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A B S T R A C T   

Secondary forests can play a critical role in conserving plant biodiversity and sequestering carbon. However, 
intensive past management, fragmentation, and initial soil fertility can hinder forest recovery during secondary 
succession, especially in terms of tree species selection. In turn, tree species selection can negatively impact soil 
fertility recovery and may slow down the succession process, but the direct and indirect effects between these 
factors remain unclear. To assess the complex interactions among landscape, previous management, soil and 
vegetation, 27 secondary forests of varying ages, previously used for eucalyptus plantations, located in diverse 
landscape configurations within the Atlantic Forest biome, were examined. Key variables, such as planting 
frequency, cutting frequency, forest cover in the landscape, patch isolation between fragments, functional 
richness, tree aboveground biomass (AGB), soil sum of bases, soil organic matter, and soil phosphorus concen
tration were used to construct a structural equation model to evaluate the direct and indirect effects of landscape 
and previous management on forest development. Cutting frequency and patch isolation had a negative direct 
effect on functional richness. Additionally, a strong positive direct effect of functional diversity on aboveground 
biomass and soil sum of bases was found. Thus, cutting frequency and patch isolation had negative indirect 
effects on biomass and soil sum of bases (a proxy for soil fertility), mediated by functional richness. These 
findings underscore the significance of integrating plant functional diversity into restoration strategies to pre
serve ecosystem functioning and efficiently recover biodiversity, tree biomass, and soil fertility in secondary 
forests.   

1. Introduction 

Secondary forests are typically established after habitat conversion 
and are vital for biodiversity recovery and climate change mitigation 
due to their role as carbon sinks (Edwards et al., 2019; Gardner et al., 
2009). However, secondary forests are often growing in areas with an 
intensive land use history and fragmented landscapes (Arroyo-Rodrí
guez et al., 2017). These factors can hinder biodiversity gains and car
bon sequestration during forest succession (van Breugel et al., 2019), 
mainly due to management impact on local environments and the bar
riers imposed by the landscape on life migration (Coelho et al., 2022a; 
Villa et al., 2018). Together with the increase in biodiversity and 

biomass during forest succession, it is expected an increase in soil 
fertility and enhanced soil biological functions (Teixeira et al., 2020). 
Therefore, soil fertility indicators are increasingly recognized as key to 
monitoring the success of restoration strategies, although this is rarely 
done (Mendes et al., 2019). Despite the growing number of studies about 
the effects of secondary forest succession on ecosystem functioning 
(Matos et al., 2020; Teixeira et al., 2020; Van Der Sande et al., 2023), 
some complex ecological relationships remain unknown, such as the 
effects of previous management and landscape configuration on plant 
biomass, soil fertility, and thus, in ecosystem functioning. Understand
ing these gaps is important to improve conservation and restoration 
strategies, especially in highly diverse and threatened biomes, such as 
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the Atlantic Forest (Colli-Silva et al., 2020; Guedes Pinto and Voivodic, 
2021). 

Previous land management practices can negatively impact tree 
species diversity and biomass of secondary forests worldwide, mainly 
because of microenvironment depletion (Veldkamp et al., 2020; Villa 
et al., 2020). The frequent cycles of planting and harvesting, for 
example, involve management practices such as soil revolving, weeding, 
or herbicide application, which can disrupt the microenvironmental 
conditions essential for maintaining soil fertility in forest ecosystems 
(Jakovac et al., 2017; Villa et al., 2018). In addition, intensive previous 
management can avoid the germination and establishment of species 
sensitive to light, high temperatures, and dry environments, resulting in 
a limited recovery of plant diversity and biomass during secondary 
succession (Chazdon and Guariguata, 2016; Guariguata and Ostertag, 
2001; Zhang et al., 2014). Thus, the negative effect on the vegetation can 
also hinder the recovery of soil fertility (Teixeira et al., 2020) as a 
positive influence of biodiversity and tree biomass on the recovery of 
soil functions is expected (Teixeira et al., 2020). 

