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ABSTRACT
Not only is visual attention shifted to objects in the external world, attention can also 
be directed to objects in memory. We have recently shown that pupil size indexes how 
strongly items are attended externally, which was reflected in more precise encoding 
into visual working memory. Using a retro-cuing paradigm, we here replicated this 
finding by showing that stronger pupil constrictions during encoding were reflective 
of the depth of encoding. Importantly, we extend this previous work by showing 
that pupil size also revealed the intensity of internal attention toward content 
stored in visual working memory. Specifically, pupil dilation during the prioritization 
of one among multiple internally stored representations predicted the precision of 
the prioritized item. Furthermore, the dynamics of the pupillary responses revealed 
that the intensity of internal and external attention independently determined the 
precision of internalized visual representations. Our results show that both internal 
and external attention are not all-or-none processes, but should rather be thought 
of as continuous resources that can be deployed at varying intensities. The employed 
pupillometric approach allows to unravel the intricate interplay between internal and 
external attention and their effects on visual working memory.
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1. INTRODUCTION
Attention allows for selectively processing the most relevant information within the rich visual 
world. Besides the selection of relevant information from the external world (e.g. looking for 
an apple in the grocery store), attention can also select information from temporarily internally 
stored representations in visual working memory (VWM; e.g. remembering you need to buy 
a banana as well). As such, attention shifts to selectively enhance items on a perceptual (i.e. 
external attention) or memory level (i.e. internal attention) to guide behavior (Chun et al., 2011; 
Gresch et al., 2023; Griffin & Nobre, 2003; Hautekiet et al., 2023; Heuer et al., 2020; Landman et 
al., 2003; Oberauer, 2019; Olivers & Roelfsema, 2020; Souza & Oberauer, 2016; van Ede, 2020; 
van Ede & Nobre, 2023; Verschooren & Egner, 2023).

One aspect of attention that is relatively unexplored concerns how intensely it is deployed 
(Miller et al., 2019; Unsworth & Miller, 2021). A possible reason for this lacuna in the literature 
is that traditional behavioral outcomes do not allow to determine the intensity of attention 
on a trial-by-trial basis, as such outcomes necessitate the calculation of summary values 
across conditions (e.g. accuracy in % correct or mean response times). The limitation of these 
behavioral measures is further exacerbated if internal attention is assessed, since it can be 
difficult to explicitly disentangle its effects from external attention (Koevoet, Strauch, Van der 
Stigchel, et al., 2023). Importantly, the ultimate quality of VWM representations is shaped by 
the integrative outcome of the intensity of external and internal attention. VWM encoding is 
strongly modulated by attention (e.g. Awh et al., 2006; Blom et al., 2016; Koevoet, Naber, et al., 
2023) and dual-tasks have been shown to disrupt VWM prioritization (e.g. Janczyk & Berryhill, 
2014; Lin et al., 2021). Thus, encoding and prioritization consume attentional resources and 
having more of such resources available for the task leads to improved VWM precision.

Pupil size holds promise as a physiological measure to effectively capture and delineate 
between the intensities of external and internal attention. Here, internal attention exclusively 
refers to the prioritization of material stored in VWM (Chun et al., 2011; van Ede & Nobre, 2023). 
We have recently proposed that different pupillary responses capture distinct operations of 
VWM (Koevoet, Strauch, Van der Stigchel, et al., 2023; Strauch, Wang, et al., 2022). For instance, 
the pupil orienting response and a later pupil dilatory component index encoding (external 
attention) and prioritization (internal attention), respectively. The pupil orienting response 
occurs within 200–700 ms following the onset of a visual stimulus and manifests as a brief 
dilation followed by a prominent constriction (Koevoet, Strauch, Van der Stigchel, et al., 2023; 
Lynn, 2013; Nieuwenhuis et al., 2011; Strauch, Romein, et al., 2022; Strauch, Wang, et al., 2022; 
Wang & Munoz, 2015). Specifically the pupil orienting constriction is linked to the depth of 
sensory processing, and thus the intensity of external attention (Barbur & Thomson, 1987; 
Binda & Murray, 2015; Naber et al., 2013; Strauch, Wang, et al., 2022). Building on this notion, 
our previous findings demonstrate that stronger orienting constrictions predict the amount 
and the precision of information committed to VWM (Koevoet, Naber, et al., 2023).

