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Introduction

Swine dysentery (SD), spirochetal colitis (SC) and swine 
salmonellosis (SS) are diarrheic diseases affecting swine in 
the grower-finisher stage, and are associated with decreased 
growth performance and increased production costs (Funk 
and Gebreyes 2004; Alvarez-Ordóñez et al. 2013; Vander-
Waal and Deen 2018). SD is characterized by mucohaem-
orrhagic diarrhea and colitis. It is caused by Brachyspira 
hyodysenteriae (Harris et al. 1972), B. suanatina (Råsbäck 
et al. 2007) or B. hampsonii (Rubin et al. 2013). Brachyspira 
pilosicoli is the causative agent of SC, clinically described 
as mucoid, watery diarrhea linked to mild colitis when com-
pared to SD (Taylor et al. 1980). Salmonella enterica subsp. 
enterica serovar Typhimurium causes watery diarrhea and 
enterocolitis in growing pigs (Levine et al. 1945). In prac-
tice, these three diseases are often controlled and treated 
using antimicrobial therapy in commercial operations.

  Matheus de Oliveira Costa
matheus.costa@usask.ca

1 Animal Science Department, Federal University of Lavras, 
Lavras, Minas Gerais, Brazil

2 Department of Integrated Sciences, Faculty of Science, 
University of British Columbia, Vancouver, BC, Canada

3 Large Animal Clinical Sciences, Western College of 
Veterinary Medicine, University of Saskatchewan, 52 
Campus Drive, Saskatoon, SK S7N 5B4, Canada

4 Department of Population Health Sciences, Faculty of 
Veterinary Medicine, Utrecht University, Utrecht, the 
Netherlands

Abstract
Swine dysentery, spirochetal colitis, and salmonellosis are production-limiting enteric diseases of global importance to 
the swine industry. Despite decades of efforts, mitigation of these diseases still relies on antibiotic therapy. A common 
knowledge gap among the 3 agents is the early B-cell response to infection in pigs. Thus, this study aimed to character-
ize the porcine B-cell response to Brachyspira hyodysenteriae, Brachyspira hampsonii (virulent and avirulent strains), 
Brachyspira pilosicoli, and Salmonella Typhimurium, the agents of the syndromes mentioned above. Immortalized porcine 
B-cell line derived from a crossbred pig with lymphoma were co-incubated for 8 h with each pathogen, as well as E. 
coli lipopolysaccharide (LPS) and a sham-inoculum (n = 3/treatment). B-cell viability following treatments was evaluated 
using trypan blue, and the expression levels of B-cell activation-related genes was profiled using reverse transcription 
quantitative PCR. Only S. Typhimurium and LPS led to increased B-cell mortality. B. pilosicoli downregulated B-lympho-
cyte antigen (CD19), spleen associated tyrosine Kinase (syk), tyrosine-protein kinase (lyn), and Tumour Necrosis Factor 
alpha (TNF-α), and elicited no change in immunoglobulin-associated beta (CD79b) and swine leukocyte antigen class II 
(SLA-DRA) expression levels, when compared to the sham-inoculated group. In contrast, all other treatments significantly 
upregulated CD79b and stimulated responses in other B-cell downstream genes. These findings suggest that B. pilosicoli 
does not elicit an immediate T-independent B-cell response, nor does it trigger antigen-presenting mechanisms. All other 
agents activated at least one trigger within the T-independent pathways, as well as peptide antigen presenting mechanisms. 
Future research is warranted to verify these findings in vivo.
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Several different vaccine development strategies have 
been explored for SD (Song et al. 2009; Mahu et al. 2017; 
La et al. 2019), and SC (Casas et al. 2017). Despite these 
efforts, only partial protection has been induced and no 
effective vaccine for SD or SC is commercially available in 
the major pork producing countries. In contrast, commer-
cial Salmonella vaccines are available in many countries, 
targeting sows (Denagamage et al. 2007; Smith et al. 2018; 
Peeters et al. 2020; van der Wolf et al. 2021), piglets (Husa 
et al. 2009; Farzan and Friendship 2010; Schmidt et al. 
2021) or market-agepigs (Denagamage et al. 2007; Peeters 
et al. 2020), focusing not only in preventing clinical signs 
but in decreasing shedding and contamination of carcasses 
at slaughter. However, cross-protection between serovars 
is questionable, impacting vaccine uptake in commercial 
farms (Husa et al. 2009; Farzan and Friendship 2010; Moura 
et al. 2021). Thus, antimicrobials are still used for disease 
mitigation. Consequently, the emergence of antibiotic resis-
tant strains is a concern given that salmonellosis is linked 
to animal welfare, food safety, and security (Lekagul et al. 
2019; Pholwat et al. 2020).