Landscapes where most secondary forests are situated are charac
terized by reduced forest cover and isolated remaining fragments (Matos 
et al., 2020; Sloan et al., 2015). These modifications can alter regional 
environmental conditions, such as average temperature and precipita
tion, due to the increase of non-forest and non-natural areas (De Frenne 
et al., 2021; Frelich et al., 2020). Moreover, fragmentation reduces an
imal population sizes and disrupts animal movement and seed dispersal 
between fragments (Ibáñez et al., 2014; Morán-López et al., 2015). As a 
result, the landscape acts as an environmental filter for plant commu
nities, making it challenging for species with larger fruits and seeds to 
disperse between fragments and decreasing their occurrence within the 
overall landscape, including in regenerating areas (Ewers and Didham, 
2006; Tscharntke et al., 2012b). These species are primarily zoochorous 
(with seeds dispersed by animals) and shade-tolerant, and they play an 
important role in maintaining the carbon stocks of forest fragments 
(Coelho et al., 2022b). Consequently, more isolated second forest frag
ments exhibit lower biodiversity and reduced biomass, which in turn can 
limit soil recovery capacity (Bello et al., 2015; Coelho et al., 2022a; 
Magnago et al., 2015). Therefore, landscape configuration may also 
have an indirect impact on soil fertility during secondary succession, 
although this hypothesis has not been tested. 

Situated within the most densely populated region of the country, the 
Brazilian Atlantic Forest has been subject to conversion and intensive 
land use practices since the colonization era (Nazareno et al., 2012). 
Only 31 % of the original area has remained under natural vegetation 
cover due to conversion into pastures (39 %), agriculture (28 %), a 
mosaic of land uses (27 %), and silviculture (6 %; MapBiomas, 2022). 
The intense land-use history and fragmentation have resulted in an 
increased number of threatened species, requiring the development of 
effective conservation strategies for the Atlantic Forest (de Lima et al., 
2020). Furthermore, due to requirements of the Brazilian Forest Code 
and Brazilian commitments related to the United Nations Decade of 
Restoration (to restore 12 million ha of forest), there is a strong demand 
for forest restoration efforts in this biome (Dockendorff et al., 2022; 
Soares-filho et al., 2014). Fortunately, the Atlantic Forest has shown a 
certain potential for the natural recovery of biodiversity and tree 
biomass (Coelho et al., 2022b; Matos et al., 2020; Safar et al., 2020). 
However, the rates of diversity and biomass recovery can differ due to 
previous management intensities and landscape configurations, which 
can also have consequences for soil fertility recovery and ecosystem 
functioning. 

Tree biomass and soil fertility recovery are key for ecosystem ser
vices provision during secondary forest succession. Therefore, a better 
understanding of the effects of previous management intensity and 
landscape configuration on soil and vegetation development can inform 
conservation and restoration strategies and support their successful 
implementation. The objective of this article is to investigate the effects 
of previous silvicultural management intensity and landscape 

configuration on tree diversity, tree biomass, and soil fertility during 
secondary succession. The hypothesis is that previous management in
tensity (e.g., planting frequency and cutting frequency) and landscape 
configuration variables (e.g., patch isolation and reduced forest cover) 
have a negative impact on tree biodiversity and biomass, and thus an 
indirect negative impact on soil fertility in secondary forests, mediated 
by changes in tree diversity and biomass. 

