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This introductory section outlines why we utilize the D-score: 

• reviewing key discussions about the first 1000 days in a child’s life (1.1.1) 
• highlighting the relevance of early childhood development for later life 

(1.1.2) 
• discussing the use of stunting as a proxy for development (1.1.3) 
• pointing to existing instruments to quantify neurocognitive development 

(1.1.4) 
• explaining why we have written this chapter (1.1.5) 
• delineating the intended audience (1.1.6) 

1.1.1 FIRST 1000 DAYS 

The first 1000 days refers to the time needed for a child to grow from 
conception to the second birthday. It is a time of rapid change. During this 
period the architecture of the developing brain is very open to the influence of 
relationships and experiences (Shonkhoff et al., 2016). Early experiences affect 
the nature and quality of the brain’s developing architecture by reinforcing 
some synapses and pruning others through lack of use. The first 1000 days 
shape the brain’s architecture, but higher-order brain functions continue to 
develop into adolescence and early adulthood (Kolb et al., 2017). 
The classic nature versus nurture debate contrasts the viewpoints that 

variation in development is primarily due to either genetic or environmental 
differences. The current scientific consensus is that both genetic predisposition 
and ecological differences influence all traits (Rutter, 2007). The environment 
in which a child develops (before and soon after birth) provides experiences 
that can modify gene activity (Caspi et al., 2010). Negative influences, such as 
exposure to stressful life circumstances or environmental toxins may leave a 
chemical signature on the genes, thereby influencing how genes work in that 
individual. 
During the first 1000 days, infants are highly dependent on their caregivers to 

protect them from adversities and to help them regulate their physiology and 
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behavior. As Figure 1.1.1 illustrates, caregivers can do this through responsive 
care, including routines for sleeping and feeding. To reach their developmental 
potential, children require nutrition, responsive caregiving, opportunities to explore 
and learn, and protection from environmental threats (Black et al., 2017). 
Gradually, children build self-regulatory skills that enable them to manage 
stress as they interact with the world around them (Johnson et al., 2013). 

1.1.2 RELEVANCE OF CHILD DEVELOPMENT 

The first 1000 days is a time of rapid change. Early experiences affect brain 
development and influence lifelong learning and health (Shonkhoff et al., 
2016). Healthy development is associated with future school achievement, 
well-being, and success in life (Bellman et al., 2013). 
Professionals and parents consider it important to monitor children’s 

development. Tracking child development enables professionals to identify 
children with signs of potential delay. Timely identification can help 
children and their parents to benefit from early intervention. In a normal 
population, developmental delay affects about 1–3% of children. A delay in 
development may indicate underlying disorders. About 1% of children have 
an autism spectrum disorder (Baird et al., 2006), 1–2% a mild learning 
disability, and 5–10% have a specific learning disability in a single domain 
(Horridge, 2011). 
Children develop at different rates, and it is vital to distinguish those who are 

within the “normal” range from those who are following a more pathological 

FIGURE 1.1.1 Serve and return interactions shape brain architecture. 

Source: Shutterstock, under license. 
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course (Bellman et al., 2013). There is good evidence that early identification 
and early intervention improve the outcomes of children (Britto et al., 2017). 
Early intervention is crucial for children with developmental disabilities 
because barriers to healthy development early in life impede progress at each 
subsequent stage. 
Monitoring child development provides caregivers and parents with reliable 

information about the child and an opportunity to intervene at an early age. 
Understanding the developmental health of populations of children allows 
organizations and policymakers to make informed decisions about programmes 
that support children’s greatest needs (Bellman et al., 2013). 

1.1.3 STUNTING AS PROXY FOR CHILD DEVELOPMENT 

Stunting is the impaired physical growth and development that children 
experience from poor nutrition, repeated infection, and inadequate 
psychosocial stimulation. Linear growth in children is commonly expressed as 
length-for-age or height-for-age in comparison to normative growth standards 
(Wit et al., 2017). According to the World Health Organization (WHO), 
children are stunted if their height-for-age is more than two standard 
deviations below the Child Growth Standards median. Stunting caused by 
chronic nutritional deprivation in early childhood is as an indicator of child 
development (Perkins et al., 2017). 
There is consistent evidence for an association between stunting and poor 

child development, despite heterogeneity in the estimation of its magnitude 
(Miller et al., 2016; Sudfeld et al., 2015). Considering impaired linear growth 
as a proxy measure for child development is easy to do, and quite common. 
Yet, using impaired height growth as a measure for child development is not 
without limitations: 

•	 The relation between height and child development is weak after 
adjustment for age; 

•	 Height is a physical indicator that does not take into account a direct 
evaluation of a child’s cognitive or mental performance; 

•	 There is considerable heterogeneity in heights of children all over the 
world; 

•	 Height is not sensitive to rapid changes in child development. 

1.1.4 MEASURING NEUROCOGNITIVE DEVELOPMENT 

Assessment of early neurocognitive development in children is challenging for 
many reasons (Ellingsen, 2016). During the first years of life, developmental 
change occurs rapidly, and the manifestation of different skills and abilities 
varies considerably across children. Moreover, a child’s performance on a 
cognitive task is very susceptible to measurement setting, timing and the 
health of the child that day. 
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Recently, a toolkit was published that reviews 147 assessment tools 
developed for children ages 0–8 years in low- and middle-income countries 
(Fernald et al., 2017). Some of the most widely used tools include the Ages & 
Stages Questionnaires (ASQ), Achenbach Child Behavior Checklist (CBCL), 
Bayley Scales of Infant Development (BSID), Denver Developmental 
Screening Test (DEN), Griffiths Scales of Child Development (GRF), Mullen 
Scale of Early Learning (MSEL), Strengths and Difficulties Questionnaire 
(SDQ), Wechsler Intelligence Scale for Children (WISC), and its younger age 
counterpart Wechsler Preschool and Primary Scale of Intelligence (WPPSI). 
Each of these tools has its strengths and limitations. For example, the ASQ 

and DEN are screeners for general child development. The CBCL and SDQ are 
screeners for behavioral and mental health, not cognition or general development. 
DEN is relatively easy and quick to administer, but not very precise. It is out 
of production, not being sold or re-normed. The BSID, MSEL, and GRF 
provide a clinical assessment at the individual level and requires a skilled 
professional to administer. Some instruments collect observations through the 
caregiver (ASQ), whereas others emphasize traits and behavior over performance 
(SDQ, CBCL). Also, the age ranges to which the instruments are sensitive 
vary. Furthermore, they may cover different domains of development. 
The ideal child development assessment would be easy to administer and has 

high reliability, validity, and cross-cultural appropriateness. It should also show 
appropriate sensitivity in scores at different ages and ability levels. It is no 
surprise that no test can meet all of these criteria. Many tests are too long, 
difficult to administer, lack cross-cultural validity, or have low reliability. Also, 
many instruments are proprietary and costly to use. 

1.1.5 WHY THIS CHAPTER? 

We believe that there cannot be one instrument for measuring child 
development that is suitable for all situations. In general, the tool needs 
tailoring to the setting. For example, to find a delayed child, we need an 
instrument that is precise for that individual child, and that is sensitive to 
different domains of delay. In contrast, if we want to estimate the proportion of 
children that is developmentally on track in a region, we need one culturally 
unbiased, relatively imprecise low-cost measurement made on many children 
across many ages. The optimal instrument will look quite different in both 
cases. 
We also believe that there can be one scale for measuring child 

development and that this scale is useful for many applications. Such a scale 
is similar to well-known measures for body height, body weight or body 
temperature. These measurements have a clearly defined unit (i.e., centimetre, 
kilogram, degree Celsius), which moreover is assumed to be constant across all 
scale locations. We express measurements as the number of scale units (e.g. 92 
cm). Note that there may be multiple instruments for measuring a child height 
(e.g. ruler, laser distance meter, echolocation, ability to reach the door handle, 
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and so on). Still, their result translates into scale units (cm here). The opposite 
is also true, and perhaps more familiar. We may have one instrument and 
express the result in multiple units (e.g. cm, inches, light-years). 
Instruments and scales are different things. Currently, instruments for 

measuring child development define their own scales, which renders the 
measurements made by distinct tools incomparable. No measurement unit for 
child development yet exists. It would undoubtedly be an advance if we could 
tailor the measurement instrument to the setting while retaining the advantage 
of a scale with a clearly defined unit across different tools. We can then 
compare the data collected by distinct devices. This chapter explores the 
theory and practice for making that happen. 

1.1.6 INTENDED AUDIENCE 

We aim for three broad audiences: 

• Professionals in the field of child growth and development; 
• Policymakers in international settings; 
• Statisticians, methodologists, and data scientists. 

Professionals in child development will become familiar with a new 
approach to measuring child development in early childhood. We plan to 
separate the measurement instrument from the scale used to express the result. 
This formulation allows the user to select the instrument most suited for a 
particular setting. Since instruments differ widely in age coverage, length, 
administration mode, and domain coverage (Boggs et al., 2019), the ability to 
choose the instrument, while not giving up comparability, represents a 
significant advance over routines that marry the scale to the instrument. 
Policymakers in international settings wish to know the effect of different 

interventions on child development. Gaining insight into such effects is not so 
easy since different studies use different instruments. The ability to place 
measurements made by different instruments onto the same scale will allow 
for a more accurate understanding of policy effects. It also enables the 
setting of priorities and actions that are less dependent on the way the data 
were collected. 
Statisticians and data scientists generally prefer numeric values with an 

unambiguous unit (e.g., centimeters, kilograms) over a vector of dichotomous 
data points. This chapter shows how to convert a series of PASS/FAIL scores to 
a numeric value with interval scale properties. The existence of such a scale 
opens the way for the application of precise analytic techniques, similar to 
those applied to child height and body weight. The techniques have a solid 
psychometric backing, and also apply to other types of problems. 
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The measurement of child development has quite an extensive history. This 
section 

• reviews definitions of child development (1.2.1) 
• discusses concepts in the nature of child development (1.2.2) 
• shows a classic example of motor measurements (1.2.3) 
• summarizes typical questions whose answers need proper measurements 

(1.2.4) 

1.2.1 WHAT IS CHILD DEVELOPMENT? 

In contrast to concepts like height or temperature, it is unclear what exactly 
constitutes child development. Shirley (1931) executed one of the first rigorous 
studies in the field with the explicit aim 

that the many aspects of development, anatomical, physical, motor, intellectual, 
and emotional, be studied simultaneously. 

Shirley gave empirical definitions of each of these domains of development. 
Certain domains advance through a fixed sequence. Figure 1.2.1 illustrates 

the various stages needed for going from a fetal posture to walking alone. The 
ages are indicative of when these events happen, but there is a considerable 
variation in timing between infants. 
Gesell (1943) (p. 88) formulated the following definition of development: 

Development is a continuous process that proceeds stage by stage in an orderly 
sequence. 

Gesell’s definition emphasizes that development is a continuous process. The 
stages are useful as indicators to infer the level of maturity but are of limited 
interest by themselves. 
Liebert et al. (1974) (p. 5) emphasized that development is not a 

phenomenon that unfolds in isolation. 
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FIGURE 1.2.1 Gross motor development as a sequence of milestones. 

Source: Shirley (1933), with permission. 

Development refers to a process in growth and capability over time, as a function 
of both maturation and interaction with the environment. 

Cameron & Bogin (2012) (p. 11) defined an endpoint of development, as follows: 

“Growth” is defined as an increase in size, while “maturity” or “development” is 
an increase in functional ability…The endpoint of maturity is when a human is 
functionally able to procreate successfully … not just biological maturity but also 
behavioural and perhaps social maturity. 

Berk (2011) (p. 30) presented a dynamic systems perspective on child 
development as follows: 

Development cannot be characterized as a single line of change, and is more like 
a web of fibres branching out in many directions, each representing a different 
skill area that may undergo both continuous and stagewise transformation. 

There are many more definitions of child development. The ones described 
here illustrate the main points of view in the field. 

1.2.2 THEORIES OF CHILD DEVELOPMENT 

The field of child development is vast and spans multiple academic disciplines. 
This short overview, therefore, cannot do justice to the enormous richness. 
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Readers new to the field might orient themselves by browsing through an 
introductory academic titles (Berk, 2011; Santrock, 2011), or by searching for 
the topic of interest in an encyclopedia, e.g., Salkind (2002). 
The introductions by Santrock (2011) and Berk (2011) both distinguish major 

theories in child development according to how each answer to following three 
questions: 

1.2.2.1 CONTINUOUS OR DISCONTINUOUS? 

Does development evolve gradually as a continuous process or are there 
qualitatively distinct stages, with jumps occurring from one step to another? 
Many stage-based theories of human development have been proposed over 

the years: social and emotional development by psycho-sexual stages 
introduced by Freud and furthered by Erikson (Erikson, 1963), Kohlberg’s six 
stages of moral development (Kohlberg, 1984) and Piaget’s cognitive 
development theory (Piaget & Inhelder, 1969). Piaget distinguishes four main 
periods throughout childhood. The first period, the sensorimotor period 
(approximately 0–2 years), is subdivided into six stages. When taken together, 
these six stages describe “the road to conceptual thought.” Piaget’s stages are 
qualitatively different and aim to unravel the mechanism involved in intellectual 
development. 
On the other hand, Gesell and others emphasize development as a continuous 

process. Gesell (1943) (p. 88) says: 

A stage represents a degree or level of maturity in the cycle of development. A 
stage is simply a passing moment, while development, like time, keeps marching on. 

1.2.2.2 ONE COURSE OR MULTIPLE PARALLEL TRACKS? 

Stage theorists assume that children progress sequentially through the same set 
of stages. This assumption is also explicit in the work of Gesell. 
The ecological and dynamic systems theories view development as 

continuous, though not necessarily progressing in an orderly fashion, so there 
may be multiple, parallel ways to reach the same point. The developmental path 
taken by a given child will depend on the child’s unique combination of 
personal and environmental circumstances, including cultural diversity in 
development. 

1.2.2.3 NATURE OR NURTURE? 

Figure 1.2.2 illustrates that children vary in appearance. Are genetic or 
environmental factors more important for influencing development? Most 
theories generally acknowledge the role of both but differ in emphasis. In 
practice, the debate centres on the question of how to explain individual 
differences. 
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FIGURE 1.2.2 A group of culturally diverse children. 

Source: Shutterstock, under license. 

Maturation is the process of becoming fully developed, much like the natural 
unfolding of a flower. The process depends on both genetic factors (species, breed) 
as well as environmental influences (sunlight, water, nutrition). Some theorists 
emphasize that differences in child development are innate and stable over time, 
although there may be differences in unfolding speed due to different environments. 
Others argue that environmental factors drive differences in development between 
children, and changing these factors could very well impact child development. 
Our position in this debate has practical implications. If we believe that 

differences are natural and stable, then it may not make much sense trying to 
change the environment, as the impact on development is likely to be small. On 
the other hand, we may consider developmental potential as evenly distributed, 
with its expression governed by the environment. In the latter case, improving 
life circumstances may have substantial pay-offs in terms of better development. 

1.2.3 EXAMPLE OF MOTOR DEVELOPMENT 

1.2.3.1 SHIRLEY'S MOTOR DATA 

For illustration, we use data on locomotor development from a classic study on 
child development among 25 babies. Shirley (1931) collected measurements of 
the baby’s walking ability, starting at ages around 13 weeks, in an ingenious way. 
The investigator lays out a white paper of twelve inches wide on the floor of 
the living room, and lightly greases the soles of the baby’s feet with olive oil. 
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The baby was invited to “walk” on the sheet. Of course, very young infants need 
substantial assistance. Footprints left were later coloured by graphite and measured. 
Measurements during the first year were repeated every week or bi-weekly. 
Table 1.2.1 (Shirley, 1931, Appendix 8) lists the age (in weeks) of the 21
 

babies when they started, respectively, stepping, standing, walking with help,
 
and walking alone. Blanks indicate missing data. A blank in the first column
 
means that the baby was already stepping when the observation started
 
(Virginia Ruth, Sibyl, Donovan, Torey and Doris). Max and Martin, who have
 
blanks in the second column, skipped standing and went directly from stepping
 
to walking with help. Doris has a blank in the last column because she passed
 
away before she could walk alone.
 

1.2.3.2 INDIVIDUAL TRAJECTORIES OF MOTOR DEVELOPMENT 

Figure 1.2.3 is a visual representation of the information in Table 1.2.1. Each 
data point is the age of the first occurrence of the next stage. Before that age, 
we assume the baby is in the previous stage. 

TABLE 1.2.1 
Age at beginning stages of walking (in weeks) for 21 babies. 

Name Sex Stepping Standing Walking with help Walking alone 

Martin boy 15 21 50
 

Carol girl 15 19 37 50
 

Max boy 14 25 54
 

Virginia Ruth girl 21 41 54
 

Sibyl girl 22 37 58
 

David boy 19 27 34 60
 

James D. boy 19 30 45 60
 

Harvey boy 14 27 42 62
 

Winnifred girl 15 30 41 62
 

Quentin boy 15 23 38 64
 

Maurice boy 18 23 45 66
 

Judy girl 18 29 45 66
 

Irene May girl 19 34 45 66
 

Peter boy 15 29 49 66
 

Walley boy 18 33 54 68
 

Fred boy 15 32 46 70
 

Donovan boy 23 50 70
 

Patricia girl 15 30 45 70
 

Torey boy 21 72 74
 

Larry boy 13 41 54 76
 

Doris girl 23 44
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FIGURE 1.2.3 Staircase plot indicating the age at which each baby achieves a new 
milestone of gross-motor functioning. 

Figure 1.2.3 makes it easy to spot the quick walkers (Martin, Carol) and slow 
walkers (Patricia, Torey, Larry). Furthermore, we may also locate children who 
remain a long time in a particular stage (Torey, Larry) or who jump over stages 
(Martin, Max). 
For ease of plotting, the categories on the vertical axis are equally spaced. 

The height of the jump from one stage to the next has no sensible 
interpretation. We might be inclined to think that the vertical distance portrays 
to how difficult it is to achieve the next stage, but this is inaccurate. Instead, the 
ability needed to set the next step corresponds to the horizontal line length 
between stages. For example, on average, the line for stepping is rather 
short in all plots, so going from stepping to standing is relatively easy. 
Figure 1.2.3 presents data from only those visits where a jump occurred. The 

number of house visits made during the ages of 0–2 years was far higher. 
Shirley (1931) collected data from 1370 visits, whereas Figure 1.2.3 plot only 
the 76 occasions that showed a jump. Thus the data collection needs to be 
intense and costly to obtain individual curves. Fortunately, there are alternatives 
that are much more efficient. 