B-cells express multiple intra and extracellular receptors 
capable of recognizing antigens, including bacterial, that 
trigger signals to modulate the innate and adaptive immune 
responses (Rawlings et al. 2012). T-cell independent B-cell 
activation takes part in the early response against pathogens 
through the production of IgM and possible IgD, and serves 
as a gateway to immunotolerance or immune activation 
(Boes et al. 2000). The B-cell receptor (BCR) is an impor-
tant player in this mechanism. It is formed by a membrane-
bound immunoglobulin (Ig) and a heterodimeric signaling 
subunit (CD79a/CD79b) (Reth 1989). Upon BCR crosslink-
ing by antigens, the proximal kinase lyn initiates the signal-
ing cascade phosphorylating tyrosines in the CD79a/CD79b 
BCR subunits, which results in recruitment and activation of 
the spleen tyrosine kinase (syk) (Yamanashi et al. 1991; Xu 
et al. 2005; Geahlen 2009). Syk leads to the phosphorylation 
and activation of downstream molecular pathways that lead 
to B-cell activation, proliferation and differentiation or qui-
escence (Niiro and Clark 2002; Werner et al. 2010).

We hypothesized that B-cell exposure to Brachyspira 
hyodysenteriae, Brachyspira pilosicoli, B. hampsonii and 
Salmonella Typhimurium activates different triggers within 
the B-cell intrinsic activation pathways. The goal of this 
study was to investigate the initial mRNA B-cell response 
to swine enteric pathogens, independently of T-cells.

Materials and methods

B-cell culture

An immortalized porcine B-cell line was established by 
isolating cells from a 6–7 months old, cross-bred commer-
cial pig, clinically healthy but with splenomegaly identified 
at slaughter, linked to multicentric lymphoma(Rahe et al. 
2020). Cells were cultured at 37 °C with 5% CO2 in a stan-
dard bench-top CO2 incubator (Thermo Fisher Scientific, 
Waltham, MA,USA) using high quality polystyrene flasks 
(Sarstedt, Numbest, Germany). Complete RPMI 1640 media 
with L-glutamine (Gibco Life Technologies, Co., Grand 
Island, NY, USA), supplemented with 10 mM HEPES buffer 
(Gibco Life Technologies, Co., Grand Island, NY, USA), 1X 
non-essential amino acids (Gibco Life Technologies, Co., 
Grand Island, NY, USA), 1 mM sodium pyruvate (Gibco 
Life Technologies, Co., Grand Island, NY, USA), 50 µg/mL 
gentamycin (Gibco Life Technologies, Co., Grand Island, 
NY, USA), 5,000 U/mL penicillin-streptomycin (Gibco Life 
Technologies, Co., Grand Island, NY, USA), and 5% fetal 
bovine serum (Gibco Life Technologies, Co., Grand Island, 
NY, USA) (Rahe et al. 2020). The confluence of the B-cell 
suspended cells was checked every day for the presence of 
cluster proliferation. Media was changed four times every 5 
days. For passaging, the cells and media were pipetted in a 
50 mL conical tube (VWR International, Radnor, PA, USA), 
and centrifuged at 500xg for 5 min at room temperature. 
The supernatant was decanted and cells resuspended in 10 
mL of cRPMI. Then, 2 mL of a cell mixture were added into 
a flask with 12 ml of cRPMI. Once cells reached 90–100% 
confluency, they were passaged at a concentration of 1 × 105 
cells/mL/flask for inoculation.