2. Material and methods 

2.1. Study area 

This study was conducted in a Semi-deciduous Tropical Forest 
located within the Atlantic Forest domain, encompassing the munici
palities of São José do Goiabal, Dionísio, and Timóteo, which are part of 
the ArcelorMittal BioForest areas (19◦51′36.28″S; 42◦38′24.96″W). 
These municipalities have between 144,381 km2 and 339,375 km2, and 
a population size between 5.396 and 81.579 of people (IBGE, 2024). The 
region is known as “Vale do Aço”, contains several steel-producing in
dustries, as well as charcoal production, with a vast area of eucalyptus 
planting (de Oliveira-Junior et al., 2020). The region experiences an Aw 
climate, classified as hot and humid according to the Köppen classifi
cation, with distinct rainy and dry periods. The average annual precip
itation in the area is 1450 mm, and the mean annual temperature ranges 
from 20 to 23 ◦C (Alvares et al., 2013). The dominant soil classes are 
Red-Yellow Latosol in hilltops and mountainsides and Red-Yellow 
Podzol in upper fluvial terraces (de Oliveira-Junior et al., 2020; dos 
Santos et al., 2018). 

A total of 27 s-growth forest patches with varying lengths of fallow 
time after the last eucalyptus harvest were examined in this work. The 
fallow periods ranged from 3 to 32 years. It is important to note that all 
patches were originally covered by primary Atlantic Forests that were 
cleared for charcoal production, followed by the establishment of 
eucalyptus plantations (Fig. 1). Initially, 35 plots were sampled between 
January and July of 2018 (see Coelho et al., 2022a). However, to test our 
hypothesis samples with soils that did not meet the classification criteria 
for clay soil were excluded from the database (see supplementary ma
terial SM1). 

2.2. Plant sampling 

For each second-growth forest patch, a transect measuring 20x50 
meters (0.1 ha) was randomly established. Within this transect, all tree 
individuals with a diameter at breast height (DBH) of ≥ 4.8 cm 
(measured at 1.30 m above ground height) were sampled, following the 
methodology described by Matos et al. (2020). Data recorded for each 
individual included DBH, height, and species name. Species identifica
tion was conducted in the field or through collection and later identi
fication based on the Angiosperm Phylogeny Group IV classification 
system (APG IV, 2016). 

2.3. Plant diversity 

In this study, two biodiversity dimensions were considered: plant 
taxonomic and functional diversity. Three Hill numbers, which repre
sent effective measures of species diversity based on their relative 
abundances, were employed to assess taxonomic diversity (Hsieh et al., 
2016; Rother et al., 2019). These diversity indices are parameterized 
across three orders of “q”, which reflect the increasing importance of 
abundance from q = 0 to q = 2: (i) species richness (q = 0): a measure 
that assigns equal weight to both rare and abundant species; (ii) expo
nential form of Shannon entropy (q = 1): which places less emphasis on 
rare species; and (iii) inverse of Simpson diversity (q = 2): which takes 
into account the relative abundance distribution of species and assigns 
even less weight to rare species compared to Shannon entropy. Higher 
values indicate greater evenness in the abundance distribution (Gotelli 
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and Chao, 2013; Hill, 1973). These diversity indices were calculated 
using the “iNEXT” package (Hsieh et al., 2016). 

Both vegetative and reproductive traits were considered to evaluate 
the functional diversity of each fragment. The vegetative attributes 
encompassed wood density, maximum diameter, maximum height, leaf 
length, leaf width, and shade tolerance (shade-tolerant or non-shade- 
tolerant). As for reproductive attributes, seed length, seed width, fruit 
length, fruit width, fruit type (fleshy or dry), and type of dispersion 
(zoochorous or non-zoochorous) were examined. Wood density data 
were obtained from the Global Wood Density database (Zanne et al., 
2009). For species diameter and maximum height, the highest values 
observed within the plots where they occurred were recorded (Coelho 
et al., 2020). Leaf length and width measurements were retrieved from 
virtual herbaria, specifically by consulting SpeciesLink, where the 
attribute values represented the mean measurements derived from five 
randomly selected exsiccates of the same species from different herbaria 
(Meira-Neto et al., 2019). Information regarding shade tolerance and 
reproductive traits was collected from the databases utilized by Mag
nago et al. (2014) and Matos et al. (2020), as well as from SpeciesLink 
databases and taxonomic descriptive articles specific to each species. 