1.2.4 TYPICAL QUESTIONS ASKED IN CHILD DEVELOPMENT 

The emotional, social and physical development of the young child has a direct 
effect on the adult he or she will become. We may be interested in measuring 
child development for answering clinical, policy or public health questions. 
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Table 1.2.2 lists typical questions whose answers require measuring child 
development. Note that all questions compare the amount of child development 
between groups or time points. A few questions compare development for the 
same child, group or population at different ages. Others compare development 
at the same age across different children, groups or populations. 

TABLE 1.2.2 
Questions whose answers require quantitative measurements of child 
development. 

Level Question 

Individual What is the child's gain in development since the last visit?
 

Individual What is the difference in development between the child and peers of the same
 
age? 

Individual How does the child's development compare to a norm? 

Group What is the effect of this intervention on child development? 

Group What is the difference in child development between these two groups? 

Population What is the change in average child development since the last measurement? 

Population What was the effect of implementing this policy on child development? 

Population How does this country compare to other countries in terms of child development? 
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This section discusses four principles to quantify child development: 

• Age-based measurement (1.3.1) 
• Probability-based measurement (1.3.2) 
• Score-based measurement (1.3.3) 
• Unit-based measurement (1.3.4) 

1.3.1 AGE-BASED MEASUREMENT OF DEVELOPMENT 

1.3.1.1 MOTIVATION FOR AGE-BASED MEASUREMENT 

Milestones form the based building blocks for instruments to measure child 
development. Methods to quantify growth using separate milestones relate the 
milestone behaviour to the child’s age. Gesell (1943) (p. 89) formulated this 
goal as follows: 

We think of behaviour in terms of age, and we think of age in terms of behaviour. 
For any selected age it is possible to sketch a portrait which delineates the 
behaviour characteristics typical of the age. 

There is an extensive literature that quantifies development in terms of the 
ages at which the child is expected to show a specific behaviour. The oldest 
methods for quantifying child development calculate an age equivalent for 
achieving a milestone, and compare the child’s age to this age equivalent. 

1.3.1.2 AGE EQUIVALENT AND DEVELOPMENTAL AGE 

Figure 1.3.1 graphs the ages at which each of the 21 children enter a given 
stage in Shirley’s motor data of Table 1.2.1. Since standing follows 
stepping, children who can stand are older than the children who are 
stepping. Hence the ages for standing are located more to the right. 
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FIGURE 1.3.1 Ages at which 21 children achieve four motor development milestones. 

Since age and development are so intimately related, we can express the 
difficulty of a milestone as the mean age at which children achieve it. For 
example, Stott (1967) (p. 25) defines the age equivalent and its use for 
measurement, as follows: 

The age equivalent of a particular stage is simply the average age at which 
children reach that particular stage. 

Figure 1.3.2 adds the mean age and the boxplot at which the children enter 
the four stages. The difficulty of these milestones can thus be expressed as age 
equivalents: 16.1 weeks for stepping, 27.2 weeks for standing, 43.3 
weeks for walking with help and 63.3 weeks for walking alone. 
Thus, a child that is stepping beyond the age of 16.1 weeks is considered 

later than average, whereas a child already stepping before 27.2 weeks earlier 
than average. We may also calculate age delta as the difference between the 
child’s age and the norm age, and express it as “two weeks late” or “three 

FIGURE 1.3.2 Mean (symbol x) and spread of the ages at which 21 children achieve 
four motor development milestones. 
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weeks ahead.” Summarizing age delta’s over different milestones has led to 
concepts like developmental age as a measure of a child’s development. 

1.3.1.3 LIMITATIONS OF AGE-BASED MEASUREMENT 

Age-based measurement is easy to understand, and widely used in the popular 
press, but not without pitfalls: 

1. Age-based measurement requires us to know the ages at which the child 
entered a new stage. The mean age can be a biased estimate of item 
difficulty if visits are widely apart, irregular or missing. 

2. Age-based measurement can inform us whether a child is achieving a 
given milestone early of late. However, it does not tell us what 
behaviours are characteristic for children of a given age. 

3. Age-based measurement cannot exist without an age norm. When there 
are no norms, we cannot quantify development. 

4. Age-based	 measurement works only at the item level. Although we 
may average age delta’s over milestones, the choice of milestones is 
arbitrary. 

1.3.2 PROBABILITY-BASED MEASUREMENT 

An alternative is to calculate the probability of achieving a milestone at a given 
age and compare the child’s response to that probability. 
The passing probability is an interpretable and relevant measure. An 

operational advantage of the approach is that the necessary calculations place 
fewer demands on the available data and can be done even for cross-sectional 
studies. 

1.3.2.1 EXAMPLE OF PROBABILITY-BASED MEASUREMENT 

Figure 1.3.3 plots the percentage of children achieving each of Shirley’s motor 
stages against age. There are four cumulative curves, one for each milestone, 
that indicate the percentage of children that pass. 
In analogy to the age equivalent introduced in Section 1.3.1.2 we can define 

the difficulty of the milestone as the age at which 50 per cent of the children 
pass. In the Figure we see that the levels of difficulty are approximately 14.2 
weeks (stepping), 27.0 weeks (standing), 43.8 weeks (walking with 

help) and 64.0 weeks (walking alone). Also, we may easily find the ages 
at which 10 per cent or 90 per cent of the children pass each milestone. 
Observe there is a gradual decline in the steepness as we move from 

stepping to walk_alone. For example, we need an age interval of 13 
weeks (33 - 20) to go from 10 to 90 per cent in standing, but need 19 weeks 
(71 - 52) to go from 10 to 90 per cent in walking alone. Thus, one step on 
the age axis corresponds to different increments in probability. The flattening 
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FIGURE 1.3.3 Probability of achieving four motor milestones against age. 

pattern is typical for child development and represents evidence that evolution 
is faster at earlier ages. 

1.3.2.2 LIMITATIONS OF PROBABILITY-BASED MEASUREMENT 

Probability-based measurement is a popular way to create instruments for 
screening on developmental delay. For example, each milestone in the Denver 
II (Frankenburg et al., 1992) has markers for the 25th, 50th, 75th and 90th age 
percentile. 

1. The same age step corresponds to different probabilities. 
2. The	 measurement cannot exist without some norm population. When 

norms differ, we cannot compare the measurements. 
3. Interpretation	 is at the milestone level, sometimes supplemented by 

procedures for counting the number of delays. No aggregate takes all 
responses into account. 

1.3.3 SCORE-BASED MEASUREMENT OF DEVELOPMENT 

1.3.3.1 MOTIVATION FOR SCORE-BASED MEASUREMENT 

Score-based measurement takes the responses on multiple milestones and 
counts the total number of items passed as a measure of development. This 
approach takes all answers into account, hence leading to a more stable result. 
One may order milestones in difficulty, and skip those that are too easy, and 

stop administration for those that are too difficult. In such cases, we cannot 
merely interpret the sum score of a measure of development. Instead, we need 
to correct for the subset of administered milestones. The usual working 
assumption is that the child would have passed all easier milestones and failed 
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on all more difficult ones. We may repeat this procedure for different domains, 
e.g. motor, cognitive, and so on. 

1.3.3.2 EXAMPLE OF SCORE-BASED MEASUREMENT 

Figure 1.3.4 is a gross-motor score calculated as the number of milestones 
passed. It varies from 0 to 3. 
The plot suggests that the difference in development between scores 0 and 1 

is the same as the difference between, say, scores 2 and 3. This is not correct. 
For example, suppose that we express the difficulty of the milestone as an age-
equivalent. From Section 1.3.1.2 we see that the difference between stepping 
and standing is 27.2 - 16.1 = 11.1 weeks, whereas the difference between 
walking alone and walking with help is 63.3 - 43.3 = 20 weeks. Thus, 
according to age equivalents scores 0 and 1 should be closer to each other, 
and ratings 2 and 3 should be drawn more apart. 

1.3.3.3 LIMITATIONS OF SCORE-BASED MEASUREMENT 

Score-based measurement is today’s dominant approach, but is not without 
conceptual and logistical issues. 

1. The total score depends not only on the actual developmental status of 
the child, but also on the set of milestones administered. If a milestone 
is skipped or added, the sum score cannot be interpreted anymore as a 
measure of developmental status. It might be possible to correct for 

FIGURE 1.3.4 Same data as in Figure 1.2.3, but now with the vertical axis 
representing gross-motor score. 



20 Quantifying child development 

starting and stopping rules under the assumptions described in Section 
1.3.3.1, but such will be involved if intermediate milestones are 
missing. 

2. It is not possible to compare the scores made by different instruments. 
Some instruments allow conversion to age-conditional scores. However, 
the sample used to derive such transformations pertain to that tool and 
does not generalize to others. 

3. Domains are hard to separate. For example, some cognitive milestones 
tap into fine motor capabilities, and vice versa. There are different ways 
to define domains, so domain interpretation varies by instrument. 

4. Administration of a full test may take substantial time. The materials are 
often proprietary and costly. 

1.3.4 UNIT-BASED MEASUREMENT OF DEVELOPMENT 

1.3.4.1 MOTIVATION FOR UNIT-BASED MEASUREMENT 

Unit-based measurement starts by defining ideal properties and derives a 
procedure to aggregate the responses on milestones into an overall score that 
will meet this ideal. 
Section 1.2.4 highlighted questions for individuals, groups and populations. 

There are three questions: 

•	 What is the difference in development over time for the same child, group 
or community? 

•	 What is the difference in development between different children, groups 
or populations of the same age? 

•	 How does child development compare to a norm? 

In the ideal situation, we would like to have a continuous (latent) variable D 
(for development) that measures child development. The scale should allow us 
to quantify ability of persons, groups or populations from low to high. It should 
have a constant unit so that a given difference in ability refers to the same 
quantity across the entire scale. We find the same property in height, where a 
distance of 10 cm represents the same amount for molecules, people or 
galaxies. When are these conditions are met, we say that we measure on an 
interval scale. 
If we succeed in creating an interval scale for child development, an 

enormous arsenal of techniques developed for quantitative variables opens up 
to measure, track and analyze child development. We may then evaluate the 
status of a child in terms of D points gained, create age-dependent diagrams 
(just like growth charts for height and weight), devise age-conditional measures 
for child development, and intelligent adaptive testing schemes. Promising 
studies on Dutch data (Jacobusse et al., 2006; van Buuren, 2014) suggest that 
such benefits are well within reach. 
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1.3.4.2 EXAMPLE OF UNIT-BASED MEASUREMENT 

Figure 1.3.5 is similar to Figure 1.3.3, but with Age replaced by Ability. 
Also, modelled curves have replaced empirical ones, but this is not essential. 
We estimated the ability values on the horizontal axis from the data. The 

values correspond to the amount of development of each visit. Likewise, we 
calculated the logistic curves from the data. These reflect the probability of 
passing each milestone at a given level of ability. 
Figure 1.3.5 shows that the probability of passing a milestone increases with 

ability. Items are sorted according to difficulty from left to right. Milestone 
stepping is the easiest and walk_alone is the most difficult. The point at 
which a logistic curve crosses the 50 per cent line (marked by a cross) is the 
difficulty of the milestone. 
The increase in ability that is needed to go from 10 to 90 per cent is about 

five units here. Since all curves are parallel, the interval is constant for all scale 
locations. Thus, the scale is an interval scale with a constant unit of 
measurement, the type of measurement needed for answering the basic 
questions identified in Section 1.3.4.1. 

1.3.4.3 LIMITATIONS OF UNIT-BASED MEASUREMENT 

While unit-based measurement has many advantages, it cannot perform 
miracles. 

1. An important assumption is that the milestones “measure the same thing,” 
or put differently, are manifestations of a continuous latent variable that 
can be measured by empirical observations. Unit-based measurement 
won’t work if there is no sensible latent scale. 

FIGURE 1.3.5 Modelled probability of achieving four motor milestones against the 
D-score. 
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2. The portrayed advantages hold only if the discrepancies between the data 
and the model are relatively small. Since the simplest and most powerful 
measurement models are strict, it is essential to obtain a good fit between 
the data and the model. 

3. The	 construction of unit-based measurement requires psychometric 
expertise, specialized computer software and considerable sample sizes. 

1.3.5 A UNIFIED FRAMEWORK 

This section brings together the four approaches outlined in this section into a 
unified framework. 
Figure 1.3.6 shows the imaginary positions on a gross-motor continuum of 

three babies from Figure 1.2.1 at the age of 30 weeks. Both milestones and 
children are ordered along the same continuum. Thus, standing is more difficult 
than stepping, and at week 30, Doris is ahead of Walley in terms of motor 
development. 
More generally, measurement is the process of locating milestones and 

children on a line. This line represents a latent variable, a continuous 
construct that defines the different poles of the concept that we want to 
measure. A latent variable ranges from low to high. 
The first part of measurement is to determine the location of the milestones 

on the latent variable. In many cases, the instrument maker has already done 
that. For example, each length marker on a ruler corresponds to a milestone for 
measuring length. The manufacturer of the ruler has already placed the marks at 
the appropriate places on the tool, and we take for granted that each marker has 
been calibrated correctly. 
A milestone for child development is similar to a length marker, but 

•	 we may not know how much development the milestone measures, so its 
location on the line is unknown, or uncertain; 

•	 we may not know whether the milestone measures child development at 
all so that it may have no location on the line. 

The second part of measurement is to find the location of each child on the 
line. For child height, this is easy: We place the horizontal headpiece on top of 
the child’s head and read off the closest height marker. Since we lack a physical 

FIGURE 1.3.6 Placing milestones and children onto the same line reveals their 
positions. 
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ruler for development, we must deduce the child’s location on the line from the 
responses on a series of well-chosen milestones. 
By definition, we cannot observe the values of a latent variable directly. 

However, we may be able to measure variables (milestones) that are related to 
the latent variable. For example, we may have scores on tasks like standing or 
walking with help. 
The measurement model specifies the relations between the actual measurements 

and the latent variable. Under a given measurement model, we may estimate 
the locations of milestones and children on the line. Section 1.4.5 discusses 
measurement models in more detail. 

1.3.6 WHY UNIT-BASED MEASUREMENT? 

This section distinguishes four approaches to measure child development: age-
based, probability-based, score-based and unit-based measurement. Table 1.3.1 
summarizes how the approaches evaluate on nine criteria. 
Age-based measurement expresses development in age equivalents, whose 

precise definition depends on the reference population. Age-based measurement 
does not support multiple milestones and does not use the concept of a latent 
variable. 
Probability-based measurement expresses development as age percentiles for 

a reference population. It is useful for individual milestones but does not 
support multiple items or a latent variable interpretation. 
Score-based measurement quantifies development by summing the number of 

passes. Different instruments make different selections of milestones, so the 
scores taken are unique to the tool. Thus comparing the measurement obtained 
by different devices is difficult. Skipping or adding items require corrections. 
Unit-based measurement defines a unit by a theoretical model. When the data 

fit the model, we are able to construct instruments that produce values in a 
standard metric. 

TABLE 1.3.1
 
Evaluation of four measurement approaches on seven criteria.
 

Criterion Age Probability Score Unit 

Independent of age norm No No Yes Yes 

Supports multiple milestones No No Yes Yes 

Latent variable No No Yes Yes 

Robust to milestone skipping Yes Yes No Yes 

Comparable scores Yes Yes No Yes 

Probability model No Yes No Yes 

Defines measurement unit No No No Yes 



1.4 The D-score 
Stef van Buuren1,2 

Iris Eekhout1 

1Netherlands Organisation for Applied Scientific 
Research TNO, Leiden, 2316 ZL, The Netherlands 
2University of Utrecht, Utrecht, 3584 CH, The 
Netherlands 

Section 1.2 provided historical background on the nature of child development. 
Section 1.3 discussed three general quantification approaches. This section 
explains how to apply the unit-based approach to arrive at the D-score scale. 
The text illustrates the process with real data. 

• Dutch Development Instrument (DDI) (1.4.1) 
• Milestone passing by age and by D-score (1.4.2, 1.4.3) 
• How do age and D-score relate? (1.4.4) 
• Role of the measurement model (1.4.5) 
• Item and person response functions (1.4.6) 
• Engelhard invariance criteria (1.4.7) 
• Why the Rasch model? (1.4.8) 

1.4.1 THE DUTCH DEVELOPMENT INSTRUMENT (DDI) 

1.4.1.1 SETTING 

The Dutch Youth Health Care (YHC) routinely monitors the development of 
almost all children living in The Netherlands. During the first four years, there 
are 13 scheduled visits. During these visits, the YHC professionals evaluate the 
growth and development of the child. 
The Dutch Development Instrument (DDI; in Dutch: Van Wiechenschema) is  

the standard instrument used to measure development during the ages 0–4 
years. The DDI consists of 75 milestones. The instrument assesses three 
developmental domains: 

1. Fine motor, adaptation, personality and social behaviour; 
2. Communication; 
3. Gross motor. 

The milestones form two sets, one for children aged 0–15 months, and 
another for children aged 15–54 months. The YHC professionals administer 
an age-appropriate subset of milestones at each of the scheduled visits, thus 
building a longitudinal developmental profile for each child. 
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1.4.1.2 DESCRIPTION OF SMOCC STUDY 

The Social Medical Survey of Children Attending Child Health Clinics 
(SMOCC) study is a nationally representative cohort of 2,151 children born in 
The Netherlands during the years 1988–1989 (Herngreen et al., 1994). The 
study monitored child development using observations made on the DDI during 
nine visits covering the first 24 months of life. The SMOCC study collected 
information during the first two years on 57 (out of 75) milestones. 
The standard set in the DDI consists of relatively easy milestones that 90 per 

cent of the children can pass at the scheduled age. This set is designed to have 
maximal sensitivity for picking up delays in development. A distinctive feature 
of the SMOCC study was the inclusion of more difficult milestones beyond the 
standard set. The additional set originates from the next time point. The success 
rate on these milestones is about 50 per cent. 

1.4.1.3 CODEBOOK OF DDI 0–30 MONTHS 

Table 1.4.1 shows the 57 milestones from the DDI for ages 0 – 30 months as 
administered in the SMOCC study. Items are sorted according to debut, the age 
at which the item appears in the DDI. The response to each milestone is either a 
PASS (1) or a FAIL (0). Children who did not pass a milestone at the debut age 
were re-measured on that milestone during the next visit. The process continued 
until the child passed the milestone. 