Bacterial inocula culture

Salmonella enterica serovar Typhimurium strain Χ4232 was 
cultured at 37 °C in Luria-Bertani broth (LB, BD Canada, 
Oakville, ON, Canada,Costa et al. 2020). Brachyspira hyo-
dysenteriae strain G44 (B. hyo), the virulent Brachyspira 
hampsonii clade II strain 30,446 (B. hampsonii), the non-
pathogenic Brachyspira hampsonii clade 2 strain KL-180 
(B. KL180), and Brachyspira pilosicoli strain ATCC 51,139 
(B. pilosicoli) were cultured in brain heart infusion (BHI) 
broth (Becton and Dickinson Company, Sparks, MD, USA) 
supplemented with 5% (v/v) of fetal bovine serum, 5% (v/v) 
of sheep’s blood and 1% (w/v) of glucose. and incubated 
under anaerobiosis (Anaerogen, Oxoid Limited, Basing-
stoke, United Kingdom) at 39ºCA B. pilosicoli aliquot was 
sonicated (Vibracell Sonicator, Sonics & Materials Inc., 
Danbury, Connecticut, USA) for 2 min at 20 kHz to inacti-
vate the bacteria (B. pilo dead) (Azuonwu et al. 2015).
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Inoculation procedure25 mL flasks containing B-cells 
at 1 × 105 cells/mL were exposed to one of the following 
inocula: negative control (sham inoculated, n = 6); positive 
control (100 µg/flask of E. coli O111:B4 lipopolysaccha-
ride, LPS, n = 6); B. hyo (1.69 × 107 genome equivalents 
(GE)/mL, n = 6); B. hampsonii (1.49 × 109 GE/mL, n = 3), B. 
pilosicoli (3.35 × 1010 GE/mL, n = 6), B. KL180 (4.79 × 109 
GE/mL, n = 3), B. pilo dead (1.26 × 1011 GE/mL, n = 3), 
and S. Typhimurium (4.32 × 109 CFU/mL, n = 6). Inocula 
were prepared by centrifuging bacterial culture broth at 
10,000 rpm (21,385 x g) for 10 min. Next, cell pellets were 
resuspended in 6 mL of cRPMI and inoculated into the 
flasks containing B-cells. Co-incubation followed for 8 h at 
37 °C in 5% CO2.

B-cell viability assay

Following the exposure period, B-cell viability was mea-
sured using trypan blue (Lonza, Walkersville, MD, USA). 
Briefly, 0.1 mL of 0.4% trypan blue was added to a 0.4 
mL aliquot from each flask, incubated for 2 min at room 
temperature and counted using a hemocytometer chamber 
(Hausser Scientific, Horsham, PA, USA) and a light micro-
scope at 40x magnification. Results are reported as total 
dead cells/total cell count x 100.

Bacterial viability

Before the co-incubation period, 100 µL of each Brachyspira 
inocula were plated on blood agar plates and incubated 
anaerobically using a commercial system (Anaerogen, 
Oxoid Limited, Basingstoke, United Kingdom) at 42 °C for 
48 h. Similarly, 100 µL of Salmonella Typhimurium were 
plated on LB agar plates (Bectron, Dickinson and Company 
BD, Sparks, MD, USA) and incubated at 39ºC for 24 h. 
After the co-incubation period, 100 µL of cRPMI contain-
ing any of the Brachyspira inocula or cRPMI inoculated 
with Salmonella Typhimurium were plated on their respec-
tive medium plates and environmental conditions described 
above.

Relative mRNA expression levels

Expression of CD19 (B-lymphocyte antigen), CD79b 
(immunoglobulin-associated beta), lyn (tyrosine-protein 
kinase), syk (spleen associated tyrosine Kinase), SLA-DRA 
(swine leukocyte antigen class II), tumor necrosis factor 
alpha (TNF-α), interferon alpha (IFN-α), interferon beta 
(IFN-β), and interleukin 10 (IL-10) was evaluated by reverse 
transcriptase, reverse transcription quantitative PCR. Prim-
ers used for amplification are described in Table 1.