Using the functional traits, two functional diversity indices consid
ered in this study were calculated: (i) functional richness: the extent of 
multidimensional functional space occupied by the community; and (ii) 
functional evenness: the regularity with which the species fill the 
functional space, considering their relative abundances (Villéger et al., 
2008). The functional richness is calculated by algorithms considering 
the minimum convex hull that includes all species and traits under 
consideration. Meanwhile, functional evenness is obtained through a 

sequence of formulas representing the sum of the tree length that con
nects the dots in three-dimensional space, weighed by abundance (see 
Villéger et al., 2008 for more details). These indices were computed 
using the methods and scripts developed by Villéger et al. (2008) and the 
functions available in the “FD” package (Laliberte and Legendre, 2010). 
All plant diversity analyses were done using “R” software. 

2.4. Above-ground tree biomass 

The above-ground biomass (AGB) of each individual was calculated 
using the following allometric equation developed by Chave et al. 
(2014):  

AGB = exp[-1.803–0.976E + 0.976ln(ρ) + 2.673ln(D) – 0.0299[ln(D)]2] (1) 

In this equation, AGB represents the estimated above-ground 
biomass, E is a measure of environmental stress, ρ is wood density (g/ 
cm3), and D (cm) is the tree’s diameter at breast height. The value of E is 
determined by a linear function of climatic water deficit, temperature 
seasonality, and precipitation seasonality of each area, which were 
calculated using the “BIOMASS” package in “R” software. The total 
above-ground biomass per patch was obtained by summing the AGB 
values of all trees with a diameter at breast height (DBH) greater than or 
equal to 5 cm. The resulting value was then converted to megagrams per 
hectare (Mg/ha). Wood density values (g/cm3) were sourced from the 
Global Wood Density database (GWD; Zanne et al., 2009). 

Fig. 1. Localization of study area: (A) South America region with Atlantic Forest domain; (B) sampled second forest patches.  
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2.5. Previous management intensity 

Land-use history data provided by the landowners was used to assess 
the previous management intensity. The following variables were 
considered: (i) planting frequency: the number of times each patch was 
used for eucalyptus plantation; (ii) cutting frequency: the number of 
times the eucalyptus plantation was cut by clear-cutting in each patch; 
(iii) use time: the duration between the first cycle of planting and the last 
cycle of cutting; (iv) fallow age: the period between the last cutting cycle 
and the tree sampling during secondary succession. 

2.6. Landscape configuration 

Three metrics related to landscape configuration were considered: (i) 
patch isolation, which refers to the minimum linear distance in meters 
between the sampled patch and another natural forest patch; (ii) source 
distance, which represents the minimum linear distance between each 
sampled patch and a natural forest patch that is equal to or larger than 
500 ha (Matos et al., 2020); and (iii) forest cover, that indicates the 
percentage of natural forest within the landscape. Both landscape vari
ables were obtained from classified images using the Brazilian Annual 
Land Use and Land Cover Mapping Project (MapBiomas Collection 5) 
data for the year 2018. Patch isolation and source distance were 
measured using ArcGIS software (Environmental Systems Research 
Institute, Redlands, CA, USA). Forest cover was calculated using 
FRAGSTAT 4.2 software (McGarigal et al., 2023) within a 2-kilometer 
radius buffer centered on each transect (Matos et al., 2016). This in
formation was extracted from ArcGIS software, as described in previous 
studies (Coelho et al., 2020; Matos et al., 2016). 