1.4.2 PROBABILITY OF PASSING A MILESTONE GIVEN AGE 

Figure 1.4.1 summarizes the response obtained on each milestone as a curve 
against age. The percentage of pass scores increases with age for all milestones. 
Note that curves on the left have steeper slopes than those on the right, thus 
indicating that development is faster for younger children. 
The domain determines the coloured (blue: gross motor, green: fine motor, 

red: communication). In general, domains are well mixed across age, though 
around some ages, e.g., at four months, multiple milestones from the same 
domain appear. 

1.4.3 PROBABILITY OF PASSING A MILESTONE GIVEN 
D-SCORE 

Figure 1.4.2 is similar to Figure 1.4.1, but with the horizontal axis replaced by 
the D-score. The D-score summarizes development into one number. See 1.5.3 
for a detailed explanation on how to calculate the D-score. The vertical axis 
with per cent pass is unchanged. 
The percentage of successes increases with D-score for all milestones. In contrast 

to Figure 1.4.1 all curves have a similar slope, a desirable property needed 
for an interval scale with a constant unit of measurement (cf. Section 1.3.4). 
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TABLE 1.4.1
 
Codebook of DDI as used in the SMOCC study.
 

Item Debut Domain Label 

ddicmm029 1m Communication Reacts when spoken to 

ddifmd001 1m Fine motor Eyes fixate 

ddigmd052 1m Gross motor Moves arms equally well 

ddigmd053 1m Gross motor Moves legs equally well 

ddigmd056 1m Gross motor Lifts chin off table for a moment 

ddicmm030 2m Communication Smiles in response (M; can ask parents) 

ddifmd002 2m Fine motor Follows with eyes and head 30d < 0 > 30d 

ddicmm031 3m Communication vocalizes in response 

ddifmd003 3m Fine motor Hands open occasionally 

ddifmm004 3m Fine motor Watches own hands 

ddigmd054 3m Gross motor Stays suspended when lifted under the armpits 

ddigmd057 3m Gross motor Lifts head to 45 degrees on prone position 

ddicmd116 6m Communication Turn head to sound 

ddifmd005 6m Fine motor Plays with hands in midline 

ddigmd006 6m Gross motor Grasps object within reach 

ddigmd055 6m Gross motor No head lag if pulled to sitting 

ddigmd058 6m Gross motor Looks around to side with angle face-table 90 

ddigmd059 6m Gross motor Flexes or stomps legs while being swung 

ddicmm033 9m Communication Says dada, baba, gaga 

ddifmd007 9m Fine motor Passes cube from hand to hand 

ddifmd008 9m Fine motor Holds cube, grasps another one with other hand 

ddifmm009 9m Fine motor Plays with both feet 

ddigmm060 9m Gross motor Rolls over back to front 

ddigmd061 9m Gross motor Balances head well while sitting 

ddigmd062 9m Gross motor Sits on buttocks while legs stretched 

ddicmm034 12m Communication Babbles while playing 

ddicmm036 12m Communication Waves 'bye-bye' (M; can ask parents) 

ddifmd010 12m Fine motor Picks up pellet between thumb and index finger 

ddigmd063 12m Gross motor Sits in stable position without support 

ddigmm064 12m Gross motor Crawls forward, abdomen on the floor 

ddigmm065 12m Gross motor Pulls up to standing position 

ddicmm037 15m Communication Uses two words with comprehension 

ddicmd136 15m Communication Reacts to verbal request (M; can ask parents) 

ddifmd011 15m Fine motor Puts cube in and out of a box 

ddifmm012 15m Fine motor Plays 'give and take' (M; can ask parents) 

ddigmm066 15m Gross motor Crawls, abdomen off the floor (M; can ask parents) 

ddigmm067 15m Gross motor Walks while holding onto play-pen or furniture 

ddicmm039 18m Communication Says three 'words' 

ddicmd141 18m Communication Identifies two named objects 

ddifmd013 18m Fine motor Tower of 2 cubes 

(Continued) 
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TABLE 1.4.1 

(Continued) 

Item Debut Domain Label 

18m Fine motor Explores environment energetically (M; can ask 
ddifmm014 parents) 

ddigmd068 18m Gross motor Walks alone 

ddigmd069 18m Gross motor Throws ball without falling 

ddicmm041 24m Communication Says sentences with 2 words 

ddicmd148 24m Communication Understands 'play' orders 

ddifmd015 24m Fine motor Builds tower of 3 cubes 

ddifmm016 24m Fine motor Imitates everyday activities (M; can ask parents) 

ddigmd070 24m Gross motor Squats or bends to pick things up 

ddigmd146 24m Gross motor Drinks from cup (M; can ask parents) 

ddigmd168 24m Gross motor Walks well 

ddicmm043 30m Communication Refers to self using 'me' or 'I' (M; can ask parents) 

ddicmd044 30m Communication Points at 5 pictures in the book 

ddifmd017 30m Fine motor Tower of 6 cubes 

ddifmd018 30m Fine motor Places round block in board 

ddifmm019 30m Fine motor Takes off shoes and socks (M; can ask parents) 

ddifmd154 30m Fine motor Eats with spoon without help (M; can ask parents) 

ddigmd071 30m Gross motor Kicks ball 

FIGURE 1.4.1 Empirical percentage of passing each milestone in the DDI against age 
(Source: SMOCC data, n = 2151, 9 occasions). 
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FIGURE 1.4.2 Empirical percentage of passing each milestone in the DDI against the 
D-score (Source: SMOCC data, 2151 children, 9 occasions). 

How can the relation between per cent pass and age be so different from the 
relation between per cent pass and the D-score? The next section explains the 
reason. 

1.4.4 RELATION BETWEEN AGE AND THE D-SCORE 

Figure 1.4.3 shows that the relation between D-score and age is nonlinear. 
Development in the first year is more rapid than in the second year. During the 
first year, infants gain about 40 D, whereas in the second year they gain about 
20 D. A similar change in growth rate occurs in length (first year: 23 cm, 
second year: 12 cm, for Dutch children). 
Figure 1.4.4 shows the mutual relations between age, percentage of milestone 

passing and the D-score. There are three main orientations. 

•	 In the default orientation (age on the horizontal axis, D-score on the vertical 
axis), we see a curvilinear relation between the age and item difficulty. 

•	 Rotate the graph (age on the horizontal axis, passing percentage on the 
vertical axis). Observe that this is the same pattern as in Figure 1.4.1 
(with unequal slopes). Curves are coloured by domain. 

•	 Rotate the graph (D-score on the horizontal axis, passing percentage on 
the vertical axis). Observe that this pattern is the same as in Figure 1.4.2 
(with equal slopes). 

All patterns can co-exist because of the curvature in the relation between 
D-score and age. The curvature is never explicitly modelled or defined, but a 
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FIGURE 1.4.3 Relation between child D-score and child age in a cohort of Dutch 
children (Source: SMOCC data, n = 2151, 9 occasions). 

consequence of the equal-slopes assumption in the relation between the D-score 
and the passing percentage of a milestone. 

1.4.5 MEASUREMENT MODEL FOR THE D-SCORE 

1.4.5.1 WHAT ARE MEASUREMENT MODELS? 

From section 1.3.5 we quote: 

The measurement model specifies the relations between the data and the latent variable. 

The term Item Response Theory (IRT) refers to the scientific theory of 
measurement models. Good introductory works include Embretsen & Reise 
(2000); Wright & Masters (1982) and Engelhard Jr. (2013). 
IRT models enable quantification of the locations of both items (milestones) 

and persons* on the latent variable. We reserve the term item for generic 
properties, and milestone for child development. In general, items are part of 
the measurement instrument, persons are the objects to be measured. 
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FIGURE 1.4.4 3D-line graph illustrating how the patterns in Figure 1.4.1 and Figure 
1.4.2 induce the curvature in the relation between D-score and age. 

The printed version shows three orientations of the relation between age, percent pass 
and D-score. The online version holds an interactive 3D graph that the reader can 
actively manipulate the orientation of the graph by click-hold-drag mouse operations. 
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An IRT model has three major structural components: 

•	 Specification of the underlying latent variable(s). In this work, we restrict 
ourselves to models with just one latent variable. Multi-dimensional IRT 
models do have their uses, but they are complicated to fit and not widely used; 

•	 For a given item, a specification of the probability of success given a 
value on the latent variables. This specification can take many forms. 
Section 1.4.6 focuses on this in more detail; 

•	 Specification how probability models for the different items should be 
combined. In this work, we will restrict to models that assume local 
independence of the probabilities. In that case, the probability of passing 
two items is equal to the product of success probabilities. 

1.4.5.2 ADAPT THE MODEL? OR ADAPT THE DATA? 

The measurement model induces a predictable pattern in the observed items. 
We can test this pattern against the observed data. When there is misfit between 
the expected and observed data, we can follow two strategies: 

•	 Make the measurement model more general; 
•	 Discard items (and sometimes persons) to make the model fit. 

These are very different strategies that have led to heated debates among 
psychometricians. See Engelhard Jr. (2013) for an overview. 
In this work, we opt for the - rigorous - Rasch model (Rasch (1960)) and will 

adapt the data to reduce discrepancies between model and data. Arguments for 
this choice are given later, in Section 1.4.8. 

1.4.6 ITEM RESPONSE FUNCTIONS 

Most measurement models describe the probability of passing an item as a 
function of the difference between the person’s ability and the item’s difficulty. 
A person with low ability will almost inevitably fail a heavy item, whereas a 
highly able person will almost surely pass an easy item. 
Let us now introduce a few symbols. We adopt the notation used in Wright & 

Masters (1982). We use βn (ability) to refer to the true (but unknown) 
developmental score of child n. Symbol δi (difficulty) is the true (but 
unknown) difficulty of an item i, and πni is the probability that child n passes 
item i. See Appendix A for a complete list. 
The difference between the ability of child n and difficulty of item i is 

In the special case that βn = δi, the person will have a probability of 0.5 of 
passing the item. 
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1.4.6.1 LOGISTIC MODEL 

A widely used method is to express differences on the latent scale in terms of 
logistic units (or logits) (Berkson, 1944). The reason preferring the logistic over 
the linear unit is that its output returns a probability value that maps to discrete 
events. In our case, we can describe the probability of passing an item 
(milestone) as a function of the difference between βn and δi expressed in logits. 
Figure 1.4.5 shows how the percentage of children that pass the item varies 

in terms of the ability-difficulty gap βn – δi. The gap can vary either by βn or δi 
so that we may use the graph in two ways: 

•	 To find the probability of passing items with various difficulties for a 
child with ability βn. If  δi = βn then πni = 0.5. If δi < βn then πni > 0.5, and 
if δi > βn then πni < 0.5. In words: If the difficulty of the item is equal to 
the child’s ability, then the child has a 50/50 chance to pass. The child 
will have a higher than 50/50 chance of passing for items with lower 
difficulty and have a lower than 50/50 chance of passing for items with 
difficulties that exceed the child’s ability. 

•	 To find the probability of passing a given item δi for children that vary in 
ability. If βn < δi then πni < 0.5, and if βn > δi then πni > 0.5. In words: 
Children with abilities lower than the item’s difficulty will have lower 
than 50/50 chance of passing, whereas children with abilities that exceed 
the item’s difficulty will have a higher than 50/50 chance of passing. 

Formula (1.4.1) defines the standard logistic curve: 

Formula 1.4.1 

FIGURE 1.4.5 Standard logistic curve. Percentage of children passing an item for a 
given ability-difficulty gap βn – δi. 
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One way to interpret the formula is as follows. The logarithm of the odds that a 
person with ability βn passes an item of difficulty δi is equal to the difference 
βn –δi (Wright & Masters, 1982). For example, suppose that the probability that 
person n passes milestone i is πni = 0.5. In that case, the odds of passing is 
equal to 0.5/(1 – 0.5) = 1, so log(1) = 0 and thus βn = δi. If  βn –δi = log(2) = 0.693 
person n is two times more likely to pass than to fail. Likewise, if the difference is 
βn –δi = log(3) = 1.1, then person n is three more likely to pass. And so on. 

1.4.6.2 TYPES OF ITEM RESPONSE FUNCTIONS 

The standard logistic function is by no means the only option to map the 
relationship between the latent variable and the probability of passing an item. 
The logistic function is the dominant choice in IRT, but it is instructive to study 
some other mappings. The item response function maps success probability 
against ability. 
Figure 1.4.6 illustrates several other possibilities. Let us consider five 

hypothetical items, A–E. Note that the horizontal axis now refers to the 
ability, instead of the ability-item gap in 1.4.5. 

•	 A: Item A is the logistic function discussed in Section 1.4.6. 
•	 B: For item B, the probability of passing is constant at 30 per cent. This 

30 per cent is not related to ability. Item B does not measure ability, only 
adds to the noise, and is of low quality. 

•	 C: Item C is a step function centred at an ability level of 1, so all children 
with an ability below 1 logit fail and all children with ability above 1 
logit pass. Item C is the ideal item for discriminating children with 
abilities above and below 1. The item is not sensitive to differences at 
other ability levels, and often not so realistic in practice. 

FIGURE 1.4.6 Item response functions for five hypothetical items, each demonstrating 
a positive relation between ability and probability to pass. 
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•	 D: Like A, item D is a smoothly increasing logistic function, but it has an 
extra parameter that allows it to vary its slope (or discrimination). The 
extra parameter can make the curve steeper (more discriminatory) than 
the red curve, in the limit approaching a step curve. It can also become 
shallower (less discriminatory) than the red curve (as plotted here), in the 
limit approaching a constant curve (item B). Thus, item D generalizes 
items A, B or C. 

•	 E: Item E is even more general in the sense that it need not be logistic, 
but a general monotonically increasing function. As plotted, the item is 
insensitive to abilities between -1 and 0 logits, and more sensitive to 
abilities between 0 to 2 logits. 

These are just some examples of how the relationship between the child’s 
ability and passing probability could look. In practice, the curves need not start 
at 0 per cent or end at 100 per cent. They could also be U-shaped, or have other 
non-monotonic forms. See Coombs (1964) for a thorough overview of such 
models. In practice, most models are restricted to shapes A-D. 

1.4.6.3 PERSON RESPONSE FUNCTIONS 

We can reverse the roles of persons and items. The person response function 
tells us how likely it is that a single person can pass an item, or more 
commonly, a set of items. 
Let us continue with items A, C and D from Figure 1.4.6, and calculate the 

response function for three children, respectively with abilities β1 = –2, β2 = 0  
and β3 = 2.  
Figure 1.4.7 presents the person response functions from three persons with 

abilities of -2, 0 and +2 logits. We calculate the functions as the average of 

FIGURE 1.4.7 Person response functions for three children with abilities -2, 0 and +2, 
using a small test of items A, C and D. 
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response probabilities on items A, C and D. Thus, on average, we expect that 
child 1 logit will pass an easy item of difficulty -3 in about 60 per cent of the 
time, whereas for an intermediate item of difficulty of -1 the passing probability 
would be 10 per cent. For child 3, with higher ability, these probabilities are 
quite different: 97% and 90%. The substantial drop in the middle of the curve is 
due to the step function of item A. 

1.4.7 ENGELHARD CRITERIA FOR INVARIANT MEASUREMENT 

In this work, we strive to achieve invariant measurement, a strict form of 
measurements that is subject to the following requirements (Engelhard Jr., 
2013, 14): 

1.	 Item-invariant measurement of persons: The measurement of persons 
must be independent of the particular items used for the measuring. 

2.	 Non-crossing person response functions: A more able person must always 
have a better chance of success on an item that a less able person. 

3.	 Person-invariant calibration of test items: The calibration of the items 
must be independent of the particular persons used for calibration. 

4.	 Non-crossing item response functions: Any person must have a better 
chance of success on an easy item than on a more difficult item. 

5.	 Unidimensionality: Items and persons take on values on a single latent 
variable. Under this assumption, the relations between the items are fully 
explainable by the scores on the latent scale. In practice, the requirement 
implies that items should measure the same construct. (Hattie, 1985) 

Three families of IRT models support invariant measurement: 

1. Scalogram model (Guttman, 1950) 
2. Rasch model (Andrich, 1978; Rasch, 1960; Wright & Masters, 1982) 
3. Mokken scaling model (Mokken, 1971; Molenaar, 1997) 

The Guttman and Mokken models yield an ordinal latent scale, while the 
Rasch model yields an interval scale (with a constant unit). 

1.4.8 WHY TAKE THE RASCH MODEL? 

•	 Invariant measurement: The Rasch model meets the five Engelhard 
criteria (cf. Section 1.4.7). 

•	 Interval scale: When it fits, the Rasch model provides an interval scale, 
the de-facto requirement for any numerical comparisons (cf. Section 
1.3.4.1). 

•	 Parsimonious: The Rasch model has one parameter for each item and one 
parameter for each person. The Rash model one of the most parsimonious 
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IRT models, and can easily be applied to thousands of items and millions 
of persons. 

•	 Specific objectivity: Person and item parameters are mathematically 
separate entities in the Rasch model. In practice, this means that the 
estimated difference in ability between two persons does not depend on 
the difficulty of the test. Also, the estimated differences in difficulties 
between two items do not depend on the abilities in the calibration 
sample. The property is especially important in the analysis of combined 
data, where abilities can vary widely between sources. See Rasch (1977) 
for derivations and examples. 

•	 Unified model: The Rasch model unifies distinct traditions in 
measurement theory. One may derive the Rasch model from 
•	 Thorndike’s 1904 criteria 
•	 Guttman scalogram model 
•	 Ratio-scale counts 
•	 Raw scores as sufficient statistics 
•	 Thurstone’s scaling requirements 
•	 Campbell concatenation 
•	 Rasch’s specific objectivity 

•	 Fits child development data: Last but not least, as we will see in Section 
1.6, the Rasch model provides an excellent fit to child development 
milestones. 

Note that the Rasch model is not unique in all aspects. A reviewer indicated 
that specific objectivity and invariant measurement might also be achieved in 
certain 2PL models. For us, the combination of simplicity, interpretability, and 
convenient properties makes the Rasch model stand out. 
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This section explains the basic computations needed for fitting and evaluating 
the Rasch model. We distinguish the following steps: 

• Identify nature of the problem (1.5.1) 
• Estimation of item parameters (1.5.2) 
• Anchoring (1.5.2.2) 
• Estimation of the D-score (1.5.3) 
• Estimation of age-conditional references (1.5.4) 

Readers not interested in these details may continue to model evaluation in 
Section 1.6. 