The cytokines primers were previously published and 
validated (Alex Pasternak et al. 2020). All other primers 
were validated initially in silico by verifying primer nucleo-
tide homology with the target template, followed by ampli-
con size verification and melt-curve analysis using the PCR 
conditions described below. Following the co-incubation 
period, flasks containing B-cells and a given inocula were 
centrifuged at 500 g for 5 min. The supernatant was dis-
carded and 1 mL of RNAlater (Sigma-Aldrich Co., St. Louis, 
MO, USA) was added to the pellet and vortexed. Samples 
were stored at -80 °C until processing. RNA extraction was 
performed using a commercial kit (Qiagen RNeasy, Qiagen, 
Hilden, Germany) and cDNA was synthesized using Quan-
tiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) 
following the manufacturer’s instructions. PCR reactions 
were conducted in a Bio-Rad CFX instrument (Bio-Rad 
Laboratories Ltd., Mississauga, ON). Each 25 µL reac-
tion contained 12.5 mL of SsoAdvanced Universal SYBR 
Green Supermix (Bio-Rad Laboratories Ltd, Hercules, CA, 
USA), forward and reverse primers (20 µM each), and 2 mL 
of cDNA template. Reactions were incubated at 94◦C for 
3 min, followed by 40 cycles of 10 s at 95ºC, 10 s at 59ºC 
for SLA-DRA and IFN-β; 63.3ºC for IL-10 and CD19; and 
65ºC for IFN-α, TNF-α, SYK, LYN and CD79b, and 30 s at 
72ºC. Negative and no-template controls were included in 
each plate ran. All reactions were run in duplicates. Reaction 
duplicates that differed by more than 1 Ct were repeated.

Table 1 Primer pairs used in this study
Primer Sequences

Forward Reverse Efficiency
CD19 5´- GAAATTGCTGAGCCTGAACC-3´ 5´- AGCAACAGAACAGCCTTTCC-3´ 96%
CD79b 5´- TGATTTGGAGGAGGGAGTTC-3´ 5´- CATGGGAGAATGGGTTTGAG-3´ 99%
LYN 5´-TTGTTGACAAGAGGCTGTGC-3´ 5´ TGGGAAAGACACCAAAGCTC-3´ 105%
SYK 5´- CACTTGCCCTTCTTCTTTGG-3´ 5´- CGGTTGAAAGGGTTCTTGAG-3´ 95%
SLA-DRA 5´- ATCTCCCCTTCATGCCCTCA-3´ 5´- AGCTTCAAACTCCCAGTGCT-3´ 107%
TNF-α 5´- CCAATGGCAGAGTGGGTATG-3´ 5´- TGAAGAGGACCTGGGAGTAG-3´ 99%
IFN-α 5′-GGCTCTGGTGCATGAGATGC-3′ 5′-CAGCCAGGATGGAGTCCTCC-3′ 105%
IFN-β 5′-TGCAACCACCACAATTCCAGAAGG-3′ 5′-TCTGCCCATCAAGTTCCACAAGGA-3′ 101%
IL-10 5′-GGTTGCCAAGCCTTGTCAG-3′ 5′-AGGCACTCTTCACCTCCTC-3′ 98%
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levels. Other components of the BCR activation pathway 
(CD19, syk, and lyn) were significantly downregulated only 
following B. pilosicoli exposure (-2.8 fold, P = 0.0001; -2.1 
fold, P < 0.0001; and − 1.5 fold, P = 0.03, respectively). 
In contrast, syk mRNA levels was only increased when 
B-cells were exposed to B. hampsonii (2.2 fold, P = 0.02) or 
B. hyo (1.7 fold, P = 0.02), relative to the negative control 
group. None of the other treatments significantly altered the 
expression of lyn.