2.7. Soil fertility 

Ten different soil fertility indicators were measured: (i) P, phos
phorus concentration using Melich-1 as extractor; (ii) Mg2+, magnesium 
concentration extracted in KCl 1 mol/L; (iii) Ca2+, calcium concentra
tion extracted in KCl 1 mol/L; (iv) K, potassium concentration using 
Melich-1 as extractor; (v) Fe, iron concentration using Melich-1 as 
extractor; (vi) Al3+, aluminum concentration extracted in KCl 1 mol/L; 
(vii) pH, a measure of hydrogen ion concentration in water in KCl and 
CaCl (1:2,5 ratio); (viii) SB, the sum of bases; ix) CEC, cation exchange 
capacity; and (x) MO, organic matter using Walkley-Black chromic acid 
wet oxidation method (Mylavarapu et al., 2002; Walkley and Black, 
1934). For this, three random samples of 0–20 cm depth were taken in 
each patch during the same day of vegetation sampling. 

2.8. Data analysis 

2.8.1. Data treatment 
First, a Pearson correlation matrix was generated among the four 

variable sets under consideration: previous management intensity, 
landscape configuration, biodiversity, and soil fertility. These analyses 
aimed to identify the most representative variables from each set and 
reduce the number of variables, mainly that correlated (p-value < 0.05). 
Within the previous management variables, cutting frequency demon
strated a positive correlation with use time (P = 0.68; p-value = 0.0001) 
and a negative correlation with fallow age (P = -0.90; p-value = 0.0001). 
Conversely, planting frequency did not exhibit correlations (Fig. 3A). 
Consequently, cutting frequency and planting frequency were chosen as 
proxies for previous management intensity, as these variables are good 
representatives of management practices. Regarding the landscape 
configuration variables, forest cover displayed a negative correlation 
with source distance (P = − 0.68; p-value = 0.0001), while patch 
isolation did not demonstrate correlations (Fig. 3B). Therefore, forest 
cover and patch isolation were selected as proxies for landscape 
configuration, because forest cover is a proxy of habitat amount, some of 
the most important variables in landscape ecology (Arroyo-Rodríguez 

et al., 2020). In the biodiversity set, all variables were highly correlated 
(P ≥ 0.54; p-value ≤ 0.0033; Fig. 3C). Hence, functional richness is the 
sole representative variable since it encompasses both taxonomic di
versity and the functional roles of each species (Maira et al., 2015; 
Mammola et al., 2021). Lastly, within the soil fertility variables, the sum 
of bases exhibited correlations with almost all variables: negative with 
Al and Fe (P ≤ -0.76; p-value ≤ 0.0001) and positive with pH, CEC, Ca, 
Mg, K (P ≥ 0.72; p-value ≤ 0.0001). Organic matter only displayed a 
positive correlation with two variables, Ca and CEC (P ≥ 0.59; p-value ≤
0.0096), and phosphorus concentration did not demonstrate any cor
relations (Fig. 3D). Therefore, the variables sum of bases, organic mat
ter, and phosphorus were selected as proxies for soil fertility. The 
analysis was conducted using the “Hmisc” package in R software (Har
rell and Dunpont, 2019). 

2.8.2. Data analyses 
Structural equation models (SEM; Schreiber, 2006) were constructed 

to examine the direct effects of selected variables of previous manage
ment intensity (cutting frequency and planting frequency) and land
scape configuration (forest cover and patch isolation) on tree 
biodiversity (functional richness), tree biomass, and soil fertility 
(organic matter, soil sum of bases, and phosphorus concentration. The 
model also considered the potential direct impact of previous manage
ment intensity and landscape configuration variables on soil fertility. 
The conceptual model with all tested relationships is depicted in Fig. 2. 

Various metrics were considered to assess model fit of SEM: the Chi- 
square (χ2) p-value, Tucker-Lewis index (TLI), comparative fit index 
(CFI), standardized root mean square residual (SRMR), root mean 
square error of approximation (RMSEA) and Akaike information crite
rium (AIC; Hooper et al., 2008). To ensure that the model accurately 
represented the associations between variables, the residuals of the 
correlational units were examined by comparing the observed and 
model-implied matrices. Additionally, an additional structural equation 
model was conducted using species richness instead of functional rich
ness, as species richness is a more traditional measure of diversity. An 
alternative model using latent variables instead of independent vari
ables was also evaluated. The statistical analysis was conducted using 
the “lavaan” package in R software (Oberski et al., 2023). 

