10.1016/s1097-2765(02)00739-6)
- Rosales-Reyes R, Alpuche-Aranda C, De La Luz Ramírez-Aguilar M et al (2005) Survival of *Salmonella* enterica Serovar Typhimurium within late endosomal-lysosomal compartments of B lymphocytes is associated with the inability to use the vacuolar alternative major histocompatibility complex class I antigen-processing pathway. Infect Immun 73:3937–3944. [https://doi.org/10.1128/](https://doi.org/10.1128/iai.73.7.3937-3944.2005) [iai.73.7.3937-3944.2005](https://doi.org/10.1128/iai.73.7.3937-3944.2005)
- Rosales-Reyes R, Pérez-López A, Sánchez-Gómez C et al (2012) *Salmonella* infects B cells by macropinocytosis and formation of spacious phagosomes but does not induce pyroptosis in favor of its survival. Microb Pathog 52:367–374. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.micpath.2012.03.007) [micpath.2012.03.007](https://doi.org/10.1016/j.micpath.2012.03.007)
- Rubin JE, Costa MO, Hill JE et al (2013) Reproduction of mucohaemorrhagic diarrhea and Colitis indistinguishable from swine Dysentery following experimental inoculation with *Brachyspira hampsonii* strain 30446. PLoS ONE 8:e57146. [https://doi.](https://doi.org/10.1371/journal.pone.0057146) [org/10.1371/journal.pone.0057146](https://doi.org/10.1371/journal.pone.0057146)
- Saijo K, Schmedt C, Su I, hsin et al (2003) Essential role of src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 4:274–279. [https://doi.org/10.1038/](https://doi.org/10.1038/NI893) [NI893](https://doi.org/10.1038/NI893)
- Sato S, Ono N, Steeber DA et al (1996) CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J Immunol 157:4371–4378. [https://doi.](https://doi.org/10.4049/jimmunol.157.10.4371) [org/10.4049/jimmunol.157.10.4371](https://doi.org/10.4049/jimmunol.157.10.4371)
- Sato S, Hasegawa M, Fujimoto M et al (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 165:6635–6643. [https://doi.org/10.4049/](https://doi.org/10.4049/jimmunol.165.11.6635) iimmunol.165.11.6635
- Scheuermann RH, Racila E (2009) CD19 antigen in Leukemia and Lymphoma diagnosis and immunotherapy. Leuk Lymphoma 18:385–397.<https://doi.org/10.3109/10428199509059636>
- Schmidt S, Sassu EL, Vatzia E et al (2021) Vaccination and Infection of swine with *Salmonella* Typhimurium induces a systemic and local multifunctional CD4 + T-Cell response. Front Immunol 11:3428. <https://doi.org/10.3389/FIMMU.2020.603089/BIBTEX>
- Shahaf G, Gross AJ, Sternberg-Simon M et al (2012) Lyn deficiency affects B cell maturation as well as survival. Eur J Immunol 42:511. <https://doi.org/10.1002/eji.201141940>
- Smith RP, Andres V, Martelli F et al (2018) Maternal vaccination as a *Salmonella* Typhimurium reduction strategy on pig farms. J Appl Microbiol 124:274–285.<https://doi.org/10.1111/jam.13609>
- Song Y, La T, Phillips ND et al (2009) A reverse vaccinology approach to swine Dysentery vaccine development. Vet Microbiol 137:111– 119. <https://doi.org/10.1016/j.vetmic.2008.12.018>
- Stepanek O, Draber P, Drobek A et al (2013) Nonredundant roles of src-family kinases and Syk in the initiation of B-cell antigen receptor signaling. J Immunol 190:1807–1818. [https://doi.](https://doi.org/10.4049/jimmunol.1202401) [org/10.4049/jimmunol.1202401](https://doi.org/10.4049/jimmunol.1202401)
- Swanson CL, Wilson TJ, Strauch P et al (2010) Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J Exp Med 207:1485–1500. [https://doi.org/10.1084/](https://doi.org/10.1084/jem.20092695) [jem.20092695](https://doi.org/10.1084/jem.20092695)