B. pilosicoli decreased B-cell expression of TNF-α (-2.4 
fold, P = 0.03), but increased IFN-β (5.5 fold, P = 0.01) 
mRNA production relative to the negative control group. 
B. hyo exposure increased the mRNA levels of IFN-α (2.0 
fold, P = 0.02) and IFN-β (5.9, P = 0.01). S. Typhimurium 
upregulated the expression of IFN-α (1.9 fold, P = 0.03) and 
IL-10 (2.1 fold, P = 0.03), in relation to the negative control 
samples. SLA-DRA was upregulated following B. hampso-
nii (2.5 fold, P = 0.01), B. pilo dead (2.4 fold, P = 0.01), B. 
hyo (1.61 fold, P = 0.05), B. KL180 (1.90 fold, P = 0.05), 
and S. Typhimurium (1.7 fold increased compared to con-
trol, P = 0.03), but remained unaffected in the presence of 
B. pilosicoli. A summary of the RT-PCR data is presented 
in Fig. 2.

Statistical analysis

Shapiro-Wilk test was used to evaluate the normality of 
data. Differences in B-cell mortality levels among the 
groups were analyzed using one-way ANOVA followed 
by post-hoc Tukey test. Real-time PCR data were analyzed 
using generalized linear mixed models based on lognormal-
Poisson error distribution, fitted using Marcov chain Monte 
Carlo sampling (Matz et al. 2013)(mcmc.qPCR package on 
R version 4.2.0, RStudio, Boston, MA, USA).

Results

B-cell viability

B-cell exposure to LPS (P < 0.001, 8.8% ± 0.4%) or S. 
Typhimurium (P = 0.001, 11.3% ± 0.5%) significantly 
increased mortality when compared to the negative control 
group (5.3% ± 0.2%) for all pairwise comparison. None of 
the other treatments led to a significant impact on B-cell 
viability. A summary of the data is presented in Fig. 1.

Relative mRNA expression levels

B-cell exposure to B. pilosicoli led to no change in the expres-
sion of the BCR signaling component CD79b. In contrast, 
all other treatments significantly increased CD79b mRNA 

Fig. 1 B-cell mortality after 8 h 
of exposure to sham-inoculated 
control (n = 6), LPS (n = 6), B. 
hampsonii clade II 30,466 (B.
hampsonii, n = 3), B. hyodysen-
teriae G44 strain (B. hyo, n = 6), 
B. pilosicoli (B. pilo, n = 6), B. 
pilosicoli sonified dead (B. pilo 
dead, n = 3), non-pathogenic B. 
hampsonii clade 2 KL180 (B. 
KL180, n = 3), and Salmonella 
Typhimurium (S. Typhimurium, 
n = 6). *-Denotes statisti-
cal significance between S. 
Typhimurium and all groups, 
except LPS (P = 0.001). 
**-Denotes statistical sig-
nificance between LPS and all 
groups, except S. Typhimurium 
(P < 0.001)

 

1 3

994



Veterinary Research Communications (2024) 48:991–1001

Fig. 2 Expression of B-cell activation and proliferation marker genes 
after 8 h of exposure to sham-inoculated control (n = 6), LPS (n = 6), B. 
hampsonii clade II 30,466 (B.hampsonii, n = 3), B. hyodysenteriae G44 
strain (B. hyo, n = 6), B. pilosicoli (B. pilo, n = 6), B. pilosicoli sonified 
dead (B. pilo dead, n = 3), non-pathogenic B. hampsonii clade 2 KL180 
(B. KL180, n = 3), and Salmonella Typhimurium (S. Typhimurium, 