3. Results 

A structural equation model was built to test the relationships 
depicted in Fig. 2, according to the initial hypotheses. The results of the 
selected structural equation model are indicated in Fig. 4. The model 
was deemed acceptable since the χ2 p-value was larger than 0.05, 
indicating that the model-implied matrix did not differ from the 
observed-implied matrix (Schreiber, 2006; Teixeira et al., 2021). Other 
model quality indices were adequate, including a TLI of 1.00 (criterion 
≥ 0.95), CFI of 1.00 (criterion ≥ 0.95), SRMR of 0.00 (criterion < 0.08), 
and RMSEA of 0.00 (criterion < 0.06) The strength of causal relation
ships between variables was evaluated using standardized parameter 
values, and relationships were deemed significant when the p-value was 
≤ 0.05 (Gana and Broc, 2018; Oberski, 2014). The model was consid
ered to neither over-predict nor under-predict the associations between 
variables, as indicated by residuals lower than 0.1 |res < 0.1| (Gana and 
Broc, 2018). A moderate negative effect (E < -0.3) of cutting frequency 
(E = -0.445; p-value = 0.007) and patch isolation (E = -0.352; p-value =
0.033) on functional richness was observed. Furthermore, a strong 
positive effect (E > 0.7) of functional richness on tree aboveground 
biomass (E = 0.783; p-value < 0.0001), as well as on soil sum of bases (E 
= 0.710; p-value = 0.011) was detected. Consequently, the effect of 
cutting frequency and patch isolation on tree biomass and soil sum of 
bases was indirect, mediated by tree functional richness (Fig. 4; sup
plementary material SM2). The p-value χ2, TLI, CFI, SRMR, and RMSEA 
of the alternative model using species richness were similar to those 
presented in the selected model of functional richness (supplementary 
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material SM3). However, the AIC of the selected model was lower than 
the model with species richness. A structural equation model with latent 
variables was also built, however, it did not meet model quality re
quirements probably due to the high ratio between the total number of 
variables and the number of observations. 

4. Discussion 

This study addresses a crucial knowledge gap in Atlantic Forest 
ecology by investigating the direct and indirect effects of previous 
management intensity and landscape configuration on tree biodiversity, 
tree biomass, and soil fertility during secondary succession. The findings 
reveal that patch isolation and cutting frequency have a negative impact 
on functional richness, indicating that intensive management and 
landscape fragmentation can hinder plant diversity recovery during 
secondary succession. In turn, a positive direct effect of functional 
richness on plant biomass and soil sum of bases was observed. These 
results suggest that previous management intensity and landscape 
fragmentation have negative indirect effects on tree biomass and soil 
fertility mediated by functional richness, highlighting the importance of 
(functional) diversity in the regulation of ecosystem functioning. 

4.1. Management intensity influences on biodiversity 

The negative impact of cutting frequency on functional richness is 
probably explained because intensive land use practices play an 
important role in changing habitat structure and quality (Fernandes- 
Neto et al., 2019; Pyles et al., 2022, 2018). In the case of silviculture, 

frequent cutting exposes the soil to adverse effects such as intense solar 
radiation, elevated temperatures, and soil compaction, resulting from 
altered local climate conditions and human activities in the area (Cook 
et al., 2016; Zhou et al., 2020). The environmental filtering process 
eliminates species from the soil seed bank that are unable to germinate 
and grow under the new environmental conditions, particularly shade- 
tolerant species that are often specialized and more susceptible to 
environmental changes (Brancalion et al., 2019; Brockerhoff et al., 
2013; Guariguata and Ostertag, 2001; Zhang et al., 2014). As a result, 
the subsequent loss of shade-tolerant species from the seed bank and the 
early stages of succession probably contribute to delayed recovery and 
reduced functional richness in secondary forests previously subjected to 
intensive silvicultural practices (Coelho et al., 2022b). 