1.5.1 IDENTIFY NATURE OF THE PROBLEM 

The SMOCC dataset, introduced in Section 1.4.1.2, contains scores on the DDI 
of Dutch children aged 0–2 years made during nine visits. 
Table 1.5.1 contains data of three children, measured on nine visits between 

ages 0 – 2 years. The DDI scores take values 0 (FAIL) and 1 (PASS). In order 
to save horizontal space, we truncated the column headers to the last two digits 
of the item names. 
Since the selection of milestones depends on age, the dataset contains a large 

number of empty cells. Naive use of sum scores as a proxy to ability is 
therefore problematic. An empty cell is not a FAIL, so it is incorrect to 
impute those cells by zeroes. 
Note that some rows contain only 1’s, e.g., in row 2. Many computer 

programs for Rasch analysis routinely remove such perfect scores before 
fitting. However, unless the number of perfect scores is very small, this is not 
recommended because doing so can severely affect the ability distribution. 
In order to effectively handle the missing data and to preserve all persons in 

the analysis we separate estimation of item difficulties (cf. Section 1.5.2) and 
person abilities (cf. Section 1.5.3). 
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1.5.2 ITEM PARAMETER ESTIMATION 

1.5.2.1 PAIRWISE ESTIMATION OF ITEM DIFFICULTIES 

There are many methods for estimating the difficulty parameters of the Rasch 
estimation. See Linacre (2004) for an overview. 
We will use the pairwise estimation method. This method writes the probability 

that child n passes item i but not item j given that the child passed one of them as 
exp(δi)/(exp(δi) + exp(δj)). The method optimizes the pseudo-likelihood of all 
item pairs over the difficulty estimates by a simple iterative procedure. 
Zwinderman (1995) has shown that this procedure provides consistent 

estimates with similar efficiency as computationally more-intensive conditional 
and marginal maximum likelihood methods. 
The beauty of the method is that it is independent of the ability distribution, 

so there is no need to remove perfect scores. We use the function rasch. 

pairwise.itemcluster() as implemented in the sirt package 
(Robitzsch, 2016). 
Figure 1.5.1 summarizes the estimated item difficulty parameters. Although 

the model makes no distinction between domains, the results have been ordered 
to ease spotting of the natural progression of the milestones per domain. The 
figure also suggests that not all domain have equal representation across the 
scale. For example, there are no communication milestones around the logit 
of –10. 

1.5.2.2 ANCHORING 

The Rasch model identifies the item difficulties up to a linear transformation. 
By default, the software produces estimates in the logit scale (cf. Figure 1.5.1). 
The logit scale is inconvenient for two reasons: 

•	 The logit scale has negative values. Negative values do not have a 
sensible interpretation in child development, and are likely to introduce 
errors in practice; 

•	 Both the zero in the logit scale, as well as its variance, depend on the 
sample used to calibrate the item difficulties. 

Rescaling preserves the properties of the Rasch model. To make the scale 
independent of the specified sample, we transform the scale so that two items 
will always have the same value on the transformed scale. The choice of the 
two anchor items is essentially arbitrary, but they should correspond to 
milestones that are easy to measure with small error. In the sequel, we use the 
two milestones to anchor the D-score scale by the items in Table 1.5.2. With the 
choice of Table 1.5.2, D-score values are approximately 0 D around birth. At 
the age of 1 year, the score will around 50 D, so during the first year of life, 
one D unit corresponds to approximately a one-week interval. Figure 1.5.2 
shows the difficulty estimates in the D-score scale. 
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FIGURE 1.5.1 Estimated item difficulty parameters (d i) for 57 milestones of the DDI 
(0 – 2 years). 

TABLE 1.5.2 
Anchoring values used to identify the D-score scale. 

Item Label Value 

ddigmd057 Lifts head to 45 degrees on prone position 20 

ddigmd063 Sits in stable position without support 40 
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FIGURE 1.5.2 Estimated item difficulty parameters (di) for 57 milestones of the DDI 
(0 – 2 years). 

Milestones ddigmd057 and ddigmd063 are anchored at values of 20 D and 40 D, 
respectively. 

1.5.3 ESTIMATION OF THE D-SCORE 

The second part of the estimation process is to estimate a D-score. The D-score 
quantifies the development of a child at a given age. Whereas the instrument 
developer is responsible for the estimation of item parameters, D-score 
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estimation is more of a task for the user. To calculate the D-score, we need the 
following ingredients: 

•	 Child’s PASS/FAIL scores on the milestones administered; 
•	 The difficulty estimates of each milestone administered; 
•	 A prior distribution, an estimate of the D-score distribution before seeing 

any PASS/FAIL score. 

Using these inputs, we may use Bayes theorem to calculate the position of 
the person on the latent variable. 

1.5.3.1 ROLE OF THE STARTING PRIOR 

The first two inputs to the D-score will be self-evident. The third component, 
the prior distribution, is needed to be able to deal with perfect responses. The 
prior distribution summarizes our knowledge about the D-score before we see 
any of the child’s PASS/FAIL scores. In general, we like the prior to be non-
informative, so that the observed responses and item difficulties entirely 
determine the value of the D-score. In practice, we cannot use truly non-
informative prior because that would leave the D-score for perfect responses 
(i.e., all PASS or all FAIL) undefined. The choice of the prior is essentially 
arbitrary, but we can make it in such a way that its impact on the value D-score 
is negligible, especially for tests where we have more than, say, four items. 
Since we know that the D-score depends on age, a logical choice for the 

prior is to make it dependent on age. In particular, we will define the prior as a 
normal distribution equal to the expected mean in Figure 1.4.3 at the child’s 
age, and with a standard deviation that considerably higher than in Figure 1.4.3. 
Numerical example: the mean D-score at the age of 15 months is equal to 53.6 
D. The standard deviation in Figure 1.4.3 varies between 2.6 D and 3.0 D, with 
an average of 2.9 D. After some experimentation, we found that using a value 
of 5.0 D for the prior yields a good compromise between non-informativeness 
and robustness of D-score estimates for perfect patterns. The resulting starting 
prior for a child aged 15 months is thus N(53.6,5). 
The reader now probably wonders about a chicken-and-egg problem: To 

calculate the D-score, we need a prior, and to determine the prior we need the 
D-score. So how did we calculate the D-scores in Figure 1.4.3? The answer is 
that we first took at rougher prior, and calculated two temporary models in 
succession using the D-scores obtained after solution 1 to inform the prior 
before solution 2, and so on. It turned out that D-scores in Figure 1.4.3 hardly 
changed after two steps, and so there we stopped. 

1.5.3.2 STARTING PRIOR: NUMERICAL EXAMPLE 

Figure 1.5.3 illustrates starting distributions (priors) chosen according to the 
principles set above for the ages of 1, 15 and 24 months. As expected, the 
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assumed ability of an infant aged one month is much lower than that of a child 
aged 15 months, which in turn is lower than the ability of a toddler aged 24 
months. The green distribution for 15 months corresponds to the normal 
distribution N (53.6,5). 
Another choice that we need to make is the grid of points on which we 

calculate the prior and posterior distributions. Figure 1.5.3 uses a grid from -10 
D to +80 D, with a step size of 1 D. These are fixed quadrature points, and 
there are 91 of them. While these quadrature points are sufficient to estimate D-
score for ages up to 2.5 years, it is wise to extend the range for older children 
with higher D-scores. 

1.5.3.3 EAP ALGORITHM 

The algorithm for estimating the D-score is known as the Expected a posteriori 
(EAP) method, first described by Bock & Mislevy (1982). Calculation of the 
D-score proceeds item by item. Suppose we have some vague and preliminary 
idea about the distribution of D, the starting prior (cf. section 1.5.3.1), based 
on age. The procedure uses Bayes rule to update this prior knowledge with 
data from the first item (using the child’s FAIL/PASS score and the estimated 
item difficulty) to calculate the posterior. The next step uses this posterior as 
prior before processing the next item, and so on. The procedure stops when 
the item pool is exhausted. The order in which items enter does not matter 
for the result. The D-score is equal to the mean of the posterior calculated 
after the last question. 

FIGURE 1.5.3 Age-dependent starting priors for the D-score at the ages of 1, 15 and 
24 months. 
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1.5.3.4 EAP ALGORITHM: NUMERICAL EXAMPLE 

Suppose we measure two boys aged 15 months, David and Rob, by the DDI. 
David passes the first four milestones but does not complete the test. Rob 
completes the test but fails on two out of five items. 
Table 1.5.3 shows the difficulty of each milestone (in the column labelled 

“Delta”), and the responses of David and Rob for the standard five DDI 
milestones for the age of 15 months. 
The mean D-score for Dutch children aged 15 months is 53.6 D, so the 

milestones are easy to pass at this age, with the most difficult is ddicmm037. 
David passed all milestones but has no score on the last. Rob fails on 
ddifmm012 and ddigmm067. How do we calculate the D-score for David 
and Rob? 
Figure 1.5.4 shows how the prior transforms into the posterior after we 

successively feed the measurements into the calculation. There are five 
milestones, so the calculation comprises five steps: 

1. Both David and Rob pass	 ddifmd011. The prior (light green) is the 
same as in Figure 1.5.3. After a PASS, the posterior will be located more 
to the right, and will often be more peaked. Both happen here, but the 
change is small. The reason is that a PASS on this milestone is not very 
informative. For a child with a true D-score of 53 D, the probability of 
passing ddifmd011 is equal to 0.966. If passing is so common, there is 
not much information in the measurement. 

2. David passes ddifmm012, but Rob does not. Observe that the prior is 
identical to the posterior of ddifmd011. For David, the posterior is 
only slightly different from the prior, for the same reason as above. For 
Rob, we find a considerable change to the left, both for location (from 
54.3 D to 47.1 D) and peakedness. This one FAIL lowers Rob’s score 
by 7.2 D. 

3. Milestone	 ddicmm037 is more difficult than the previous two 
milestones, so a pass on ddicmm037 does have a definite effect on the 
posterior for both David and Rob. 

TABLE 1.5.3 
Scores of David and Rob on five milestones from the DDI. 

Item Label Delta David Rob 

ddifmd011 Puts cube in and out of a box 46.0 1 1 

ddifmm012 Plays "give and take" (M; can ask parents) 46.5 1 0 

ddicmm037 Uses two words with comprehension 50.1 1 1 

ddigmm066 Crawls, abdomen off the floor (M; can ask parents) 46.1 1 1 

ddigmm067 Walks while holding onto play-pen or furniture 46.1 0 
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FIGURE 1.5.4 D-score distribution for David and Rob before (prior) and after 
(posterior) a milestone is taken into account. 
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4. David’s PASS on ddigmm066 does not bring any additional information, 
so his prior and posterior are virtually indistinguishable. For Rob, we find 
a slight shift to the right. 

5. There is no measurement for David on	 ddigmm067, so the prior and 
posterior are equivalent. For Rob, we observe a FAIL, which shifts his 
posterior to the left. 

We calculate the D-score as the mean of the posterior. David’s D-score is 
equal to 55.7 D. Note that the measurement error, as estimated from the 
variance of the posterior, is relatively large. Rob’s D-score is equal to 47.7 D, 
with a much smaller measurement error. This result is consistent with the 
design principles of the DDI, which is meant to detect children with 
developmental delay. 
The example illustrates that the quality of the D-score depends on two 

factors, the match between the true (but unknown) D-score of the child and 
the difficulty of the milestone. 

1.5.3.5 TECHNICAL OBSERVATIONS ON D-SCORE ESTIMATION 

•	 Administration of a too easy set of milestones introduces a ceiling with 
children that pass all milestones, but whose true D-score could extend 
well beyond the maximum. Depending on the goal of the measurement, 
this may or may not be a problem. 

•	 The specification of the prior and posterior distributions requires a set of 
quadrature points. The quadrature points are taken here as the static and 
evenly-spaced set of integers between -10 and +80. Using other 
quadrature points may affect the estimate, especially if the range of the 
quadrature points does not cover the entire D-score range. 

•	 The actual calculations are here done item by item. A more efficient 
method is to handle all responses at once. The result will be the same. 

1.5.4 AGE-CONDITIONAL REFERENCES 

1.5.4.1 MOTIVATION 

The last step involves estimation an age-conditional reference distribution for 
the D-score. This distribution can be used to construct growth charts that 
portray the normal variation in development. Also, the references can be used 
to calculate age-standardized D-scores, called DAZ, that emphasize the location 
of the measurement in comparison to age peers. 
Estimation of reference centiles is reasonably standard. Here we follow van 

Buuren (2014) to fit age-conditional references of the D-score for boys and girls 
combined by the LMS method. The LMS method by Cole & Green (1992) 
assumes that the outcome has a normal distribution after a Box-Cox 
transformation. The reference distribution has three parameters, which model 
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respectively the location (M), the spread (S), and the skewness (L) of the 
distribution. Each of the three parameters can vary smoothly with age. 

1.5.4.2 ESTIMATION OF THE REFERENCE DISTRIBUTION 

The parameters are estimated using the BCCG distribution of gamlss 5.1-3 

(Stasinopoulos & Rigby, 2008) using cubic splines smoothers. The final 
solution used a log-transformed age scale and fitted the model with smoothing 
parameters df(M) = 2, df(S) = 2 and df(L) = 1.  
Figure 1.4.3 plots the D-scores together with five grey lines, corresponding to 

the centiles -2SD (P2), -1SD (P16), 0SD (P50), +1SD (P84) and +2SD (P98). 
The area between the -2SD and +2SD lines delineates the D-score expected if 
development is healthy. Note that the shape of the reference is quite similar to 
that of weight and height, with rapid growth occurring in the first few months. 
Table 1.5.4 defines age-conditional references for Dutch children as the M-curve 

(median), S-curve (spread) and L-curve (skewness) by age. This table can be 
used to calculate centile lines and Z-scores. 
The references are purely cross-sectional and do not account for the 

correlation structure between ages. For prediction purposes, it is useful to 
extend the modelling to include velocities and change scores. 

1.5.4.3 CONVERSION OF D TO DAZ, AND VICE VERSA 

Suppose that Mt, St and Lt are the parameter values at age t. Cole (1988) shows 
that the transformation 

converts measurement Dt into its normal equivalent deviate Z. If L t is close 
to zero, we use 

We may derive any required centile curve from Table 1.5.4. First, choose Zα 

as the Z-score that delineates 100 α per cent of the distribution, for example, 
Z0.05 = –1.64. The D-score that defines the 100 α centile is equal to 

If Lt is close to zero, we use 
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TABLE 1.5.4
 
Dutch reference values for the D-score.
 

Age M S L 

0.0383 8.81 0.3126 1.3917 

0.0575 10.59 0.2801 1.4418 

0.0767 12.27 0.2526 1.4891 

0.0958 13.87 0.2291 1.5331 

0.1150 15.39 0.2089 1.5722 

0.1342 16.83 0.1916 1.6049 

0.1533 18.20 0.1767 1.6304 

0.1725 19.50 0.1640 1.6487 

0.1916 20.75 0.1531 1.6607 

0.2108 21.94 0.1436 1.6676 

0.2300 23.07 0.1354 1.6706 

0.2491 24.16 0.1283 1.6711 

0.2683 25.21 0.1220 1.6698 

0.2875 26.21 0.1165 1.6673 

0.3066 27.17 0.1117 1.6636 

0.3258 28.10 0.1074 1.6589 

0.3450 28.99 0.1035 1.6533 

0.3641 29.86 0.1001 1.6471 

0.3833 30.70 0.0970 1.6403 

0.4025 31.50 0.0942 1.6330 

0.4216 32.29 0.0917 1.6255 

0.4408 33.05 0.0894 1.6178 

0.4600 33.79 0.0873 1.6100 

0.4791 34.51 0.0854 1.6022 

0.4983 35.21 0.0837 1.5946 

0.5175 35.89 0.0821 1.5870 

0.5366 36.55 0.0807 1.5797 

0.5558 37.20 0.0793 1.5725 

0.5749 37.83 0.0781 1.5656 

0.5941 38.44 0.0770 1.5588 

0.6133 39.04 0.0759 1.5523 

0.6324 39.63 0.0749 1.5460 

0.6516 40.21 0.0740 1.5399 

0.6708 40.77 0.0731 1.5340 

0.6899 41.32 0.0723 1.5284 

0.7091 41.86 0.0715 1.5230 

0.7283 42.39 0.0707 1.5178 

0.7474 42.91 0.0700 1.5128 

0.7666 43.42 0.0693 1.5081 

0.7858 43.92 0.0687 1.5036 

(Continued) 
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TABLE 1.5.4 

(Continued) 

Age M S L 

0.8049 44.40 0.0681 1.4993 

0.8241 44.88 0.0674 1.4952 

0.8433 45.36 0.0669 1.4913 

0.8624 45.82 0.0663 1.4876 

0.8816 46.27 0.0657 1.4841 

0.9008 46.72 0.0652 1.4809 

0.9199 47.16 0.0647 1.4778 

0.9391 47.59 0.0642 1.4749 

0.9582 48.01 0.0637 1.4723 

0.9774 48.43 0.0632 1.4698 

0.9966 48.84 0.0627 1.4676 

1.0157 49.24 0.0622 1.4655 

1.0349 49.64 0.0618 1.4637 

1.0541 50.03 0.0613 1.4620 

1.0732 50.41 0.0608 1.4605 

1.0924 50.79 0.0604 1.4592 

1.1116 51.16 0.0600 1.4580 

1.1307 51.53 0.0595 1.4570 

1.1499 51.89 0.0591 1.4561 

1.1691 52.24 0.0587 1.4553 

1.1882 52.59 0.0583 1.4547 

1.2074 52.94 0.0578 1.4542 

1.2266 53.27 0.0574 1.4538 

1.2457 53.61 0.0570 1.4535 

1.2649 53.94 0.0566 1.4534 

1.2841 54.26 0.0562 1.4533 

1.3032 54.58 0.0559 1.4533 

1.3224 54.89 0.0555 1.4533 

1.3415 55.20 0.0551 1.4535 

1.3607 55.50 0.0547 1.4537 

1.3799 55.81 0.0544 1.4539 

1.3990 56.10 0.0540 1.4542 

1.4182 56.39 0.0536 1.4546 

1.4374 56.68 0.0533 1.4551 

1.4565 56.97 0.0530 1.4555 

1.4757 57.25 0.0526 1.4561 

1.4949 57.52 0.0523 1.4567 

1.5140 57.80 0.0520 1.4573 

1.5332 58.06 0.0517 1.4580 

1.5524 58.33 0.0514 1.4587 

(Continued) 
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TABLE 1.5.4 

(Continued) 

