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Because of their aperiodic nature, quasicrystals are one of the least understood phases in statistical physics.
One significant complication they present in comparison to their periodic counterparts is the fact that any
quasicrystal can be realized as an exponentially large number of different tilings, resulting in a significant
contribution to the quasicrystal entropy. Here, we use free-energy calculations to demonstrate that it is this
configurational entropy which stabilizes a dodecagonal quasicrystal in a binary mixture of hard spheres on a
plane. Our calculations also allow us to quantitatively confirm that in this system all tiling realizations are
essentially equally likely, with free-energy differences less than 0.0001kBT per particle—an observation that
could be related to the observation of only random tilings in soft-matter quasicrystals. Owing to the simplicity
of themodel and its available counterparts in colloidal experiments, we believe that this system is an excellent
candidate to achieve the long-awaited quasicrystal self-assembly on the micron scale.
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Hard spheres have played a foundational role in our
quest to understand classical phase behavior—from helping
to understand how purely entropic systems can crystallize,
to revealing new insights into the behavior of glassy
materials, to nucleation, to melting in 2D, and many more
[1]. Their success as a model system stems partly from their
inherent simplicity, making them amenable to efficient
simulations and analytical theories. Moreover, advances in
colloidal particle synthesis have largely made it possible to
quantitatively test theoretical and numerical predictions in
the lab.
Until recently, quasicrystals were one of the few states

of matter inaccessible by this simple model system.
Quasicrystals are exotic structures which can display
symmetries that are forbidden to periodic crystal phases.
While highly controversial when first discovered, their
place in material science is now well established, with their
formation demonstrated in a growing number of both
atomic [2–6] and colloidal [7–13] systems. Toy models
that display quasicrystalline behavior have generally been
fairly complex—many early models made use of non-
additive binary mixtures of Lennard-Jones particles or
similar potentials [14–16], or monoatomic systems with
oscillatory interaction potentials [17–21]. Recent work has
also explored patchy particles [22–25], anisotropic inter-
actions [26,27], and stepwise interactions [28,29]. However,
even simple binary (additive or nonadditive) hard-disk
systems have been predicted to form quasicrystals in the
limit of infinite pressure [30,31].
In colloidal experiments, the most straightforward

method for realizing such a mixture of disks is by
sedimenting mixtures of colloidal hard spheres onto a flat
substrate [32–34]. If the gravitational forces are sufficiently

strong, the resulting binary hard-sphere mixture can be
mapped to a nonadditive hard-disk mixture, with a well-
defined nonadditivity (see Supplemental Material [35]).
Note that in the infinite-pressure limit, it has been shown
that this nonadditivity significantly enhances the region
where a quasicrystal is expected to be stable [31]. We
recently used computer simulations to demonstrate the
spontaneous self-assembly of two quasicrystal structures in
such systems [41]. Given the simplicity of the hard-sphere
model and the fact that it is directly representative of an
accessible colloidal model system, this makes hard spheres
on a plane an ideal system for studying the physics of
quasicrystals.
One major question in the study of quasicrystals is the

role of configurational entropy in their stability [42,43].
When systems such as hard spheres form quasicrystals,
does this happen because the quasicrystal structure max-
imizes the freedom of particles to vibrate around their
quasicrystalline lattice position? Or are they stabilized by
the configurational entropy associated with the large
number of possible quasicrystal realizations?
Here, using computer simulations and free-energy cal-

culations, we show that the dodecagonal quasicrystal
formed by hard spheres on a plane is stabilized by
configurational entropy. In fact, without the configurational
entropy the quasicrystal would be metastable with respect
to a phase separation of periodic crystals. Instead, the
configurational entropy promotes a random-tiling quasi-
crystal where—for this simple hard-sphere model—all
realizations contribute equally to the free energy.
As illustrated in Fig. 1 we consider binary mixtures of

hard spheres constrained to lie on a flat substrate. We focus
on systems with a size ratio q ¼ σS=σL ¼ 0.46, where σSðLÞ
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denotes the diameter of the small (large) spheres. Because
of the confinement to a flat plane, the particles can move
only in two dimensions, and hence in practice we simulate
an effective mixture of nonadditive hard disks, where the
minimum distance of approach between two disks of
unequal size is given by σLS ¼ ffiffiffiffiffiffiffiffiffiffi