4.2. Landscape configuration influences on biodiversity 

Like management intensity, patch isolation acts as a functional 
environmental filter, particularly for dispersal-related traits (Matos 
et al., 2020; Pérez-Cárdenas et al., 2020). Species with larger fruits and 
seeds have limited dispersal distances and may not be able to reach more 
isolated secondary forest patches (Kolb and Diekmann, 2005; Martello 
et al., 2023; Tscharntke et al., 2012a). Moreover, these species are 
typically dispersed by animals whose mobility can be hindered by dis
tances between fragments and the complexity of the landscape matrix 
(Carrié et al., 2017; Schleicher et al., 2011; Zambrano et al., 2019). 
Consequently, patch isolation diminishes the functional richness of 
secondary forests due to the exclusion of species with larger fruits and 
seeds in their regeneration (Arroyo-Rodríguez et al., 2023; Coelho et al., 

Fig. 2. The conceptual model illustrates the hypothesis tested in this study. Each box represents a set of variables considered in the analysis. Red lines indicate 
presumed negative influences, while green lines represent presumed positive influences, based on findings from previous studies on forest secondary succession 
discussed in the introduction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A. Josélio Pires Coelho et al.                                                                                                                                                                                                                 



Ecological Indicators 162 (2024) 112029

6

2022a; Safar et al., 2022). 

4.3. Biodiversity influences on biomass and soil fertility 

The positive effect of functional richness on tree biomass and soil 
sum of bases aligns with numerous studies that have demonstrated a 
positive co-benefit relationship between diversity and biomass (Gilroy 
et al., 2014; Magnago et al., 2015; Osuri et al., 2020) and between di
versity and soil functioning (Teixeira et al., 2020; Villa et al., 2021). As 
succession progresses, environmental changes in the regenerating area 
allow the establishment of shade-tolerant species, generally character
ized by large fresh fruits and zoochoric dispersal, representing a high 
proportion of biomass among forest species (Bello et al., 2015; Coelho 
et al., 2022b; Safar et al., 2022). Similarly, there is an increase in plant 
species with higher wood density, maximum diameter, maximum 
height, leaf dry matter content, and leaf thickness (Fernandes-Neto 
et al., 2019; Poorter et al., 2021; Teixeira et al., 2020). The increase in 
functional diversity enables more efficient utilization of diverse re
sources, such as water, nutrients, and light, leading to enhanced 
resource capture and greater biomass accumulation in the ecosystem 
(Balvanera et al., 2006; Rodrigues et al., 2023; Tilman et al., 1997). In 
addition, a diverse plant community with various litter quality and 
decomposition rates can accelerate nutrient cycling, leading to 
increased soil nutrients, and thus in soil fertility indices, here indicated 
by the influence on soil sum of bases (Bautista-Cruz and del Castillo, 
2005; Teixeira et al., 2020; Zhang et al., 2018). 

No significant effect of biodiversity and biomass on soil organic 
matter and phosphorus concentrations was observed. The recovery of 

soil organic matter during secondary succession remains a topic of 
debate. While some studies show an increase in soil organic matter in 
early successional stages (Deng et al., 2013; Robinson et al., 2015), 
others report no significant recovery (Rodríguez-León et al., 2021; 
Yesilonis et al., 2016). For soil phosphorus concentration, the pattern is 
also not clear. Some studies reported an increase in soil phosphorus 
concentration during secondary succession (Hughes et al., 1999; Rob
inson et al., 2015), while others found no significant recovery (Rodrí
guez-León et al., 2021; Safar et al., 2019; Yesilonis et al., 2016), or a 
decrease along secondary succession (Li et al., 2013). Thus, more studies 
need to be carried out to better understand the changes in soil organic 
matter and phosphorus concentration during secondary succession. 