Age M S L 

1.5715 58.59 0.0510 1.4595 

1.5907 58.85 0.0508 1.4603 

1.6099 59.11 0.0505 1.4612 

1.6290 59.36 0.0502 1.4620 

1.6482 59.61 0.0499 1.4630 

1.6674 59.86 0.0496 1.4639 

1.6865 60.11 0.0494 1.4649 

1.7057 60.35 0.0491 1.4660 

1.7248 60.59 0.0488 1.4670 

1.7440 60.82 0.0486 1.4681 

1.7632 61.06 0.0483 1.4692 

1.7823 61.29 0.0481 1.4704 

1.8015 61.52 0.0478 1.4716 

1.8207 61.75 0.0476 1.4728 

1.8398 61.97 0.0474 1.4740 

1.8590 62.20 0.0471 1.4752 

1.8782 62.42 0.0469 1.4765 

1.8973 62.64 0.0467 1.4778 

1.9165 62.85 0.0465 1.4791 

1.9357 63.07 0.0463 1.4805 

1.9548 63.28 0.0461 1.4818 

1.9740 63.49 0.0459 1.4832 

1.9932 63.70 0.0457 1.4846 

2.0123 63.91 0.0455 1.4861 

2.0315 64.11 0.0453 1.4875 

2.0507 64.32 0.0451 1.4890 

2.0698 64.52 0.0449 1.4904 

2.0890 64.72 0.0447 1.4919 

2.1081 64.92 0.0445 1.4934 

2.1273 65.11 0.0443 1.4949 

2.1465 65.31 0.0441 1.4964 

2.1656 65.50 0.0440 1.4979 

2.1848 65.70 0.0438 1.4994 

2.2040 65.89 0.0436 1.5009 

2.2231 66.08 0.0434 1.5024 

2.2423 66.26 0.0433 1.5039 

2.2615 66.45 0.0431 1.5054 

2.2806 66.64 0.0429 1.5069 

2.2998 66.82 0.0428 1.5084 

2.3190 67.00 0.0426 1.5098 

(Continued) 
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TABLE 1.5.4 

(Continued) 

Age M S L 

2.3381 67.18 0.0425 1.5113 

2.3573 67.36 0.0423 1.5127 

2.3765 67.54 0.0421 1.5142 

2.3956 67.72 0.0420 1.5156 

2.4148 67.89 0.0418 1.5170 

2.4339 68.07 0.0417 1.5185 

2.4531 68.24 0.0415 1.5199 

2.4723 68.41 0.0414 1.5213 

2.4914 68.59 0.0412 1.5226 

2.5106 68.75 0.0411 1.5240 

2.5298 68.92 0.0410 1.5254 

2.5489 69.09 0.0408 1.5267 

2.5681 69.26 0.0407 1.5281 

2.5873 69.42 0.0405 1.5294 

2.6064 69.59 0.0404 1.5308 

2.6256 69.75 0.0403 1.5321 

2.6448 69.91 0.0401 1.5334 

2.6639 70.07 0.0400 1.5347 

2.6831 70.23 0.0399 1.5360 

2.7023 70.39 0.0397 1.5373 

2.7214 70.55 0.0396 1.5386 

2.7406 70.71 0.0395 1.5398 

2.7598 70.86 0.0394 1.5411 

2.7789 71.02 0.0392 1.5423 
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The properties cut-off Rasch model (cf. Section 1.4.8) only hold when the data 
and model agree. It is, therefore, essential to study and remove discrepancies 
between model and data. This section explains several techniques that aid in the 
evaluation of model fit. 

• Item fit (1.6.1) 
• Person fit (1.6.2) 
• Differential item functioning (1.6.3) 
• Item information (1.6.4) 
• Reliability (1.6.5) 

These topics address different aspects of the solution. In practice, we have 
found that item fit is the most critical concern. 

1.6.1 ITEM FIT 

The philosophy of the Rasch model is different from conventional statistical 
modelling. It is not the task of the Rasch model to account for the data. Rather 
it is the task of the data to fit the Rasch model. We saw this distinction before 
in Section 1.4.5.2. 
The goal of model-fit assessment is to explore and quantify how well 

empirical data meet the requirements of the Rasch model. One way to gauge 
model-fit is to compare the observed probability of passing an item to the fitted 
item response curve for endorsing the item. 
The fitted item response curve for each item i is modelled as: 

where is the estimated ability of child n (the child’s D-score), and where 
is the estimated difficulty of item i. This is equivalent to formula (1.4.1) with 

the parameters replaced by estimates. Section 1.5 described process of 
parameter estimation in some detail. 
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1.6.1.1 WELL-FITTING ITEM RESPONSE CURVES 

The study of item fit involves comparing the empirical and fitted probabilities at 
various levels of ability. Figure 1.6.1 shows the item characteristics curves of 
two DDI milestones. The orange line represents the empirical probability at 
different ability levels. The dashed line represents the estimated item response 
curve according to the Rasch model. The observed and estimated curves are 
close together, so both items fit the model very well. 

1.6.1.2 ITEM RESPONSE CURVES SHOWING SEVERE UNDERFIT 

There are many cases where things are less bright. 
Figure 1.6.2 shows three forms of severe underfit from three artificial items. 

These items were simulated to have a low fit, added to the DDI, and we 
estimated their parameters by the methods of Section 1.5. For the first item, 

FIGURE 1.6.1 Empirical and fitted item response curves for two milestones from the 
DDI (SMOCC data). 
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FIGURE 1.6.2 Three simulated items that illustrate various forms of item misfit. 
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hypgmd001, the probability of passing is almost constant across ability, so 
retaining this item essentially only adds to the noise. Item hypgmd002 

converges to an asymptote around 80 per cent and has a severe dip in the 
middle. The strong relation to age causes the drop. Item hypgmd003 appears to 
have the wrong coding. Also, we often see the spike-like behaviour in the 
middle when two or more different items erroneously share identical names. 
Removal of items with a low fit can substantially improve overall model fit. 

1.6.1.3 ITEM RESPONSE CURVES SHOWING OVERFIT 

Figure 1.6.3 shows two artificial items with two forms of overfitting. The curve 
of item hypgmd004 is much steeper than the modelled curve. Thus, just this 
one item is exceptionally well-suited to distinguish children with a D-score 
below 50 D from those with a score above 50 D. Note that the item isn’t 
sensitive anywhere else on the scale. In general, having items like these is good 
news, because they allow us to increase the reliability of the instrument. One 

FIGURE 1.6.3 Two simulated items that illustrate item overfit. 
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should make sure, though, that FAIL and PASS scores are all measured (not 
imputed) values. 
Multiple perfect items could hint to a violation of the local independence 

assumption (cf. Section 1.4.5). Developmental milestones sometimes have 
combinations of responses that are impossible. For example, one cannot walk 
without being able to stand, so we will not observe the inconsistent 
combination (stand: FAIL, walk: PASS). This impossibility leads to more 
consistent responses that would be expected by chance alone. In principle, one 
could combine the two such items into one three-category item, which 
effectively set the probability of inconsistent combinations to zero. 
Item hypgmd005 is also steep, but has an asymptote around 80 per cent. 

This tail behaviour causes discrepancies between the empirical and modelled 
curves around the middle of the probability scale. In general, we may remove 
such items if a sufficient number of alternatives is available. 

1.6.1.4 ITEM INFIT AND OUTFIT 

We quantify item fit by item infit and outfit. Both are aggregates of the model 
residuals. The observed response xni of person n on item i can be 0 or 1. 
The standardized residual zni is the difference between the observed response 

xni and the expected response pni, divided by the expected binomial standard 
deviation, 

where the expected response variance Wni is calculated as 

Item infit is the total of the squared residuals divided by the sum of the 
expected response variances Wni 

Item outfit is calculated as the average (over N measurements) of the squared 
standardized residual 

The expected value of both infit and outfit is equal to 1.0. The interpretation 
is as follows: 
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•	 If infit and outfit are 1.0, then the item perfectly fits the Rasch model, as 
in Figure 1.6.1; 

•	 If infit and outfit > 1.0, then the item is not fitting well. The amount of 
underfit is quantified by infit and outfit, as in 1.6.2; 

•	 If infit and outfit < 1.0, then the item fits the model better than expected 
(overfit). Overfitting is quantified by infit and outfit, as in 1.6.3. 

Infit is more sensitive to disparities in the middle of the probability scale, 
whereas outfit is the better measure for discrepancies at probabilities close to 
0 or 1. Lack of fit is generally easier to spot at the extremes. The two 
measures are highly correlated. Achieving good infit is more valuable than a 
high outfit. 
Values near 1.0 are desirable. There is no cut and dried cut-off value for infit 

and outfit. In general, we want to remove underfitting items with infit or outfit 
values higher than, say, 1.3. Overfitting items (with values lower than 1.0) are 
not harmful. Preserving these items may help to increase the reliability of the 
scale. The cut-off chosen also depends on the number of available items. When 
there are many items to choose from, we could use a stricter criterion, say infit 
and outfit < 1.0 to select only the absolute best items. 

1.6.1.5 INFIT AND OUTFIT IN THE DDI 

Figure 1.6.4 displays the histogram of the 57 milestones from the DDI (cf. 
Section 1.4.1). Most infit values are within the range 0.6 - 1.1.1, thus indicating 
excellent fit. The two milestones with shallow infit values are ddigmd052 and 
ddigmd053. These two items screen for paralysis for newborns, so the data 
contain hardly any fails on these milestones. The outfit statistics also indicate a 
good fit. 

FIGURE 1.6.4 Frequency distribution of infit (left) and outfit (right) of 57 milestones 
from the DDI (SMOCC data). 
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1.6.2 PERSON FIT 

Person fit quantifies the extent to which the responses of a given child conform 
to the Rasch model expectation. The Rasch model expects that a more able 
child has a higher probability of passing an item than a less developed child. 
Person fit analysis evaluates the extent to which this is true. 

1.6.2.1 PERSON INFIT AND OUTFIT 

In parallel to item fit, we can calculate person infit and person outfit. Both 
statistics evaluate how well the responses of the persons are consistent with the 
model. Outlying answers that do not fit the expected pattern increase the outfit 
statistic. The outfit is high, for example, when the child fails easy items but 
passes difficult ones. The infit is the information weighted fit and is more 
sensitive to inlaying, on-target, unexpected responses. 
Similar to item fit, person fit is also calculated from the residuals, but 

aggregated differently. We calculate person infit as  

and person outfit as  

A threshold for person fit > 3.0 is customary to clean out children with 
implausible response patterns. 

1.6.2.2 PERSON INFIT AND OUTFIT IN THE DDI 

Figure 1.6.5 displays the frequency distribution of person infit and person outfit 
16538 measurements of the DDI in the SMOCC data. The majority of the 
values falls below 3.0. For infit, only 43 out of 16538 fit values (0.3 per cent) is 
above 3.0. There are 446 out of 16538 outfit value (2.7 per cent) above 3.0. 
Expect the solution to improve after deleting these measurements. 

1.6.3 DIFFERENTIAL ITEM FUNCTIONING (DIF) 

1.6.3.1 RELEVANCE OF DIF FOR CROSS-CULTURAL EQUIVALENCE 

An essential assumption in the Rasch model is that a given item has the same 
difficulty in different subgroups of respondents. Climbing stairs is an example 
where this assumption is suspect. The exposure to stairs, and hence the 
opportunity for a child to practice, varies across different cultures. It could 
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FIGURE 1.6.5 Frequency distribution of person infit (left) and person outfit (right) for 
16538 measurements of the DDI (SMOCC data). 

thus be that two children with the same ability but from different cultures have 
different success probabilities for climbing stairs. When these probabilities 
systematically vary between subgroup, we say there is Differential Item 
Functioning, or  DIF (Holland & Wainer, 1983). DIF is undesirable since it 
can make the instrument culturally biased. 

1.6.3.2 HOW TO DETECT DIF? 

Zumbo (1999) provided a clear definition of DIF: 

DIF occurs when examinees from different groups show differing 
probabilities of success on (or endorsing) the item after matching on the 
underlying ability that the item is intended to measure. 

There are various ways to detect DIF. Here we will model the probability of 
endorsing an item by logistic regression using the observed item responses as 
the outcome. Predictors include the ability, the grouping variable, and the 
ability-grouping interaction. If the latter two terms explain the residual 
variance of the item scores after adjusting for ability, the item shows DIF for 
that group. DIF can be visually inspected by plotting the curves for the 
subgroups separately. 
There are two forms of DIF: 

•	 Uniform DIF: The item response curves differ between groups in 
location, but are parallel; 

•	 Non-uniform DIF: The item response curve differ between groups in 
location, in slope and possibly in other characteristics. 

These forms correspond to, respectively, the main effect of group and the 
ability-group interaction in the logistic regression model. 
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1.6.3.3 EXAMPLES OF DIF 

Figure 1.6.6 shows an example comparing boys and girls. For both milestones, 
the item response curves are similar for boys and girls, so we see no evidence 
of DIF here. 
Figure 1.6.7 displays two milestones with DIF between boys and girls. Provided 

that the ability estimate (as estimated from all items in the model) is fair for both 
boys and girls, we see that milestone ddifmm019 (“Takes off shoes and socks”) 
is easier for girls by about 0.86 logits (= the difference in ability at the 
intersection of 50 per cent). Conversely, milestone ddigmm064 (“Crawls forward, 
abdomen on the floor”) is easier for boys by about 0.84 logits. These are the most 
substantial differences found for sex in the DDI. Both are uniform DIF. 
In practice, having milestones with opposite directions of DIF in the same 

instrument will cancel out one another, so one need not be overly concerned in 

FIGURE 1.6.6 Two milestones from the DDI with similar item response curves for 
boys and girls. There is no DIF for sex. 
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FIGURE 1.6.7 Two milestones from the DDI with different item response curves for 
boys and girls. There is evidence for uniform DIF. 

that case. However, we should be careful when the tool consists of milestones 
that all have DIF in the same direction. 
The DDI did not contain items for which the ability-group interaction was 

statistically significant, so we conclude that there is no non-uniform DIF in 
the DDI. 

1.6.4 ITEM INFORMATION 

1.6.4.1 ITEM INFORMATION AT A GIVEN ABILITY 

Items are generally sensitive to only a part of the ability scale. Item information 
is a psychometric measure that quantifies how illuminating the item is at different 
levels of ability. We may visualize item information as a curve per item. 
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The formula to obtain the item information is the first derivative of the item 
response curve and can be written as follows: 

where is the conditional probability of endorsing item i, and where 
is the estimated item difficulty in the logit scale. For example for milestone 
ddicmm039 (“Says three words”) equals 4.06. 
Figure 1.6.8 displays the item information curves for two milestones from 

the DDI. Note that the amount of information for the item is maximal around 
the item difficulty. 
The probability of endorsing milestone ddicmm039 for a child with an 

ability of 2 logits is 

At this ability level, milestone ddicmm039 has information 

1.6.4.2 ITEM INFORMATION AT A GIVEN AGE 

In practice, it is often interesting to express the item information against age. 
By doing so, one can identify at what ages an item provides the most 
information. 

FIGURE 1.6.8 The item information curve for two milestones from the DDI. 
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Figure 1.6.9 shows that the sensitive age ranges differ considerably between 
items. Suppose we use 0.05 as a criterion. Then ddigmm060 is susceptible 
between ages 4–8 months, a period of four months. Item ddicmm039 is 
receptive in the period 10–19 months, a range that is about twice as broad. 
The symmetric nature of the curves in Figure 1.6.8 is not present in Figure 
1.6.9. In general, the relation between age and item sensitivity is more 
complicated than the relationship between ability and item sensitivity. 
The item information by age curve helps to determine at what ages we 

should administer the item. The item will be most informative if delivered at 
the age at which 50% of the children will pass the milestone. This age 
corresponds to an item information is equal to 0.5 x 0.5 = 0.25. Administering 
the item closely around that age provide the most efficient measurement of 
ability. When space is at a premium (e.g. as in population surveys) using a 
well-chosen set of age-sensitive milestones will help in reducing the total 
number of milestones. 
In other contexts, milestones may be used as a screening instrument to 

identify developmental delay. In that case, it is more efficient to administer 
items that are very easy for the age, e.g. milestones on which, say, 90% of the 
children will pass. 

1.6.5 RELIABILITY 

The reliability is a one-number summary of the accuracy of an instrument. 
Statisticians define reliability as the proportion of variance attributable to the 
variation between children’s abilities relative to the total variance. More 
specifically, the reliability R of a test is written as 

FIGURE 1.6.9 Information information of Figure 1.6.8 plotted against age. 
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where is the variance of true scores and is the error variance. 
In general, high reliability is desirable. We often use reliability to decide 

between instruments. Cronbach’s α is a widely used estimate of the lower 
bound of the reliability of a test. In the Rasch model, we can estimate reliability 
by the ratio 

For a given model, we can calculate directly as the sampling variance of 
an estimate for is more complicated. We use 
and item difficulties to generate a hypothetical 
same missing data pattern, and re-estimate the 
ed data. Then is computable as the variance 
odelled and re-estimated person ability. 
the modelled abilities is = 76.6, and the 
een modelled and re-estimated abilities is equal 
g standard error of measurement (sem) is = 

e SMOCC data is equal to (76.6 – 1.74)/76.6 = 
stimate in the same way as Cronbach’s α, for 
ond 0.9 is classified as excellent. Note that the 
of the large variation in D-scores. Newborns are 
toddlers, which helps to increase reliability. In 
eful to use a measure of accuracy that is less 

the estimated abilities. Getting 
the modelled person abilities 
data set of the same size and 
person ability from the simulat
of the difference between the m
The estimated variance of 

variance of the difference betw
to = 1.74. The correspondin
1.32 logits. 
The estimated reliability in th

0.977. We may interpret this e
which typically any value bey
reliability is very high because 
very different from 2-year old 
practice, it is perhaps more us
dependent on the variation within the sample. The sem, as explained above, 
seems to be a more relevant measure of precision. 
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Validity is a generic term that refers to the question of how well an instrument 
measures what it claims to measure. There are various aspects of validity. This 
section briefly reviews the main types of validity: 

• Internal validity (1.7.1) 
• External validity (1.7.2) 

1.7.1 INTERNAL VALIDITY 

1.7.1.1 CONTENT VALIDITY 

Content validity is the extent to which the D-score represents all facets of 
development. In contrast to “face validity,” which assesses whether the test 
appears valid to respondents, content validity is about what is measured. 
One important form of content validity is that we wish to make sure that the 

measurement scale represents the various developmental domains in a fair way. 
In the simplest case, we can assign each milestone uniquely to one domain and 
evaluate coverage by splitting the cumulative item information. 
Figure 1.7.1 shows the coverage of the three domains of the DDI at various 

levels of the D-score. The three domains of the DDI are relevant at most ability 

FIGURE 1.7.1 Cumulative item information by DDI domain. 