σSσL
p

. Such mixtures
are characterized by the composition xS ¼ NS=N, with
NSðLÞ the number of small (large) spheres and N the total
number of spheres. The last free parameter in this model is
the packing fraction, which we define as η ¼ ðNSσ

2
S þ

NLσ
2
LÞπ=4A, with A the (two-dimensional) volume of the

system.
Previous work showed that a dodecagonal quasicrystal-

line phase (QC12) is stable at infinite pressure in this
system, and also forms spontaneously in self-assembly
simulations [41]. However, this does not prove the thermo-
dynamic stability of this phase, as it could still be
metastable with respect to competing periodic crystal
phases. Here, we perform free-energy calculations to settle
this question, and in particular focus on the role of
configurational entropy.
To prove the thermodynamic stability of the QC12

phase, we use explicit free-energy calculations using both
event-driven molecular dynamics simulations [44] and
Monte Carlo simulations [45]. In particular, we calculate
the free energy of different competing phases as a function
of the pressure and composition using thermodynamic
integration methods [45]. For the fluid phase, we use the
ideal gas as a reference state. For the periodic crystal
phases, we obtain reference free energies using the Einstein
molecule variant [46,47] of the Frenkel-Ladd method [48].
As candidate structures, we consider the phases that are
expected to be stable (or nearly stable) at infinite pressure,

namely the hexagonal, S1, Sigma, and QC12 phases [31].
The candidate phases are depicted in Fig. 1. However, our
calculations show that the Sigma phase is never favored in
comparison to the other phases.
Determining the stability of a quasicrystal using com-

puter simulations presents challenges that are not present
for conventional crystal phases. First, quasicrystals are
nonperiodic, and hence the finite-size effects of approxi-
mating its aperiodic structure with a periodic approximant
should be carefully checked. More importantly, quasicrys-
tals are often random tilings, consisting of repeated tiles
which can tile space in a multitude of different configu-
rations. The quasicrystals of interest here, like many
dodecagonal quasicrystals discovered in soft-matter experi-
ments [8–11] and simulations [7,14,28,29,41,49], are based
on a random tiling of the plane by squares and equilateral
triangles, with the large particles in the system forming the
corners of both shapes. As the number of possible arrange-
ments of these tiles scales exponentially in the number of
particles, the freedom of choice in generating this con-
figuration contributes to the total entropy of the phase, and
hence needs to be taken into account in any free-energy
calculations.
This issue is most easily handled if we can make

the assumption that all realizations of the quasicrystal
are equally likely, also known as the random tiling
hypothesis [50]. If this is the case, the vibrational and
configurational entropy are decoupled, and we can split
the total free energy of our hard-sphere quasicrystal into
two parts:

FtotðN;A; TÞ ¼ −TSvibðN;A; TÞ − TSconf ; ð1Þ

where Svib is the vibrational entropy of any given quasi-
crystal realization, Sconf is the configurational entropy
associated with the quasicrystal tiling, and T is the temper-
ature. The vibrational entropy can be directly calculated for
any given realization using the same Einstein molecule
approach as we use for the periodic phases.
The configurational entropy of a lattice-based QC12

square-triangle tiling (without thermal fluctuations) is well
studied [51]. When the ratio of the number of squares Nsq

and triangles Ntr reaches Nsq=Ntr ¼
ffiffiffi

3
p

=4, the random
tiling ensemble reaches a maximum entropy, meaning that
the number of tilings in the ensemble, or equivalently the
number of possible configurations for the squares and
triangles, is the highest. At this point, the random tiling
ensemble forms a so-called random-tiling quasicrystal of
12-fold symmetry [52–56]. The configurational entropy of
the square-triangle tiling was first estimated with transfer
matrix [53,57] and numerical [51] approaches, before
exact analytical expressions were obtained with a Bethe
ansatz [52,54]. Based on these works, the random tiling
configurational entropy per particle is given by