4.4. Management and landscape influences on biomass and soil fertility 

The findings indicated that the impact of management intensity and 
landscape fragmentation on tree biomass and soil sum of bases is indi
rect and mediated by functional diversity. This corroborates that 
anthropogenic factors act as an environmental filter on biodiversity, 
decreasing functional diversity, and causing loss of ecosystem functions 
and processes (Magnago et al., 2014; Poorter et al., 2021; Ribeiro et al., 
2019; Villa et al., 2021). Soil fertility plays a vital role as an essential 
ecosystem function, influencing seed germination, the presence of soil 
fauna and microbiota, and ultimately, the survival of plants (Sylvain and 
Wall, 2011; Teixeira et al., 2020). Additionally, biomass stock is a 
crucial function in the ecosystem, enhancing energy for various trophic 
levels and sequestering atmospheric carbon for climate stability (Favero 
et al., 2020). This study underscores the early phases of ecosystem 

Fig. 3. Correlation matrices for the considered set of variables: (A) previous management intensity; (B) landscape configuration; (C) biodiversity; and (D) soil 
fertility. Unfilled spaces represent non-significant correlations (p > 0.05). FRic, functional richness; P, phosphorus concentration; Mg, magnesium concentration; Ca, 
calcium concentration; K, potassium concentration; Fe, iron concentration; Al, aluminum concentration; pH, measure of hydrogen ion concentration in water; SB, 
sum of bases; CEC, cation exchange capacity; MO, organic matter. 
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degradation triggered by anthropogenic influence on management and 
landscape configuration. These factors can trigger a cascading effect, 
resulting in the loss of biodiversity and essential ecosystem functions 
(Park and Razafindratsima, 2019). 

4.5. Application in conservation and restoration strategies 

The findings highlight the need to improve connectivity between 
forest remnants to allow seed dispersion between them and the main
tenance and recovery of plant diversity in tropical forests (Arroyo- 
Rodríguez et al., 2023). Secondly, areas with lower previous manage
ment intensity and fragmentation should be prioritized for passive 
restoration efforts in tropical forests because of the higher capacity to 
recover the functional composition of primary forests (Coelho et al., 
2022a; Pyles et al., 2022). Finally, functional diversity should be 
monitored during both passive and active restoration, as interventions 
like seed sowing or planting seedlings of underrepresented traits, espe
cially zoochoric species with larger fruits and seeds and shade-tolerant 
species, may be necessary to enhance ecosystem functioning and the 
overall restoration success (Aerts and Honnay, 2011; Carlucci et al., 
2020). 

5. Conclusion 

This study provides insights into the effects of management intensity 
and landscape configuration on functional diversity, tree biomass, and 
soil fertility during secondary succession. The negative effects of patch 
isolation and cutting frequency on functional richness highlight the role 
of management and landscape fragmentation as environmental filters 
decreasing functional plant diversity of ecosystems. These anthropo
genic effects have indirect impacts on forest biomass and soil sum of 
bases, which are mediated by changes in tree functional richness. By 
recognizing the influence of functional diversity in regulating ecosystem 
functioning, managers and policymakers can make informed decisions 

to promote sustainable practices that enhance biodiversity and 
ecosystem services. Incorporating these findings into conservation and 
restoration strategies can lead to more effective management ap
proaches that promote functional diversity and support the long-term 
sustainability of Atlantic Forest ecosystems. 
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Villa, P.M., Martins, S.V., Diniz, É.S., de Oliveira, N., Neto, S., Neri, A.V., Pinto- 
Junior, H., Nunes, J.A., Bueno, M.L., Ali, A., 2021. Taxonomic and functional beta 
diversity of woody communities along Amazon forest succession: The relative 
importance of stand age, soil properties and spatial factor. For. Ecol. Manage. 482, 
118885 https://doi.org/10.1016/j.foreco.2020.118885. 
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