- Taylor DJ, Simmons JR, Laird HM (1980) Production of Diarrhoea and Dysentery in pigs by feeding pure cultures of a spirochaete differing from *Treponema hyodysenteriae*. Vet Rec 106:326–332. <https://doi.org/10.1136/vr.106.15.326>
- Theofilopoulos AN, Baccala R, Beutler B, Kono DH (2004) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336. [https://doi.org/10.1146/annurev.](https://doi.org/10.1146/annurev.immunol.23.021704.115843) [immunol.23.021704.115843](https://doi.org/10.1146/annurev.immunol.23.021704.115843)
- Turner M, Gulbranson-Judge A, Quinn ME et al (1997) Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. J Exp Med 186:2013–2021. <https://doi.org/10.1084/jem.186.12.2013>
- van der Wolf P, Meijerink M, Libbrecht E et al (2021) *Salmonella* Typhimurium environmental reduction in a farrow-to-finish pig herd using a live attenuated *Salmonella* Typhimurium vaccine. Porc Heal Manag 7:1–17. [https://doi.org/10.1186/](https://doi.org/10.1186/S40813-021-00222-1/FIGURES/3) [S40813-021-00222-1/FIGURES/3](https://doi.org/10.1186/S40813-021-00222-1/FIGURES/3)
- van Zelm MC, Reisli I, van der Burg M et al (2006) An antibodydeficiency syndrome due to mutations in the CD19 gene. N Engl J Med 354:1901–1912. <https://doi.org/10.1056/nejmoa051568>
- VanderWaal K, Deen J (2018) Global trends in infectious Diseases of swine. Proc Natl Acad Sci 115:11495–11500. [https://doi.](https://doi.org/10.1073/pnas.1806068115) [org/10.1073/pnas.1806068115](https://doi.org/10.1073/pnas.1806068115)
- Vazquez MI, Catalan-Dibene J, Zlotnik A (2015) B cells responses and cytokine production are regulated by their immune

microenvironment. Cytokine 74:318. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.cyto.2015.02.007) [cyto.2015.02.007](https://doi.org/10.1016/j.cyto.2015.02.007)

- Wang K, Wei G, Liu D (2012) CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 2012 11 1:1–7.<https://doi.org/10.1186/2162-3619-1-36>
- Wang J, Wang Y, Liu B et al (2021) Porcine epidemic Diarrhea Virus envelope protein blocks SLA-DR expression in barrow-derived dendritic cells by inhibiting promoters activation. Front Immunol 12:4748.<https://doi.org/10.3389/fimmu.2021.741425>
- Werner M, Hobeika E, Jumaa H (2010) Role of PI3K in the generation and survival of B cells. Immunol Rev 237:55–71. [https://doi.](https://doi.org/10.1111/j.1600-065x.2010.00934.x) [org/10.1111/j.1600-065x.2010.00934.x](https://doi.org/10.1111/j.1600-065x.2010.00934.x)
- Williams GT, Peaker CJG, Patel KJ, Neuberger MS (1994) The alpha/ beta sheath and its cytoplasmic tyrosines are required for signaling by the B-cell antigen receptor but not for capping or for serine/threonine-kinase recruitment. Proc Natl Acad Sci 91:474– 478.<https://doi.org/10.1073/pnas.91.2.474>
- Xu Y, Harder KW, Huntington ND et al (2005) Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 22:9–18. <https://doi.org/10.1016/j.immuni.2004.12.004>
- Yamanashi Y, Kakiuchi T, Mizuguchi J et al (1991) Association of B cell antigen receptor with protein tyrosine kinase Lyn. Sci (80-) 251:192–194.<https://doi.org/10.1126/science.1702903>
- Ziegler C, Goldmann O, Hobeika E et al (2011) The dynamics of T cells during persistent *Staphylococcus aureus* Infection: from antigen-reactivity to *in vivo* anergy. EMBO Mol Med 3:652–666. <https://doi.org/10.1002/emmm.201100173>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.