FIG. 1. Top: schematic image of binary hard spheres lying on a
flat plane. The line segments indicate the contact distances for the
different species. Bottom: candidate phases considered for this
system: hexagonal packing (red), S1 (blue), QC12 (green), and
Sigma (white). The unit cell of the periodic structures are
depicted as black rhombi.
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Sconf=NkB¼½lnð108Þ−2
ffiffiffi

3
p

lnð2þ
ffiffiffi

3
p

Þ�ð1−xQC12S Þ≈0.082:

ð2Þ

Here, xS is the composition of the systemwhich corresponds
to the ratio of squares and triangles required for a quasi-
crystal, i.e., xQC12S ¼ ffiffiffi

3
p

=ð2þ2
ffiffiffi

3
p Þ≈0.317. Importantly,

Sconf is sharply peaked at this composition, and −TSconf is
nonconvex on either side of the maximum [54], such that
random tilings at any compositions other than xQC12S are
strongly entropically disfavored.
In our hard-sphere mixture, it is not a priori obvious that

all quasicrystal realizations are equally likely. In practice,
the probability of finding the system in a given state is
proportional to ∝ exp ð−Svib=kBÞ, and hence we can only
use Eq. (2) if all random tiling configurations have
essentially the same vibrational entropy. To check this,
we perform high-precision calculations of the vibrational
entropy of various tiling realizations. In particular, we
compare Svib of several types of ideal quasicrystal con-
figurations, as well as fully randomized tilings. Ideal
quasicrystal configurations can be generated by inflation
methods, in which every tile of a tiling is replaced by a
cluster of tiles. By iterating the inflation rules on an initial
seed, one generates larger and larger patches of tiling that
converge to a quasicrystalline configuration. Here we
generate a quasicrystal tiling with dodecagonal symmetry
via the Schlottmann inflation rule [58,59]. Additionally, we
construct a quasicrystal tiling with hexagonal symmetry
using the Stampfli inflation rule [60]. A slight variation of
the Stampfli rule uses random choices to generate a limited
ensemble of random tiling realizations with 12-fold sym-
metry on average. Finally, configurations from the full
random tiling ensemble can be sampled by reshuffling ideal
configurations using so-called zipper moves that rearrange
tiles along a closed path in the tiling [51]. More details on
the generation of our tiling configurations can be found in
the Supplemental Material [35]. We calculate the vibra-
tional entropy of configurations from each of these families
for several different system sizes. For the random tilings,
we consider 5 different realizations for each system size.
The density is fixed at 1.5σ−2LL for all systems. Note that in
order to minimize statistical error and reduce the error bars,
we repeat the entropy calculation for each configuration at
least 100 times [35] and average over the results.
The results are shown in Fig. 2. The finite-size scaling of

the entropy appears to be nonlinear for each structure.
Interestingly, adding the heuristic finite-size correction
term − lnðNÞ=ð2NÞ proposed in Ref. [45] does not remove
the nonlinearity. Given the plateaulike behavior in the limit
of large system sizes, we simply use the value of the
entropy per particle for the largest systems as our estimate
of the vibrational entropy in the thermodynamic limit. We
obtain Svib=NkB ¼ −5.503 09ð5Þ for the Schlottmann
quasicrystal, −5.503 17ð4Þ for the random Stampfli

quasicrystal, −5.503 42ð4Þ for the Stampfli hexagonal
quasicrystal, and −5.503 92ð4Þ for the average over the
5 largest realizations of the random-tiling quasicrystal.
An important first observation is that the vibrational

entropies of the 5 random-tiling quasicrystals are degen-
erate within our error bars for all system sizes studied
(black clusters in Fig. 2). Moreover, even including the rare
idealized tilings the vibrational entropies agree to within
0.001kB per particle. This indicates that the configurations
in the random tiling ensemble indeed have essentially
indistinguishable vibrational entropies. This observation
quantitatively validates the assumption that all realizations
are equally likely in our system and justifies the treatment
of the QC12 as a random tiling phase with the configu-
rational entropy given by Eq. (2).
The measurements show, nonetheless, that some con-

figurations in the random tiling ensemble are special.
The entropy of the inflated quasicrystals is consistently
larger than that of the random configurations, with the
entropy difference on the order of 10−3kB per particle.
Interestingly, we find that the ideal dodecagonal quasi-
crystal obtained with Schlottmann inflation has slightly
more vibrational entropy than both the ideal hexagonal
Stampfli and random Stampfli quasicrystals. Nonetheless,
given that the configurational entropy of the random tiling
ensemble [Eq. (2)] is orders of magnitude larger than the
small vibrational entropy gain associated with adopting an
idealized quasicrystal realization, our results show that the
random tiling state is overwhelmingly more stable than any
idealized tiling.