DOI: 10.1201/9781003216315-7 65 

http://dx.doi.org/10.1201/9781003216315-7


66 Validity 

levels. The DDI contains no communication milestones between 20 D and 30 
D, so at these levels, the DDI measures primarily motor performance. 
Content validity assessment is part of modelling when we examine what 

milestones fit the model. Content validity also means that all relevant facets of 
development are measured. As discussed in Section 1.6.1, we may remove 
items that do not fit the model and hence fail to measure development in the 
technical sense. As a result, we may lose items considered relevant by subject-
matter specialists. If we want to preserve these, we could fit a separate model 
that captures another development aspect. We did not encounter the issue with 
the DDI. In contrast, our finding that items allocated to different domains form 
a unidimensional scale underlines the content validity of the D-score. 

1.7.1.2 CONSTRUCT VALIDITY 

Construct validity is the extent to which the D-score behaves like the theory says 
the construct should behave. For example, we expect that child development 
advances with age. Figure 1.4.3 provides convincing evidence that the D-score 
increases fastest in the first six months and keeps rising at a slower rate as children 
age. This phenomenon is consistent with theories in growth and child development. 
In Section 1.4, we assumed that child development is a latent variable. Figure 

1.7.2 provides one way to evaluate the validity of this assumption. The figure 
plots the item fit for each milestone coloured by domain. Items from different 
domains fit equally well, so there is no evidence that the D-score favours a 
particular area. Put in more technical terms; the DDI domains do not explain 
differences in the item fit residuals of the model. 

1.7.2 EXTERNAL VALIDITY 

1.7.2.1 DISCRIMINATORY VALIDITY 

Discriminatory validity indicates the extent to which the D-score can distinguish 
children with non-normal development from children that are developing 
normally. We may evaluate this by identifying children with lagging development, 
for example, indicated by reflex or tonus problems, and study whether the D-score 
can discriminate those children from the general population. Section 1.9.3 
presents some examples. 

1.7.2.2 CONVERGENT AND DIVERGENT VALIDITY 

Convergent validity is the extent to which the D-score relates to similar 
constructs. We measure it by the correlation between the D-score and the total 
score on Bayley-III or Denver. 
The correlation with the other construct should be 0.6, or higher for good 

convergent validity. Unfortunately, at present, only limited data is available for 
the DDI, so we cannot assess convergent validity for the D-score at this point. 
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FIGURE 1.7.2 Item fit by D-score for the DDI domains. 

Divergent validity is the extent to the D-score is uncorrelated with measures 
of a different construct. 
Figure 1.7.3 shows both convergent and divergent validity at work. The 

figure shows that, as expected, there is a strong and almost linear relation 
between body height and the D-score. However, after correction for the child’s 
age, the relationship between height and D-score almost disappears. Thus, 
growth and development are entirely different concepts. 
We can also evaluate the strength of the relations between the D-score and 

proxy measures of child development, such as stunted height growth (see 
section 1.1.3). The low correlation between DAZ and HAZ suggests that 
stunting is a poor proxy for child development. 

1.7.2.3 PREDICTIVE VALIDITY 

Predictive validity refers to the degree to which the D-score predicts the score 
on a criterion that is measured later. For the D-score, we may compare to 
measures for IQ at the school-age as a possible criterion. 
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FIGURE 1.7.3 Relation between body height and the D-score in the SMOCC data. 

Vlasblom et al. (2019) found strong evidence that individual milestones of 
the DDI measured during the first years of life predict later intellectual 
functioning at ages 5–10 years. It is to be expected that the D-score, which 
builds upon these individual items, will also predict limited intellectual functioning, 
perhaps even better. 
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This section shows the properties of the D-score when calculated from short 
tests. The study of quick tests is useful because it reveals the behaviour of the 
D-score when the measurement is inherently imprecise. 
This section covers: 

• Structure of milestone subsets (1.8.1) 
• Impact of short tests on D-score (1.8.2) 
• Impact of short tests on predicting IQ (1.8.3) 

1.8.1 SMOCC DESIGN: STANDARD AND ADDITIONAL 
MILESTONES 

At each visit, the SMOCC study collected scores on a set of standard milestones 
(that about 90 per cent of the children will pass) and a set of additional milestones 
(that about 50 per cent of the children will pass). See Section 1.4.1.2. 
The SMOCC dataset covers nine different waves. The set of milestones used 

in the DDI varies per visit. The number of standard milestones varies between 2 

TABLE 1.8.1 
Number of items administered per wave in the SMOCC data. 

Age Standard Additional 

1m 5 2 

2m 2 5 

3m 5 6 

6m 6 7 

9m 7 6 

12m 6 6 

15m 6 6 

18m 6 7 

24m 7 7 
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and 7 on various occasions. The additional milestones equal the standard ones 
from the next wave. 
Table 1.8.1 summarizes the scheduled age for each wave, the number of 

standard milestones and the number of additional milestones. 
Figure 1.8.1 shows the subsets of DDI items administered at each age. For 

example, at the 1-month visit, the five standard milestones are ddicmm029 ­
ddigm056, and the two additional ones are ddicmm030 and ddifmd002. 
At the 2-month visit, the standard milestones are ddicmm030 and ddifmd002, 
and the five additional ones are ddicmm031 - ddigmd057. And so on. 

1.8.2 D-SCORE FROM SHORT TESTS 

1.8.2.1 MILESTONE SETS 

In the analyses done thus far, we have calculated D-scores from responses on 
the combined (standard plus additional) milestones. Thus, at the 2-month visit, 
the D-score was calculated from 2 (standard) + 5 (additional) = 7 milestones. 
In daily practice, the set of additional milestones is often lacking. This section 

explores the impact of using the (smaller) subset of standard milestones on 
measurement error and prediction. 
This section reports and compares three D-scores: 

1. D-score from standard milestones; 
2. D-score from additional milestones. 
3. D-score from all available milestones; 

Estimation of 1 is more complicated than for 2 and 3, for the following reasons: 

•	 There are fewer milestones, so the estimate is less precise and more 
influenced by choice of the prior distribution; 

•	 The standard set contains only easy milestones, which are uninformative 
for the majority of children. 

1.8.2.2 MILESTONE SETS AT MONTH 2 

The vertical axis of Figure 1.8.2 shows the D-score, separately calculated from 
the standard, additional and all milestones for children aged two months. The 
colour of the dots represents the number of FAIL ratings within each set of 
milestones. 
At month two there are just two standard milestones: ddicmm030 and 

ddifmd002. About 90 per cent of the infants will pass these. The green dots 
in the left-hand panel represent the estimated D-scores corresponding to two 
passes. As explained in Section 1.5.3.2, we calculate the D-score with an age-
dependent prior. If the ages vary (and they do), then the D-score for infants 
having the same total score will also vary. 
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FIGURE 1.8.1 Age-item grid of the SMOCC study, illustrating how the 57 DDI items 
are distributed over nine visits during the first 24 months. 
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FIGURE 1.8.2 Distribution of the D-scores calculated from the standard, additional 
and all available milestones at month 2. Colors correspond to the number of fails. 

If a child fails either ddicmm030 or ddifmd002, then the D-score is 
substantially lower. The left-hand figure shows a gap between the green dots 
(perfect score) and the yellow dots (one FAIL). The impact of a FAIL on the D-
score is substantial. For example, the D-score of an infant with one FAIL on a 
standard milestone drops from about 20 D to 14 D. Thus, with these two 
milestones, there cannot be a D-score in the range 15 D - 18  D. It depends on 
the purposes of the measurement if this is acceptable. We can prevent gaps by 
measuring more milestones, e.g., milestones taken from the additional set. 
Another gap occurs between 14 D and 11 D. These gaps illustrate that 
precision is constrained if we administer only two milestones. 
The middle panel shows the estimated D-score at the same visit but now 

calculated from the five additional milestones (i.e., the standard milestones from 
month 3). Infant aged two months have approximately a 50 per cent chance of 
passing each. Note that administration of the additional milestones will cover the 
range 14D-20 D quite well. Note the ceiling is also higher with these milestones. 
Note that the range of the estimated D-scores is quite similar in both plots. 

This similarity is a result of accounting for the difficulty level of milestones. 
The estimate of the D-score is unbiased for difficulty. 
The panel on the right-hand side provides the D-score calculated from all 

milestones. We can easily recognize the points coming from the standard and 
additional sets. Also, there is a limited number of ratings on easier items that 
belong to month 1. We rescored these because the child failed these milestones 
at the previous visit. Rescoring effectively extends the range of possible D-
scores to the lower end, so now we can find some children who have D-score 
lower than 10 D. 
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1.8.2.3 MILESTONE SETS AT MONTH 3 

Figure 1.8.3 is the same plot as before, but now for month 3. Compared to Figure 
1.8.2, all points shifted upwards because the children are now one month older. 
The additional milestones from month 2 are the standard milestones of month 

3. In Figure 1.8.2, there were at least 11 children (in purple) failed all five 
additional milestones. One month later, one child has five fails. 

1.8.2.4 FLOOR AND CEILING EFFECTS 

Figure 1.8.4 plot the D-score distribution for all occasions. Some observations: 

FIGURE 1.8.3 Distribution of the D-scores calculated from the standard, additional 
and all available milestones at month 3. Colors correspond to the number of fails. 

FIGURE 1.8.4 D-score by age 0–30 months for standard, additional and all available 
milestones at each measurement occasion. 
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•	 Ceiling effect: The ceiling effect (green) is most prominent in the 
standard set, but is also present in the other two sets. None of the three 
sets can filter out children with really advanced development. To achieve 
more precision at the upper end, we would need to include more difficult 
milestones. 

•	 Floor effect: There are almost no floor effects in the standard and all sets. 
These sets discriminate well among children with delayed development, 
which was the designed purpose of the DDI. Note that floor effects are 
visible in the additional set. 

•	 Average level: All three sets capture the overall relation between age and 
development. The additional set is quite efficient for measuring average 
levels development but lacks detail on the extremes. 

Figure 1.8.4 shows that a short test (5–6 milestones) can precisely 
measure the lower tail of the D-score distribution (standard set) or the 
middle of the D-score distribution (additional set), but cannot do both at the 
same time. 

1.8.3 IMPACT OF SHORT TESTS ON PREDICTING IQ 

1.8.3.1 MEASUREMENT AND PREDICTION 

In Section 1.8.2, we saw that a short test can measure the middle or one tail of 
the distribution, but cannot be precise for both at the same time. If we want to 
identify children at risk for delayed development, we are interested in the lower 
tail of the distribution, so in that case, the standard set is suitable. But what set 
should we use if we want to predict a later outcome? 
This section explores that effect of taking different milestone sets on the 

quality of prediction. 

1.8.3.2 UKKI 

Hafkamp-de Groen et al. (2009) studied the effect of the D-score on later 
intelligence, using a subset of 557 SMOCC children that were followed up at 
the age of five years. 
The Utrechtse Korte Kleuter Intelligentietest (UKKI) (Baarda, 1978) is a 

short test to measure intelligence. The UKKI is a simple test with just three 
components: 

•	 Redraw five figures (square, triangle, cross, trapezoid, rhomboid); 
•	 Draw human figure, with 28 characteristics, like legs, eyes, and so on; 
•	 Give meaning to 13 words like knife, banana, umbrella, and so on. 

Administration time is about 15–20 minutes. The UKKI has a reasonable 
test-retest reliability for group use (Pearson r = 0.74, 3-month interval). 
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1.8.3.3 EXPLORATORY ANALYSIS 

Figure 1.8.5 shows the empirical IQ distribution of 557 children. The mean IQ 
score is 108, and the standard deviation is 15, so the IQ scores of children in 
the sample is about a half standard deviation above the 1978 reference sample. 
Figure 1.8.6 shows that the relation between the D-score 0–2 years and IQ at 

five years is positive for all milestone sets and all ages. The strength of the 
association increases with age. At the age of 2 years, the regression coefficient 
for D-score is equal to β (D) = 1.4 (SE: 0.21, p < 0.0001), so on average an 

TABLE 1.8.2 
Pearson correlation between D-score (0–2 years) and IQ at 5 years. 

Visit Standard Additional All 
set set milestones 

1m 0.059 0.005 0.027 

2m 0.051 0.056 0.048 

3m 0.036 0.100 0.102 

6m 0.040 0.038 0.036 

9m 0.094 0.143 0.132 

12m 0.046 0.162 0.137 

15m 0.180 0.153 0.187 

18m 0.129 0.153 0.146 

24m 0.245 0.255 0.267 

FIGURE 1.8.5 Histogram of UKKI IQ scores taken around the age of five years 
(SMOCC data, n = 557). 



76 Precision 

FIGURE 1.8.6 Relation between D-score at infancy and IQ at age 5 years according to 
three milestone sets and nine visits (SMOCC data, n = 557). 
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increase of 1.0 unit in the D-score at the age of 2 years corresponds to a 
1.4 IQ-score points increase at the age five years. 
Table 1.8.2 summarizes the Pearson correlations between the D-score and 

later IQ. The association between D-score and IQ is weak during the first year 
of life but gets stronger during the second year. In general, having more (and 
more informative) milestones helps to increase the correlation, but the effects 
are relatively small. So even from the standard set of the seven easy milestones 
at 24m, we obtain a reasonable correlation of 0.245. 
All in all, these results suggest that neither the amount nor the difficulty level 

of the milestones is critical in determining the strength of the relation between 
the D-score and IQ. 
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This section compares child development between samples from three different 
studies: 

• SMOCC, a representative sample of Dutch children (1.9.1) 
• POPS, a cohort of all Dutch preterms in 1983 (1.9.2) 
• TOGO, a set of medical records from preventive health service in Togo 

(1.9.3) 
• A summary of the main findings (1.9.4) 

Each study used the same measurement instrument, the DDI (see Section 
1.4.1). The section compares D-scores between studies. 

1.9.1 SMOCC STUDY 

Figure 1.9.1 shows the D-score distribution by age in the SMOCC data. The 
grey curves represent references calculated from the SMOCC data. The top 
figure illustrates that rise of the D-score with age, whereas the bottom chart 
shows that the DAZ distribution covers the references well. 
The ceiling effect causes low coverage after the age of 24 months. There are 

also less prominent ceiling effects for younger children. Without these effects, 
the references would presumably show some additional variation. 

1.9.2 POPS STUDY 

Figure 1.9.2 presents the D-score and DAZ distributions for the POPS cohort of 
children born very preterm or with very low birth weight. The distributions of 
the D-score and DAZ are similar to those found in the SMOCC study. 
Since the D-scores are calculated using the same milestones and difficulty 

estimates as used in the SMOCC data, the D-scores are comparable across the 
two studies. When the milestones differ between studies (e.g. when studies use 
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FIGURE 1.9.1 Distribution of D-score and DAZ by child age in a cohort of Dutch 
children aged 0–2 years (Source: SMOCC data, n = 2151, 9 occasions). 
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FIGURE 1.9.2 Distribution of D-score and DAZ by child age in a cohort of preterm 
aged 0–2 years. 
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different measurement instruments), it is still possible to calculate D-scores. 
This problem is a little more complicated, so we treat it in Chapter 2. 
The primary new complication here is the question whether it is fair to 

compare postnatal age of children born at term with postnatal ages of very 
preterm children. This section focuses on this issue in some detail. 

1.9.2.1 POPS DESIGN 

In 1983, the Project On Preterm and Small for Gestational Age Infants 
(POPS study) collected data on all 1338 infants in the Netherlands who had 
very preterm birth (gestational age < 32 weeks) or very low birth weight 
(birth weight < 1500 grams). See Verloove - Vanhorick et al. (1986) for 
details. 

FIGURE 1.9.3 Scatterplot of two versions of the D-score, one calculated using 
postnatal age (f = 0.00), the other calculated using full age-adjustment (f = 1.00). 
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The POPS study determined gestational age from the best obstetric estimate, 
including the last menstrual period, results of pregnancy testing, and ultrasonography 
findings. The POPS study collected measurements on 450 children using the 
DDI at four visits at corrected postnatal ages of 3, 6, 12 and 24 months. 

1.9.2.2 AGE-ADJUSTMENT 

Assessment of very preterm children at the same chronological age as term 
children may cause over-diagnosis of developmental delay in very preterm 
children. Very preterm children may require additional time that allows for 
development equivalent to that of children born a term. 
In anthropometry, it is common to correct chronological age of very preterm 

born children to enable age-appropriate evaluation of growth. For example, 
suppose the child is born as a gestational age of 30 weeks, which is ten weeks 
early. A full correction would deduct ten weeks from the child’s postnatal age, 
and a half correction would deduct five weeks. In particular, we calculate the 
corrected age (in days) as: 

where 280 is the average gestational age in days, and where we specify 
several alternatives for f as 1.00 (full correction), 0.75, 0.50 (half) or 0.00 (no 
correction). 
Let’s apply the same idea to child development. Using corrected age instead 

of postnatal age has two consequences: 

• It will affect the prior distribution for calculating the D-score; 
• It will affect DAZ calculation. 

We evaluate these two effects in turn. 