n = 6). measured by quantitative real-time RT-PCR. Bars depict mean 
fold change (log2) values from eight treatments, relative to the nega-
tive control group, and error bars represent 95% confidence intervals. 
**- Denotes statistical significance (P < 0.05). *- Denotes statistical 
significance (P = 0.05)
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(Sato et al. 1996, 2000; Inaoki et al. 1997). Through Akt 
kinase signaling and tyrosines phosphorylation, CD19 is 
required for MHC-II-mediated downstream signaling (Mills 
et al. 2007), and play a role in immunoglobulin-induced acti-
vation of B-cell or their antigen-independent development 
(Otero et al. 2001; Wang et al. 2012). CD19 also plays a role 
in TLR9 signaling pathways in human B cells (Morbach et 
al. 2016), which is activated by bacterial DNA (Dalpke et 
al. 2006). We found that B. pilosicoli exposure to B-cells 
downregulated CD19 expression. Although other molecules 
and receptors from CD19-activated pathways were not eval-
uated in the present studywe hypothesize that B. pilosicoli 
may increase the BCR activation threshold, repress B-cell 
expansion and impair pathogen recognition via MHC-II or 
TLR-9, thus crippling the early B-cell response to infection 
and potentially inducing tolerance to B. pilosicoli antigens – 
which would aid in its host-attached lifestyle.

One of the earliest events following BCR activation is 
phosphorylation of lyn and syk protein kinases (Stepanek 
et al. 2013). Lyn plays a crucial role in activating or inhibit-
ing BCR signaling (Yamanashi et al. 1991). It can enhance 
B-cell downstream signaling, phosphorylating ITAMs on 
B-cell receptor Igα/Igβ (CD79a/CD79b) chains triggering 
the activation of the spleen tyrosine kinase (syk) (Kurosaki 
et al. 1994; Johnson et al. 1995). Lyn also phosphorylates 
tyrosine-based inhibitory motifs (ITIMs) on inhibitory 
receptors (CD22 and FcγRIIB) that suppress BCR signaling 
(Cornall et al. 1998; Nishizumi et al. 1998). Syk binds to 
the BCR (Rolli et al. 2002), phosphorylating not only ITAM 
tyrosines at CD79a/CD79b but also other proteins, including 
CD19 and BCAP, activating the PI3K pathway and the SH2 
domain-containing leukocyte protein of 65 kDa (SLP-65) 
(Mócsai et al. 2010; Heizmann et al. 2010). These signals 
support further development of B-cells from pro-B to pre-
B-cell (Turner et al. 1997; Saijo et al. 2003) Here we showed 
that the expression of lyn and syk were downregulated after 
B-cell exposure to live B. pilosicoli. Lyn-deficient mice 
have shown reduced numbers of mature follicular B-cells, 
absence of marginal zone and higher proportion of imma-
ture B-cells (Nishizumi et al. 1995; Shahaf et al. 2012). Lyn 
deficiency is also involved in decreased phagocytosis and 
autophagy upon Pseudomonas aeruginosa infection of mice 
alveolar macrophages (Li et al. 2016). Syk deficiency also 
impaired the differentiation and maturation of B-lineage 
cells (Cheng et al. 1995; Turner et al. 1997; Cornall et al. 
2000). Taken together, the decrease in CD19, lyn, and syk 
expression following B. pilosicoli suggest that the B-cell 
response to this pathogen is weakened from a BCR-depen-
dent or independent activation perspective, potentially lead-
ing to tolerance.

SLA-DRA are expressed mainly in antigen presenting 
cells, and it is a key player in extracellular peptide antigen 

Bacterial viability

Post-inoculation evaluation of the viability of bacterial 
inocula resulted in no growth of the Brachyspira spp. and S. 
Typhimurium in their respective culture medium.

Discussion

Here we investigated the T-cell independent B-cell response 
to enteric pathogens associated with grower-finisher diar-
rhea in pigs. Surprisingly, B. pilosicoli downregulated genes 
involved in B-cell activation and differentiation, and did not 
trigger the expression of the major histocompatibility com-
plex type II (MHC-II, SLA-DRA gene). B. hyodysenteriae, 
different strains of B. hampsonii, S. Typhimurium and killed 
B. pilosicoli triggered activating responses by the host cells. 
Grower-finisher infectious diarrhea directly impacts profit 
in commercial swine operations (Patterson et al. 2016; Bur-
rough 2017). Understanding B-cell response to pathogens 
to which antibiotics are largely used in pigs may aid in the 
development of preventative tools.