FIG. 2. Vibrational entropies of the Schlottmann dodecagonal
quasicrystal (DDQC, pink), random Stampfli quasicrystal (or-
ange), Stampfli hexagonal quasicrystal (HexQC, blue), and 5
fully random quasicrystals (random QC, black), for various
system sizes. The error bars are the statistical error on the mean
obtained by repeating Frenkel-Ladd calculations many times, and
are smaller than the symbols for most points. Two system sizes
are obtained by inflation of a sigma seed, for which our
implementation of the Schlottmann inflation fails. Hence, two
pink points are missing. The insets show examples of an ideal
Schlottmann tiling (top left) and a random tiling (bottom right).
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The vibrational entropy difference between random and
ideal quasicrystals can be understood from the different local
environments that can be found in the underlying tiling. For
instance, the idealized quasicrystals contain no local envi-
ronments formed of 4 squares meeting at the same vertex,
while the random quasicrystals contain a nonzero concen-
tration of these vertices [61] (see insets in Fig. 2).We expect,
however, that the first-neighbor local environments alone do
not explain fully the entropy difference. Indeed, both the
dodecagonal and hexagonal ideal quasicrystals have the
same distribution of local environments when considering
only the first-neighbor shell. Hence, neighbor shells beyond
the first one certainly play a non-negligible role.
From the point of view of quasicrystal theory, the

vibrational entropy difference between ideal and random
structures is an interesting illustration of phonon-phason
coupling [19,50], albeit very weak. The vibrational entropy
of each system can be interpreted as stemming from the
total entropy contribution from all phonon modes acces-
sible to the quasicrystal. In this picture, the lower vibra-
tional entropy of the random quasicrystals shows that the
presence of phason modes in these systems hinders lattice
vibrations, i.e., reduces the amplitude of the phonon modes.
Now that we have verified that we can use Eq. (2) to

determine the configurational entropy of the quasicrystal
phase, we can determine its stability in comparison to the
other crystal phases. To this end, we transform the entropies
obtained from our thermodynamic integration into Gibbs
free energies using the equation of state of the respective
phases, and compare different phases (or coexistences
thereof) at the same pressure. In Fig. 3, we plot the
Gibbs free energy for the quasicrystal (obtained via
Schlottmann inflation) relative to that of the closest

competing periodic state: a coexistence of the hexagonal
HexL crystal and square S1 crystal. Without the configu-
rational entropy term (green dashed line), the HexL-S1
coexistence prevails and the quasicrystal is not stable.
Including the configurational entropy from Eq. (2) results
in the solid green line, stabilizing the QC12 phase. Clearly,
for this system, the tiling contribution to the total entropy is
critical for the quasicrystal stability. Note that the free-
energy difference between the QC12 and the coexistence of
periodic phases is on the order of 0.07kBT, which is more
than an order of magnitude larger than the difference
between the different families of quasicrystal tilings shown
in Fig. 2, and over 2 orders of magnitude larger than the
variations in vibrational entropy between individual ran-
dom tilings.
Finally, we use the free energies we obtained for all

different phases to construct the phase diagram of our
system as a function of the composition xS and pressure p.
The coexistence regions are mapped out using common
tangent constructions at constant pressure. Since the QC12
phase only appears for compositions xS < 0.5, we only
consider systems with compositions xS ≤ 0.5. As the S1
phase is highly favored for compositions close to xS ¼ 0.5,
this allows us to disregard any phases that occur at higher
compositions. The resulting phase diagram is shown in
Fig. 4, and clearly indicates a broad stable region for the
QC12 phase. Additionally, we observe stable regions for
the S1, HexL, and fluid phases. Note that the Sigma phase is
never stable.
Although the QC12 phase coexists with other solid

phases for most of its stability range, there is a narrow
band of pressures where it coexists with a fluid containing a
larger concentration of small particles. As self-assembly is
likely to be easier to achieve from a fluid phase, this
suggests that self-assembly of this phase may be easiest by
starting from an off-stoichiometric fluid with xS > xQC12S .