1.9.2.3 EFFECT OF AGE-ADJUSTMENT ON THE D-SCORE 

Figure 1.9.3 plots the fully age-adjusted D-score against the unadjusted D-
score. Any discrepancies result only from differences in the ages used in the 
age-dependent prior (cf. Section 1.5.3.2). 
All points are on or below the diagonal. Age-adjustment lowers the D-score 

because a preterm is “made younger” by subtracting the missed pregnancy 
duration, and hence the prior distribution starts at the lower point. For example, 
the group of red marks with D-scores between 30 D and 40 D (age not 
corrected) will have D-scores between 20 D and 30 D when fully corrected. 
Note that only the red points (with perfect scores) are affected, thus illustrating 
that the prior has its most significant effect on the perfect response pattern. See 
also Section 1.5.3.1. The impact of age-correction on the D-score is negligible 
when the child fails on one or more milestones. 
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1.9.2.4 EFFECT OF NO AGE ADJUSTMENT (F = 0.00) ON 

THE DAZ 

Figure 1.9.4 illustrates that a considerable number of D-scores fall below the 
minus -2 SD line of the reference when age is not adjusted, especially during 
the first year of life. The pattern suggests that the apparent slowness in 
development is primarily the result of being born early, and does not 
necessarily reflect delayed development. 

1.9.2.5 EFFECT OF FULL AGE ADJUSTMENT (F = 0.00) ON 

THE DAZ 

Full age correction has a notable effect on the DAZ. Figure 1.9.5 illustrates that 
the POPS children are now somewhat advanced over the reference children. We 
ascribe this seemingly odd finding to more prolonged exposure to sound and 
vision in air. Thus after age correction, development in preterms during early 
infancy is advanced compared to just-born babies. 
Full age correction seems to overcorrect the D-score, so it is natural to try 

intermediate values for f between 0 and 1. 

1.9.2.6 PARTIAL AGE ADJUSTMENT 

Table 1.9.1 compares mean DAZ under various specifications for f. Values f = 
0.00 and f = 0.50 do not correct for preterm birth enough in the sense that all 
sign are negative. In contrast, f = 1.00 overcorrects. The value of 0.73 is 
implausibly high, especially because this value is close to birth. Setting f = 0.75 
seems a good compromise, in the sense that the average DAZ is close to zero in 
the first age interval. The average DAZ is negative at later ages. We do not 
know whether this genuinely reflects less than optimal development of very 
preterm and low birth weight children, so either f = 1.00 and f = 0.75 are 
suitable candidates. 

TABLE 1.9.1
 
Average DAZ at various ages under four correction factors.
 

Age (months) 0.00 0.50 0.75 1.00 

0–3 -1.46 -0.50 0.07 0.73 

3–4 -1.77 -0.89 -0.37 0.20 

5–6 -1.60 -0.87 -0.46 0.00 

7–8 -1.76 -1.13 -0.77 -0.39 

9-–1 -1.21 -0.77 -0.53 -0.28 

12–14 -0.99 -0.60 -0.39 -0.16 

15–23 -0.50 -0.23 -0.10 0.04 

24+ -0.70 -0.49 -0.37 -0.24 
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FIGURE 1.9.4 Distribution of D-score and DAZ without age correction for preterm 
birth (f = 0.00). 
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FIGURE 1.9.5 Distribution of D-score and DAZ under full age correction for preterm 
birth (f = 1.00). 
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1.9.2.7 CONCLUSIONS 

•	 Compared with the general population, more very preterm children 
reached developmental milestones within chronological age five months 
when chronological age was fully corrected; 

•	 Fewer preterm children reached the milestones when chronological age 
was not corrected; 

•	 Fewer children reached the milestones when we used a correction of 
f = 0.50; 

•	 Similar proportions were observed when we used f = 0.75 within the first 
five months after birth. 

•	 After chronological age five months, we observed similar proportions for very 
preterm and full-term children when chronological age was fully corrected. 

•	 We recommend using full age correction (f = 1.00). This advice corresponds 
to current practice for growth and development. As we have shown, 
preterms may look better in the first few months under full age-correction. 
If the focus of the scientific study is on the first few months, we 
recommend an age correction of f = 0.75. 

1.9.3 TOGO STUDY 

Figure 1.9.6 presents the D-score and DAZ distributions of a sample of children 
living near Kpalimé, Togo. While the primary trend with age conforms to the 
previous data, the distributions differ from those in Figure 1.9.1 and Figure 
1.9.2 in two respects: 

•	 Compression at the upper end: Most of the D-scores are above the 
median curve, which suggests that, at these ages, children living in Togo 
develop faster than children living in the Netherlands; 

•	 Expansion at the lower end: There is a considerable variation in D-scores 
on the lower end, with many D-scores below the -2 SD curve, suggesting 
that some children are significantly more delayed than would be expected 
in both Dutch samples. 

The D-scores are calculated using the same 57 milestones and difficulty 
estimates as before. The resulting D-score distribution is quite unusual. The 
main question here is what could explain the pattern found in the D-scores. 
This section explores this question in some detail. 

1.9.3.1 TOGO KPALIMÉ STUDY, DESIGN 

If the D-score is to be a universal measure, then it should be informative in low 
and middle-income countries (LMIC) as well. We do not yet know much about 
the usability and validity of the D-score in LMIC’s. The western African 
country of Togo qualifies as a low-income country, with a 2017 GNI per 
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FIGURE 1.9.6 Distribution of D-score and DAZ by child age of children living near 
Kpalimé, Togo (Source: TOGO data), 



88 Three studies 

capita of USD 610, compared to USD 46,180 in the Netherlands, and USD 744 
for low-income countries in general (data.worldbank.org). 
The data were collected by Cécile Schat-Savy, who initiated a youth health 

care centre modelled after the Dutch youth health care system in Kpalimé, 
Togo. See https://www.kinderhulp-togo.nl for more background. Data monitoring 
included a french translation the DDI for measuring child development. The 
investigators gathered data from 9747 individuals in the 0–18 age range. 
Participants include children and their parents who visited the Kpalimé health 

centre at least one time. Kpalimé is the fourth largest town in Togo, but the 
health centre also attracted parents and children from a wide surrounding rural 
area. Parents visited the health centre for several reasons, including for a 
preventive health check or because of their child’s apparent health problems. 
The health centre targeted parents through information sessions for parents at 

primary schools. Parents paid a small amount of money per child (about USD 
4.00 for children of 4 years or older, and USD 0.80 for children younger than 
four years). Four local data-assistants, some portrayed in Figure 1.9.7, digitized 
the data from paper archives. TNO Child Health in The Netherlands monitored 
the process and checked the data for completeness and consistency. 
Here we use a subset of 2674 visits from 1644 unique children who scored 

on the 57 milestones of the DDI 0–2 years. We did not calculate D-scores when 
age or DDI milestones were missing, which left a dataset of 2425 visits from 
unique 1567 children. The number of visits varied from 1 – 9. The majority of 
children visited the centre once. 

1.9.3.2 D-SCORE LABELLED BY NEUROLOGICAL PROBLEM 

Figure 1.9.8 is the same scatter plot as in Figure 1.9.6, but now marked by 
whether the physician registered signs of neuropathology in the form of tonus 
and reflex problems. 
Many children with low D-scores also have tonus or reflex problems. This 

finding alone suggests that extreme D-score are not artefacts (e.g. caused by a 
wrongly coded age), but indicate main adverse health conditions. 

1.9.3.3 D-SCORE LABELLED BY APGAR SCORE 

Figure 1.9.9 identifies the children who had an Apgar score at 10 minutes after 
birth that was lower than 8. About half of these children had a D-score below 
-2 SD curve. 

1.9.3.4 D-SCORE LABELLED BY SEVERE UNDERWEIGHT 

Many children who visited the Kpalimé health centre had a low body 
weight for their age. Figure 1.9.10 marks the subset of severely underweight 
children (WAZ < -4). A substantial proportion of these children also had a 
very low D-score. 

https://www.kinderhulp-togo.nl
http://www.data.worldbank.org
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FIGURE 1.9.7 Three of the data-assistants who helped to digitize the paper files. 

Reproduced with permission from Stichting Kinderhulp Togo https://www.kinderhulp-togo.nl. 

1.9.3.5 D-SCORE LABELLED BY SEVERE STUNTING 

Figure 1.9.11 is similar to 1.9.10, but now marked by the subset of severely 
stunted children (HAZ < -4). Also here, a sizable proportion has a low D-score. 
When taken together, Figure 1.9.8–Figure 1.9.11 show that children with 

very low D-scores often experience (multiple) harsh health problems. Those 
health problems may have substantially delayed their development. 

1.9.3.6 GROSS MOTOR DEVELOPMENT 

Figure 1.9.12 shows substantial differences in gross motor development between 
children from Togo and the Netherlands. For example, at the age of three 
months, about 30 per cent of the Dutch infants succeed in controlling their 
head when pulled to sitting. However, infants from Togo seem already 
capable of head control when they are just one month old. 

https://www.kinderhulp-togo.nl
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FIGURE 1.9.8 Distribution of D-score by age labelled by neurological (tonus and/or 
reflex) problems. (Source: TOGO data). 

FIGURE 1.9.9 Distribution of D-score by age labelled by Apgar score (10 minutes) 
lower than 8. 
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FIGURE 1.9.10 Distribution of D-score by age labelled by severe underweight (WAZ -4) 
(Source: TOGO data). 

FIGURE 1.9.11 Distribution of D-score by age labelled by severe stunting (HAZ -4) 
(Source: TOGO data). 
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Moreover, the advantage persists at least until up to the age of two years: 
children in Togo can roll over and sit much earlier, or kick a ball without falling. 
As the documentary Babies shows, African children even manage to learn to walk 
with a tin can on their head, a craft that children in the west never achieve. 

1.9.3.7 FINE MOTOR DEVELOPMENT 

Figure 1.9.13 shows a less pronounced but similar phenomenon for fine motor 
skills. These data suggest that children in Togo may have better fine motor 
skills than the children from the two Dutch cohorts. 

1.9.3.8 COMMUNICATION AND LANGUAGE 

Figure 1.9.14 summarizes the data for three milestones on communication and 
language. In general, the success probability is similar in the three studies. 
One curious finding is that the high proportion of milestones passes in 

ddicmm041 for the Togo children around the age of 18 months. Note that several 
of the green lines in Figure 1.9.12–Figure 1.9.14 start close to perfect scores, which 
makes it impossible to show the rising patterns found in the Dutch data. 
It may indeed be true that children from Togo develop more rapidly than 

Dutch children. But we may also wonder: Could there just be reporting bias on 
the part of the parents who either do not understand the items or have the 
expectation to say “yes” even if the child can’t do it? It would be desirable if 
these results could be backed up from other sources. 

1.9.4 CONCLUSIONS 

This section compared the D-scores estimated from the DDI administered to 
three different groups of children. 
We found that 

•	 The D-score by age plot showed a positive, curved relationship with age 
in all three studies; 

•	 Children born very preterm or with very low birth weight had similar 
development to reference children when their age was corrected for early 
birth; 

•	 A relatively small subset of children born in Togo had extremely low 
D-scores, not found in the Netherlands, likely the result of underlying 
neuropathology, severe underweight or severe stunting; 

•	 On average, children from Togo seemed to have faster development 
during the first two years, especially in motor development, though there 
may be issues with reporting bias. 

All in all, these findings support the usefulness and validity of the D-score as 
an informative summary of child development during their first two years of life. 
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FIGURE 1.9.12 Gross motor milestones. 
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FIGURE 1.9.13 Fine motor milestones. 
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FIGURE 1.9.14 Communication and language milestones. 
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This section provides a quick overview of the relevance, concepts and 
techniques of the D-score. While the results obtained thus far are encouraging, 
some questions will certainly remain when we put the method to practice. 
A rough selection of such questions includes: 

•	 What is the added value of the D-score in practice? 
•	 Does the D-score extend to higher ages? 
•	 Is the assumption of uni-dimensionality reasonable for other ages and 

populations? 
•	 Can we calculate the D-score from instruments other than the DDI? 
•	 Is it reasonable to assume that milestone difficulty is identical in other 

populations? 
•	 Does the method apply to caregiver-reported milestones? 
•	 Would a dedicated D-score instrument be more efficient? 
•	 How many milestones are “enough”? 
•	 Can the same scale be used for measurement at individual, group and 

population levels? 
•	 Can the D-score detect delayed development? 
•	 Would the D-score help to target early interventions? 

This section briefly reviews some of these issues. 

1.10.1 USEFULNESS OF D-SCORE FOR MONITORING 
CHILD HEALTH 

The D-score is a new approach to measure child development. The D-score is a 
scale for quantifying generic child development by a single number. Milestones 
are selected to fit the Rasch model. We can interpret the resulting measurements 
as scores on an interval scale, a requirement for answering questions like: 

•	 What is the difference in development over time for the same child, group 
or population? 
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•	 What is the difference in development between different children, groups 
or populations of the same age? 

•	 How does child development compare to a norm? 

The concept of the D-score is broader than a score calculated from the DDI. 
Any instrument that fits the model underlying the D-score can be used to 
measure the child’s D-score. 
The precision of the measurement depends on the number of milestones and 

the match between milestone difficulty and person ability. We may thus tailor 
the measurement instrument to the question at hand. 

1.10.2 D-CHART, A GROWTH CHART FOR CHILD 
DEVELOPMENT 

The field of child growth and development roughly divides into two areas: 

•	 The subfield child growth (or auxology) emphasizes body measures like 
height, weight, body mass index, and so on. It is a rigorous quantitative 
science with intimate ties to statistics since the days of Quetelet and 
Galton. 

•	 The subfield child development is more recent and builds upon a wide-
ranging set of domain-specific instruments for measuring motor, 
language, cognitive and behavioural states. 

The growth chart is a widely used tool to monitor physical growth. The 
D-score can be used in a similar way to create the D-chart. 
Figure 1.10.1 shows the developmental paths of five randomly chosen 

children from the SMOCC study. Although the milestones differ across age, 
there is only one vertical axis. These trajectories will help to track the progress 
of a child over time. 
The D-chart shows that it is straightforward to apply quantitative techniques 

from child growth to child development. Our hope is that D-score aids in 
bridging the disparate subfields of child growth and child development. 

1.10.3 OPPORTUNITIES FOR EARLY INTERVENTION 

Black et al. (2017) estimated that about 250 million children worldwide fail to 
reach their developmental potential. Developmental delays become evident in 
the first year and worsen during early childhood. The burden of children not 
reaching their developmental potential is high. 
Interventions aimed at improving child development work best when delivered 

at the sensitive periods. Programs are to be comprehensive, incorporating a 
combination of health, nutrition, security and safety, responsive caregiving 
and early learning. See Engle et al. (2011); Grantham‐McGregor et al. (2014) 
and Britto et al. (2017) for recent overviews and initiatives. 
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FIGURE 1.10.1 D-chart with five children from the SMOCC study. 

The lack of a universal measure for child development has long hampered 
the ability to estimate intervention effects or to compare populations. The D-score 
can be generalized to other instruments. We expect that the availability of a 
common yardstick will stimulate informed policy and priority setting. We 
hope a universal measure improves decision making, ultimately lowering the 
number of children not reaching their developmental potential. 

1.10.4 D-SCORE FOR INTERNATIONAL SETTINGS 

Section 1.9 compared D-scores between three study samples. We restricted the 
analysis to studies that used the same instrument (the DDI, in Togo, translated 
to French) to measure child development. 
It is difficult to compare levels of child development worldwide. Existing 

estimates on children not reaching their developmental potential rely on 
proxies, such as stunting and poverty. While these proxies have been found to 
correlate with child development, they are only weak indicators of actual child 
performance. Arguably, the performance of a child on a set of well-chosen 
milestones is more informative for his or her future health and productivity than 
body height or parental income. 
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There are more than 150 instruments are available that quantify child 
development. Many of these tools produce not just one but many scores. Such 
an overwhelming choice may seem a luxury until we realize that we cannot 
compare their ratings. Of course, we could settle on just one instrument …., but 
that’s never going to happen. While simple in theory, pre-harmonization is 
complicated in practice. It requires significant and continued investments by a 
central agency. It does not address historical data, so it will be challenging to 
see secular trends. Also, pre-harmonization impedes the adoption of innovative 
techniques, e.g., using smartphone-assisted evaluations. 
The D-score opens up an exciting alternative: agree on the scale, and leave 

some liberty to the data-collector in the exact choice of the instrument. We 
could build upon the expertise of the data collector about the local population. 
Also, it will equip is to keep up with innovations in measurement. 
The next chapter in our work will address some of the conceptual and technical 

issues that arise when we attempt to apply the D-score to other populations. 

1.10.5 D-SCORE FROM EXISTING INSTRUMENTS 

There is a vast base of historic child developmental data using existing 
instruments. The problem is that each device defines its own summaries, so 
we cannot compare scores across tools. Different instruments have different 
domains, various age forms, different stopping rules, diverse age norms, and so 
on. Yet, the milestones in these instruments are often very similar. Most tools 
collect data on milestones like: 

• Can the child stack two blocks? 
• Can the child roll over? 
• Can the child draw a cross? 
• Can the child stand? 
• Can the child say “baba?” 

With the D-score methodology in hand, we are ready to exploit the overlap in 
milestones shared by different instruments. Common items can act as bridges, 
so - with the appropriate item-level data - we may attempt calculating D-scores 
from other tools as well. 
The task is to identify milestones that overlap between both instruments, 

filter out milestones that do not fit a joint model, and estimate the item 
difficulties of items that remain. Chapter 2 (van Buuren & Eekhout, 2021) will 
explore this possibility in more detail. 

1.10.6 CREATING NEW INSTRUMENTS FOR D-SCORE 

Extending the D-score to other instruments has the side-effect of enlarging the 
item bank with useful items. As more and more data feed into the item bank, 
assessment of already present milestones may become more precise. 



100 Next steps 

The enlarged and improved item bank then may act as the fundamental 
resource for creating instruments for particular settings. For example, if the 
interest is on finding the most advanced children, we may construct a difficult 
test that will separate the good and the best. Alternatively, we can use the item 
bank to create and administer computerized adaptive tests (Jacobusse & van 
Buuren, 2007; Wainer et al., 2000), a sequential method that selects the next 
milestone based on the previous test outcome. 
Our ongoing work will explore the conceptual and technical challenges, and 

propose an integrated approach to support instrument construction and 
validation. 
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A - NOTATION 

The notation in this chapter follows Wright & Masters (1982). 