Our data showed that B-cell exposure to all treatments 
other than B. pilosicoli upregulated CD79b expression. After 
antigen binding to BCR, CD79b is the initial signaling trig-
ger involved in B-cell maturation and activation (Koyama 
et al. 1997; Kraus et al. 2004; Williams et al. 1994). Phos-
phorylation of the tyrosine-based activation motif (ITAM) 
on CD79b by Src-family kinases activates syk, followed by 
downstream signaling molecules, such as phospholipase C 
gamma 2 (PLC-γ2) and phosphoinositide 3-kinase (PI3K) 
(Marshall et al. 2000; Niiro and Clark 2002). These mol-
ecules form the main BCR signaling cascade involved in 
B lymphocyte cell-cycle progression and survival pathways 
(Fruman et al. 1999; Hikida et al. 2003). CD79b expression 
is up-regulated in mice kidneys infected with Staphylococ-
cus aureus (Ziegler et al. 2011), and in sheep mammary 
tissue infected with Mycoplasma agalactiae (Chopra-
Dewasthaly et al. 2017). We hypothesize that B. pilosicoli 
likely did not lead to crosslinking of BCR, as no changes in 
CD79b expression were identified. CD19 is a co-receptor of 
the B-cell cell-surface signal-transduction complex (includ-
ing CD21, CD81 and CD225) that plays an important role 
on B-cell activation by reducing the BCR activation thresh-
old, and by promoting BCR-independent B-cell expansion 
through c-MYC protein stability (Fearon and Carroll 2003; 
Scheuermann and Racila 2009; Chung et al. 2012). CD19 
deficient mice and humans respond poorly to transmem-
brane signals, leading to impaired humoral response (Engel 
et al. 1995; Fujimoto et al. 2000; van Zelm et al. 2006). 
In contrast, overexpression of CD19 leads to increased 
humoral response and disruption of tolerance mechanisms 
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TNF-α is one of the earliest responses by B-cells follow-
ing crosslinking of surface immunoglobulins (Goldfeld et 
al. 1992). This molecule is a required autocrine factor for 
B-cell growth, promoting cell differentiation (Boussiotis et 
al. 1994). Our results revealed that TNF-α was significantly 
downregulated following B-cell exposure to B. pilosicoli, 
but not killed B. pilosicoli or any other treatment. In con-
trast, a previous study using Caco-2 cells found that inacti-
vated B. pilosicoli led to the upregulation of TNF-α, while 
live B. pilosicoli did not significantly change its expres-
sion levels (Naresh et al. 2009). Caco-2 are epithelial cells 
derived from human samples, not pigs. This may explain 
the differences observed here. Multiple bacterial pathogens 
have evolved to directly or indirectly supress the production 
of TNF-α, thus facilitating parasitism (Rahman and McFad-
den 2006; Luo et al. 2018). It is plausible that B. pilosicoli 
suppresses lymphocyte TNF-α production to support its 
periplasmatic lifestyle through a mechanism that remains to 
be clarified.

IL-10 plays a role enhancing B-cell proliferation and dif-
ferentiation, and regulates MHC-II antigen presentation (Go 
et al. 1990; Burdin et al. 1997; Vazquez et al. 2015). We 
found that S. Typhimurium was the only pathogen evaluated 
in this study to increase IL-10 expression after co-exposure 
with B-cells. Mice infected with Salmonella showed rapid 
differentiation of IL-10-expressing B cells in the spleen by 
a mechanism involving the myeloid differentiation primary 
response gene 88 (MyD88) and TLR2 and/or TLR4 (Neves 
et al. 2010). Although we did not investigate those path-
ways genes, our results corroborate previous findings that 
S. Typhimurium may hijack IL-10-signalling to favour its 
intracellular lifestyle.