FIG. 3. Free-energy difference between the competing coex-
istence of HexL þ S1 and the quasicrystal at the quasicrystal
composition. For the quasicrystal, the dashed curve corresponds
to the vibrational entropy alone and lies above the coexistence
free energy. The addition of the constant tiling entropy term (solid
line) stabilizes the quasicrystal.

FIG. 4. Phase diagram of binary mixtures of nonadditive hard
disks with size ratio q ¼ 0.46 corresponding to the equivalent 3D
geometry of spheres sedimented on a flat surface. The random
tiling dodecagonal quasicrystal is labeled “QC12.” Although
considered as a candidate phase, the Sigma approximant of the
quasicrystal is nowhere stable.
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This scenario is in line with earlier self-assembly obser-
vations of this phase [41], and has previously been reported
for other phases as well [62].
In conclusion, our results demonstrate the thermody-

namic stability of a dodecagonal quasicrystal in a binary
mixture of hard spheres confined to lie on a flat substrate.
As it consists of hard spheres, the quasicrystal considered
here is inherently stabilized by entropy alone. Importantly,
however, it is also an example of a quasicrystal that is
stabilized by its configurational, rather than vibrational,
entropy. This configurational entropy stems from the many
different possible tiling realizations, which are—as shown
by our precise free-energy calculations—nearly indistin-
guishable in terms of their vibrational freedom. Because of
the tiny vibrational entropy difference between different
realizations, random tilings are overwhelmingly more
likely to form than perfect inflationary tilings.
An intuitive way to understand the minute free-energy

differences between different quasicrystal realizations is to
consider a cell-theoretical description of the free energy of
the quasicrystals. Because of the short-ranged nature of the
interactions, in this picture all quasicrystal realizations
would have the same free energy, trivially leading to the
result that the random-tiling quasicrystal must be stable over
any specific realization. As such, we expect our results to
hold for other colloidal quasicrystals where the interactions
are isotropic and sufficiently short ranged, including, e.g.,
additive hard disks, steric repulsions, and attractions due to
depletion. Interestingly, all the colloidal quasicrystalline
systems observed thus far appear to indeed be at least
partially random, suggesting a non-negligible contribution
of configurational entropy to their stability. Note, however,
that in some systems, sufficiently strong particle interactions
could favor or suppress different sets of quasicrystal
realizations [63], lowering the configurational entropy
and potentially destabilizing the quasicrystal phase [19].
The key role played by configurational entropy in the

stabilization of the two-dimensional 12-fold quasicrystal
studied here is also intriguing when considering self-
assembly of three-dimensional structures that consist of
stacked layers of 2D quasicrystals [8,10,25]. For systems
where consecutive layers correspond to the same tiling, the
configurational entropy of such a layered quasicrystal would
be proportional to the surface area of a single layer, rather
than its volume, as only the first layer formed has the freedom
to choose its tiling pattern. As a result, the configurational
entropy contribution to the free energy should technically
vanish for sufficiently large systems, reducing the thermo-
dynamic stability of random tiling quasicrystals. In practice,
however, randomized tilings could still occur if they are
“frozen in” during the initial self-assembly of the first layer.
Hence, the impact of configurational entropy on the for-
mation of three-dimensional quasicrystals with dodecagonal
symmetry remains an open question.

Finally, we note that the geometry of binary hard spheres
on a flat surface can be readily realized in experimental
systems of colloidal spheres sedimented onto a flat sub-
strate [32–34]. Hence, the prediction of an equilibrium
quasicrystal in this system is extremely promising for the
creation and study of quasicrystals on the colloidal scale.
Such a realization would be an important step forward in
the study of (soft-matter) quasicrystals, as it would provide
an ideal platform for the real-space study of, e.g., defect
dynamics, perpendicular strain relaxation, and other phe-
nomena that are hard to study in molecular or atomic
quasicrystals.
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