Section Symbol Term Description 

1.4.6 βn Ability True (but unknown) developmental score of child n 

1.4.6 δi Difficulty True (but unknown) difficulty of item i 

1.4.6 πni Probability True (but unknown) probability that child n passes item i 

1.6.1 Ability Estimated developmental score (D-score) of child n 

1.6.1 Difficulty Estimated difficulty of item i 

1.6.1 Pni Probability Estimated probability that child n passes item i 

1.6.1 xni Data Observed response of child n on item i, 0 or 1 

1.6.1 Wni Variance Variance of xni 
1.6.1 zni Residual Standardized residual between xni and Pni 

1.6.1 N Count Number of measurements (children) 

1.6.1 L Count Number of items (milestones) 

1.6.4 P( ) Probability Conditional probability of passing item i 

1.6.4 I( ) Information Item information function of item i 

1.6.5 R Reliability True test reliability 

1.6.5 Reliability Estimated test reliability 

1.6.5 Variance True error variance 

1.6.5 Variance Estimated error variance 

1.6.5 Variance Standard error of measurement (sem) 

1.9.2 f Factor Age-adjustment factor 

B - TECHNICAL INFORMATION 
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Running under: macOS Big Sur 10.16
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Matrix products: default 

BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas. 

dylib 

LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/ 

libRlapack.dylib 

locale: 

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 

attached base packages: 

[1] stats graphics grDevices utils datasets methods base 

other attached packages: 

[1] dinstrument_0.0.1.2 ddata_0.52.0 gseddata_1.5.1 

[4] dmetric_0.52.0 dscore_1.4.0.9000 forcats_0.5.1 

[7] haven_2.3.1 scales_1.1.1 plotly_4.9.3 

[10] sirt_3.9-4 gridExtra_2.3 plyr_1.8.6 

[13] reshape2_1.4.4 RColorBrewer_1.1-2 dplyr_1.0.4 

[16] tidyr_1.1.2 ggplot2_3.3.3 officer_0.3.17.001 

[19] officedown_0.2.1 kableExtra_1.3.2 knitr_1.31 

loaded via a namespace (and not attached): 

[1] nlme_3.1-152 webshot_0.5.2 httr_1.4.2 tools_4.0.4 

[5] R6_2.5.0 DBI_1.1.1 lazyeval_0.2.2 colorspace_2.0-0 

[9] withr_2.4.1 tidyselect_1.1.0 compiler_4.0.4 polycor_0.7-10 

[13] rvest_0.3.6 TAM_3.5-19 xml2_1.3.2 bookdown_0.21 

[17] mvtnorm_1.1-1 gamlss_5.2-0 systemfonts_1.0.1 stringr_1.4.0 

[21] digest_0.6.27 rmarkdown_2.7 pkgconfig_2.0.3 htmltools_0.5.1.1 

[25] fastmap_1.1.0 rvg_0.2.5 htmlwidgets_1.5.3 rlang_0.4.10 

[29] rstudioapi_0.13 shiny_1.6.0 generics_0.1.0 gamlss.data_5.1-4 

[33] jsonlite_1.7.2 gtools_3.8.2 zip_2.1.1 magrittr_2.0.1 

[37] Matrix_1.3-2 Rcpp_1.0.6 munsell_0.5.0 gdtools_0.2.3 

[41] lifecycle_1.0.0 stringi_1.5.3 yaml_2.2.1 MASS_7.3-53.1 

[45] gamlss.dist_5.1-7 grid_4.0.4 parallel_4.0.4 promises_1.2.0.1 

[49] crayon_1.4.1 lattice_0.20-41 splines_4.0.4 hms_1.0.0 

[53] pillar_1.4.7 uuid_0.1-4 glue_1.4.2 evaluate_0.14 

[57] data.table_1.13.6 vctrs_0.3.6 httpuv_1.5.5 gtable_0.3.0 

[61] purrr_0.3.4 assertthat_0.2.1 cachem_1.0.4 CDM_7.5-15 

[65] xfun_0.21 mime_0.10 xtable_1.8-4 later_1.1.0.1 

[69] survival_3.2-7 viridisLite_0.3.0 tibble_3.0.6 memoise_2.0.0 

[73] ellipsis_0.3.1 



Data availability
 

UNDERLYING DATA 

The raw data needed to replicate these analyses are not public, so we cannot 
share it with this publication. However, the reader can apply for access to the 
data through the study contact. The table given below contains the contact 
information for each cohort included in this publication. 
A subset of studies made their study data publicly available under a CC BY 

4.0 license (https://creativecommons.org/licenses/by/4.0/)1. Authorship remains 
with the study coordinator, but users are free to redistribute, alter and combine 
the data, on the condition of giving appropriate credit with any redistributions 
of the material. The URL of the public data is https://d-score.org/childdevdata/. 

Name in publication Reference Contact 

GCDG-NLD-SMOCC Herngreen et al., 1992 Paul Verkerk 
(paul.verkerk@tno.nl) 

TOGO Van Buuren & Eekhout, 2021 Cécile Schat-Savy 
(cschatsavy@kinderhulp-togo.nl) 

POPS Verloove - Vanhorick et al., Sylvia van de Pal 
1986 (sylvia.vanderpal@tno.nl) 
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Note
 
1 Zenodo: D-score/childdevdata: childdevdata 1.0.1, http://doi.org/10.5281/zenodo. 
4685979 (van Buuren, 2021) 

104 

http://doi.org/10.5281/zenodo.4685979
http://doi.org/10.5281/zenodo.4685979


References
 
Andrich D: A Rating Formulation for Ordered Response Categories. Psychometrika. 

1978; 43(4): 561–573. 10.1007/BF02293814 
Baarda DB: UKKI: Utrechtse Korte Kleuter Intelligentietest: Handleiding. Lisse: Swets 

en Zeitlinger, 1978. Reference Source 
Baird G, Simonoff E, Pickles A, et al.: Prevalence of Disorders of the Autism Spectrum 

in a Population Cohort of Children in South Thames: The Special Needs and 
Autism Project (SNAP).Lancet. 2006; 368(9531): 210–215. 1684449010.1016/ 
S0140-6736(06)69041-7 

Bellman M, Byrne O, Sege R: Developmental Assessment of Children. BMJ. 2013; 346 
(e8687): e8687. 10.1136/bmj.e8687 

Berk LE: Child Development. 9th Ed. Boston, MA: Pearson. 2011. 
Berkson J: Application of the Logistic Function to Bio-Assay. J Am Stat Assoc. 1944; 39 

(227): 357–365. 10.1080/01621459.1944.10500699 
Black MM, Walker SP, Fernald LCH, et al.: Early Childhood Development Coming of 

Age: Science Through the Life Course. Lancet. 2017; 389(10064): 77–90. 
2771761410.1016/S0140-6736(16)31389-75884058 

Bock RD, Mislevy RJ: Adaptive EAP Estimation of Ability in a Microcomputer 
Environment. Appl Psychol Meas. 1982; 6(4): 431–444. 10.1177/ 
014662168200600405 

Boggs D, Milner KM, Chandna J, et al.: Rating Early Child Development Outcome 
Measurement Tools for Routine Health Programme Use. Arch Dis Child. 2019; 
104(Suppl 1): S22–33. 3088596310.1136/archdischild-2018-3154316557219 

Britto PR, Lye SJ, Proulx K, et al.: Nurturing Care: Promoting Early Childhood 
Development. Lancet. 2017; 389(10064): 91–102. 2771761510.1016/S0140-6736 
(16)31390-3 

Cameron N, Bogin B: Human Growth and Development. London: Academic Press, 
2012. Reference Source 

Caspi A, Hariri AR, Holmes A, et al.: Genetic Sensitivity to the Environment: The Case 
of the Serotonin Transporter Gene and Its Implications for Studying Complex 
Diseases and Traits. Am J Psychiatry. 2010; 167(5): 509–527. 2023132310.1176/ 
appi.ajp.2010.091014522943341 

Cole TJ: Fitting Smoothed Centile Curves to Reference Data (with Discussion). J R Stat 
Soc Ser A. 1988; 151(3): 385–418. 10.2307/2982992 

Cole	 TJ, Green PJ: Smoothing Reference Centile Curves: The LMS Method and 
Penalized Likelihood. Stat Med. 1992; 11(10): 1305–1319. 151899210.1002/ 
sim.4780111005 

Coombs CH: A Theory of Data. New York: Wiley, 1964. Reference Source 
Ellingsen KM: Standardized Assessment of Cognitive Development: Instruments and 

Issues. In Early Childhood Assessment in School and Clinical Child Psychology. 
edited by E. Garro, Springer, 2016; 25–49. 10.1007/978-1-4939-6349-2_2 

Embretsen SE, Reise SP: Item Response Theory for Psychologists. Mahwah, NJ: 
Lawrence Erlbaum, 2000. Reference Source 

Engelhard G: Invariant Measurement. New York: Routledge, 2013. Reference Source 

105 



106 References 

Engle PL, Fernald LCH, Alderman H, et al.: Strategies for Reducing Inequalities and 
Improving Developmental Outcomes for Young Children in Low-Income and 
Middle-Income Countries. Lancet. 2011; 378(9799): 1339–1353. 
2194437810.1016/S0140-6736(11)60889-1 

Erikson EH: Childhood and Society. 2d Ed., Rev. And Enl. New York, NJ: Norton, 1963. 
Reference Source 

Fernald LCH, Prado E, Kariger P, et al.: A Toolkit for Measuring Early Childhood 
Development in Low and Middle-Income Countries. 2017. Reference Source 

Frankenburg WK, Dodds J, Archer P, et al.: The Denver II: A Major Revision and 
Restandardization of the Denver Developmental Screening Test. Pediatrics. 1992; 
89(1): 91–97. 1370185 

Gesell A: Infant and Child in the Culture of Today. Los Angeles, CA: Read Book Ltd, 
1943. Reference Source 

Grantham‐McGregor SM, Fernald LCH, Kagawa RMC, et al.: Effects of Integrated 
Child Development and Nutrition Interventions on Child Development and 
Nutritional Status. Ann N Y Acad Sci. 2014; 1308(1): 11–32. 2467316610.1111/ 
nyas.12284 

Guttman L: The Basis for Scalogram Snalysis. In Measurement and Prediction. edited 
by S. A.StoufferL.GuttmanE. A.SuchmanP. F.LazarsfeldS. A.Star, and J. A. 
Clausen, Princeton, NJ: Princeton University Press, 1950; IV: 60–90. 

Hafkamp-de Groen E, Dusseldorp E, Boere-Boonekamp MM, et al.: Relatie Tussen Het 
van Wiechenonderzoek (d-Score) Op 2 Jaar En Het Intelligentieniveau Op 5 Jaar. 
[relation Between the Dutch Development Instrument at the Age of 2 Years and 
Intelligence at the Age of 5 Years].Tijdschrift Voor Jeugdgezondheidszorg. 2009; 
41(1): 10–13. Reference Source 

Hattie J: Methodology Review: Assessing Unidimensionality of Tests and ltenls. Appl 
Psychol Meas. 1985; 9(2): 139–164. 10.1177/014662168500900204 

Herngreen WP, Reerink JD, van Noord-Zaadstra BM, et al.: The SMOCC-study: Design 
of a representative cohort of live-born infants in the Netherlands. Eur J Public 
Health. 1992; 2(2): 117–122. 10.1093/eurpub/2.2.117 

Herngreen WP, van Buuren S, van Wieringen JC, et al.: Growth in Length and Weight 
from Birth to 2 Years of a Representative Sample of Netherlands Children (born in 
1988-89) Related to SocioEconomic Status and Other Background Characteristics. 
Ann Hum Biol. 1994; 21(5): 449–463. 798599410.1080/03014469400003472 

Holland PW, Wainer H: Differential Item Functioning. Hillsdale, NJ: Lawrence Erlbaum 
Associates, 1983. 

Horridge KA: Assessment and Investigation of the Child with Disordered Development. 
Arch Dis Child Educ Pract Ed. 2011; 96(1): 9–20. 2092662410.1136/ 
adc.2009.182436 

Jacobusse G, van Buuren S: Computerized Adaptive Testing for Measuring 
Development of Young Children. Stat Med. 2007; 26(13): 2629–2638. 
1713364910.1002/sim.2753 

Jacobusse G, van Buuren S, Verkerk PH: An Interval Scale for Development of Children 
Aged 0-2 Years. Stat Med. 2006; 25(13): 2272–2283. 1614399510.1002/sim.2351 

Johnson SB, Riley AW, Granger DA, et al.: The Science of Early Life Toxic Stress for 
Pediatric Practice and Advocacy. Pediatrics. 2013; 131(2): 319–327. 
2333922410.1542/peds.2012-04694074672 

Kohlberg L: The Psychology of Moral Development: The Nature and Validity of Moral 
Stages. San Francisco: Harper & Row, 1984; 2. Reference Source 



References	 107 

Kolb B, Harker A, Gibb R: Principles of Plasticity in the Developing Brain. Dev Med 
Child Neurol. 2017; 59(12): 1218–1223. 2890155010.1111/dmcn.13546 

Liebert RM, Poulos RW, Strauss GD: Developmental Psychology. Englewood Cliffs, NJ: 
Prentice-Hall, Inc.1974. Reference Source 

Linacre JM: Rasch Model Estimation: Further Topics. J Appl Meas. 2004; 5(1): 95–110. 
14757994 

Miller AC, Murray MB, Thomson DR, et al.: How Consistent Are Associations 
Between Stunting and Child Development? Evidence from a Meta-Analysis of 
Associations Between Stunting and Multidimensional Child Development in 
Fifteen Low- and Middle-Income Countries. Public Health Nutr. 2016; 19(8): 
1339–1347. 2635542610.1017/S136898001500227X 

Mokken RJ: A Theory and Procedure of Scale Analysis: With Applications in Political 
Research. Berlin: Walter de Gruyter, 1971. 10.1515/9783110813203 

Molenaar IW: Nonparametric Models for Polytomous Responses. In Handbook of 
Modern Item Response Theory. Springer, 1997; 369–380. 10.1007/978-1-4757­
2691-6_21 

Perkins JM, Kim R, Krishna A, et al.: Understanding the Association Between Stunting 
and Child Development in Low- and Middle-Income Countries: Next Steps for 
Research and Intervention. Soc Sci Med. 2017; 193: 101–109. 2902855710.1016/j. 
socscimed.2017.09.039 

Piaget J, Inhelder B: The Psychology of the Child. New York, NJ: Basic Books, 1969. 
Reference Source 

Rasch G: Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: 
Danish Institute for Educational Research. 1960. Reference Source 

Rasch G: On Specific Objectivity: An Attempt at Formalizing the Request for Generality 
and Validity of Scientific Statements. The Danish Yearbook of Philosophy. 1977; 
14: 58–93. Reference Source 

Robitzsch A: Sirt: Supplementary Item Response Theory Models. 2016. Reference 
Source 

Rutter M: Genes and Behavior: Nature-Nurture Interplay Explained. Hogrefe Publishing, 
2007. 

Salkind NJ: Child Development. Macmillan Library Reference, 2002. Reference Source 
Santrock JW: Child Development: An Introduction. 13th Ed. New York, NJ: McGraw-

Hill Higher Education, 2011. Reference Source 
Shirley MM: The First Two Years: A Study of Twenty-Five Babies. Vol. I: Postural and 

Locomotor Development. Minneapolis: University of Minnesota Press, 1931. 
Reference Source 

Shirley MM: The First Two Years: A Study of Twenty-Five Babies. Vol. II: Intellectual 
Development. Minneapolis: University of Minnesota Press, 1933. 

Shonkhoff JP, Levitt P, Fox NA, et al.: From Best Practices to Breakthrough Impacts: A 
Science-Based Approach to Building a More Promising Future for Young Children 
and Families. Harvard University, Center on the Developing Child Cambridge, 
MA. 2016. Reference Source 

Stasinopoulos DM, Rigby RA: Generalized Additive Models for Location Scale and 
Shape (GAMLSS) in r. J Stat Softw. 2008; 23(7): 1–46. 10.18637/jss.v023.i07 

Stott LH:	 Child Development: An Individual Longitudinal Approach. New York, NJ: 
Holt, Rinehart; Winston, Inc. 1967. 10.1002/1520-6807(196801)5:1<92::AID­
PITS2310050120>3.0.CO;2-D 



108 References 

Sudfeld CR, McCoy DC, Danaei G, et al.: Linear Growth and Child Development in 
Low- and Middle-Income Countries: A Meta-Analysis. Pediatrics. 2015; 135(5): 
e1266–75. 2584780610.1542/peds.2014-3111 

van Buuren S: Growth Charts of Human Development. Stat Methods Med Res. 2014; 23 
(4): 346–368. 2348701910.1177/0962280212473300 

van Buuren S: D-score/childdevdata: childdevdata 1.0.1. (Version v1.0.1).Zenodo. 2021. 
http://www.doi.org/10.5281/zenodo.4685979 

van Buuren S, Eekhout I: Child development with the D-score: tuning instruments to 
unity. F1000Res. (in press). 2021. Reference Source 

Verloove-Vanhorick SP, Verwey RA, Brand R, et al.: Neonatal Mortality Risk in 
Relation to Gestational Age and Birthweight. Results of a National Survey of 
Preterm and Very-Low-Birthweight Infants in the Netherlands. Lancet. 1986; 1 
(8472): 55–57. 286731210.1016/s0140-6736(86)90713-0 

Vlasblom E, Boere-Boonekamp MM, Hafkamp-de Groen E, et al.: Predictive Validity of 
Developmental Milestones for Detecting Limited Intellectual Functioning. PLoS 
One. 2019; 14(3): e0214475. 3092142410.1371/journal.pone.02144756438572 

Wainer H, Dorans NJ, Flaugher R, et al.: Computerized Adaptive Testing: A Primer. 
Routledge, 2000. Reference Source 

Wit JM, Himes JH, van Buuren S, et al.: Practical Application of Linear Growth 
Measurements in Clinical Research in Low- and Middle-Income Countries. Horm 
Res Paediatr. 2017; 88(1): 79–90. 2819636210.1159/0004560075804842 

Wright BD, Masters GN: Rating Scale Analysis: Rasch Measurement. Chicago: MESA 
Press, 1982. Reference Source 

Zumbo BD: A Handbook on the Theory and Methods of Differential Item Functioning 
(DIF).Ottawa: National Defense Headquarters. 1999. Reference Source 

Zwinderman AH: Pairwise Parameter Estimation in Rasch Models. Appl Psychol Meas. 
1995; 19(4): 369–375. 10.1177/014662169501900406 

http://www.doi.org/10.5281/zenodo.4685979