S. Typhimurium significantly increased B-cell mortal-
ity when compared to the negative control group. Previous 
research in vivo and in vitro indicated that Salmonella is 
able to infect and survive in B-cell endosomal-lysosomal 
compartments (Rosales-Reyes et al. 2005; Castro-Eguiluz et 
al. 2009). These cells act as a reservoir for persistence, dis-
semination and evasion of CD8+ T-cell-mediated responses 
(Lopez-Medina et al. 2014). This mechanism is linked to a 
negative regulation in NLRC4, inhibiting the secretion of 
IL-1β and its cytotoxic effects, preventing B-cell death by 
pyroptosis (Rosales-Reyes et al. 2012; Perez-Lopez et al. 
2013). A second study showed that Salmonella could also 
inhibit B-cell autophagy by activating mTORC1 by secret-
ing its virulence protein SopB (Luis et al. 2022). This may 
be linked to the overwhelmingly high amount of bacteria to 
which B-cells were exposed to in our study.

We recognize that there are multiple steps involved in 
T-independent B-cell activation, and the work presented 
here focused only on a few key players of these complex 
mechanisms. Further work dissecting the downstream 

processing and presentation, T-cell dependent response and 
vaccine efficacy (López Fuertes et al. 1999; Lunney et al. 
2009). In our study, SLA-DRA was upregulated by B-cell 
treatment with all inocula, except for live B. pilosicoli 
and LPS. Replication of porcine epidemic diarrhea virus 
(PEDV) in bone marrow-derived dendritic cells inhibited 
expression of SLA-DRA, showing PEDV has mechanisms 
to evade the host immune response (Wang et al. 2021). Our 
results suggest that the cell line used recognized all the 
treatments as foreign antigens, except for live B. pilosicoli. 
The mechanism through which B. pilosicoli escapes antigen 
processing and presentation may be a key feature to enable 
vaccine development in the future.

We found increased expression of IFN-α upon B-cell 
exposure to B. hyodysenteriae, S. Typhimurium, and IFN-β 
following B. hyodysenteriae and B. pilosicoli exposure. 
Type I interferons (IFN-α/IFN-β, T1IFN) are early innate 
immunity cytokines and have pleiotropic effects on the 
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2006; Fink et al. 2006; Swanson et al. 2010; Kiefer et al. 
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1987; Braun et al. 2002). In contrast, exacerbated exposure 
to T1IFN has been shown to be harmful to the host, pro-
moting proliferation of self-reactive B-cells in autoimmune 
diseases in humans (Theofilopoulos et al. 2004). Thus, the 
role of T1IFN in response to bacterial infection remains to 
be clarified (Boxx and Cheng 2016). Here we found that B. 
hyodysenteriae and S. Typhimurium led to increased levels 
of IFN-α, when compared to the control group. Exogenous 
or endogenous IFN-α was found to modulate B-cell pro-
liferation and their differentiation into antibody-secreting 
cells (Gujer et al. 2011). Interestingly, Domeier et al. (2018) 
found evidence that intrinsic B-cell T1IFN signaling causes 
loss of tolerance in germinal center cells. Also, IFN-α 
amplifies naïve B-cell activation and immunoglobulin pro-
duction through TLR-9/MyD88-dependent signaling after 
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et al. 2009). In parallel, IFN-β was upregulated by B. hyo-
dysenteriae and B. pilosicoli. IFN-β exposure reduces B-cell 
capacity to respond to antigen mediated signals, focusing 
its response on immediate innate system measures (Khshei-
bun et al. 2014). We postulate that S. Typhimurium and B. 
hyodysenteriae triggered the observed B-cell responses due 
to, in part, the increased production of IFN-α. Oppositely, 
B. pilosicoli effect on IFN-β only may explain the lack of 
antigen-based B-cell response.
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effects of the pathways found affected in this study is war-
ranted, especially regarding B. pilosicoli interaction with 
the host. In addition, protein quantification or data on 
downstream steps other than mRNA expression will help 
validate the findings presented here.Our findings revealed 
that B. pilosicoli has a profound impact on B-cell activa-
tion, both in T-dependent and T-independent manners. An 
antigenicity spectrum among the other Brachyspira tested 
was also identified, helping explain their varied virulence. 
S. Typhimurium was the only agent to induce B-cell death, 
among those tested. Further studies on the consequences 
of the pathogen-B-cell interactions identified here are sug-
gested to help clarify pathogenesis mechanisms, and may 
fill in gaps leading to vaccine development.
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