Pupillometric studies have leveraged the pupil light response (PLR) to study what is externally 
or even internally attended (Hustá et al., 2019; Unsworth & Robison, 2017; Zokaei et al., 2019). 
The PLR entails pupil dilations and constrictions in response to external dark and bright visual 
stimuli, respectively. Through the PLR, pupil size reveals what is externally attended: Attending 
dark items leads to larger pupils than when attending bright items (Binda & Gamlin, 2017; Binda 
et al., 2014; Mathôt & Van der Stigchel, 2015; Mathôt et al., 2013; Strauch, Romein, et al., 2022). 
Remarkably, Zokaei et al. (2019) recently showed that pupil size also reveals the focus of internal 
attention. In this study participants encoded bright and dark items during a VWM task. Through 
an auditory retro-cue, participants were instructed to internally attend to a specific brightness 
stored in memory. Crucially, whenever participants shifted internal attention toward a dark item, 
the pupil dilated more than whenever a bright item was prioritized internally. The magnitude of 
this PLR-modulated prioritization effect predicted participants’ working memory precision, directly 
linking it to behavior. Additionally, Unsworth and Robison (2018) found that internally prioritizing 
information in working memory elicited a pupil dilation, even irrespective of brightness (Unsworth 
& Robison, 2018). This response likely reflects (mental) effort akin to dilations during (V)WM 
maintenance (Beatty, 1982; Kahneman, 1973; Koevoet, Strauch, Van der Stigchel, et al., 2023; 
Strauch, Wang, et al., 2022), but this effect was specific to the internal prioritization process. The 
observed dilation during prioritization therefore reveals that shifting internal attention requires 
effort, making pupillometry a potentially valuable outcome measure for quantifying the intensity 
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of such shifts. Note that we here consider the intensity of internal attention to be the sum of sub-
processes such as internal orienting, selection and enhancement of stored representations (see 
van Ede & Nobre, 2023) because pupil dilation cannot delineate between these sub-processes. 
However, the precise relationship between behavioral outcomes and the brightness-independent 
dilation response when deploying internal attention remains unexplored.

Here, we reanalyzed data from a retro-cuing VWM task (Wilschut & Mathôt, 2022) to address 
three main questions. First, we aimed to replicate our previous finding which showed that more 
pronounced pupil constrictions during encoding predict more precise VWM representations 
(Koevoet, Naber, et al., 2023). Second, we asked whether pupil size captures the intensity of internal 
attention. Building on the link between the PLR-based internal prioritization effect and behavior 
(Unsworth & Robison, 2018; Zokaei et al., 2019), we hypothesize that this general pupil dilation 
response reflects the intensity of internal attention and, consequently, predicts the precision of 
VWM representations (Koevoet, Strauch, Van der Stigchel, et al., 2023). Third, if the pupil response 
components indeed reflect distinct VWM operations, both the constriction during encoding and 
the dilation during prioritization should predict the precision of VWM representations. We predict 
that both of these components shape the quality of stored material on a trial-by-trial basis.

2. METHODS
2.1 PROCEDURE

Thirty-one participants took part in the experiment reported in Wilschut and Mathôt (2022) 
(Figure 1; see the original paper for the full details). The original experimental procedure 
was approved by the ethics committee of the department of psychology at the University of 
Groningen (study approval code: PSY-2021-S-0321).

Briefly, participants encoded three different colored circles (2000 ms; 1.7° radius), maintained 
these colors for 1000 ms, and the spatial location of one color was then retrocued (100% valid) 
for reproduction (100 ms). After another delay period (2500 ms), one of five different task-
irrelevant probes was presented for 100 ms: Exactly the same as the retro-cued colors (e.g. 
green), a color from the same category (e.g. lighter green), a different color (e.g. yellow), a color 
on the opposite side of the color wheel (e.g. purple) or no probe. These probes were used to 
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Figure 1 Schematic overview 
of the procedure and the 
main results. Left: Procedure 
from top to bottom, see 
Methods for details. Top right: 
Pupil constriction was more 
pronounced during more 
precise encoding into VWM as 
indicated by smaller absolute 
hue errors. For visualization 
only, three groups were 
created for the pupil trace 
plots but analyses were 
conducted using absolute 
error as a continuous variable. 
Horizontal purple lines indicate 
significant effects of absolute 
error on pupil size (p < .05). 
The X-axis represents time 
(ms) and the Y-axis holds pupil 
size (arbitrary units). Middle 
right: Stronger dilation during 
prioritization leads to more 
precise VWM representations 
(same conventions as above). 
Bottom right: Probe conditions 
differed in absolute hue errors. 
All error shadings and bars 
reflect standard errors of the 
mean. *p < .05.
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investigate how different types of colors would affect pupil responses and bias eventual VWM 
reports in the original paper (Wilschut & Mathôt, 2022). Lastly, after a final delay period (2000 
ms), participants reported the color of the retro-cued stimulus on a color wheel with a mouse 
click which ended the trial. Participants were instructed to respond as precisely as possible, and 
were awarded points based on their precision (for details see Wilschut & Mathôt, 2022).

The experiment consisted of a total of 190 trials equally distributed across probe conditions 
(38 per condition) in a mixed order, which were preceded by five practice trials. Throughout the 
experiment, gaze position and pupil size were measured monocularly using an EyeLink 1000 
desktop mount (SR Research, Mississauga, ON, Canada) at 1000Hz.

2.2 DATA PROCESSING AND ANALYSES

Whereas Wilschut and Mathôt (2022) focused on the pupillary constriction response to the 
probe (see original paper for details), we were interested in the intensity of external and internal 
attention. Therefore, we only analyzed pupil size data during the encoding (i.e. color stimuli) 
and prioritization periods in the task (i.e. retro-cue).

Data processing and analyses were performed using custom Python scripts (version 3.9.7). 
Analyses were based on previous work (Koevoet, Naber, et al., 2023; Strauch, Wang, et al., 
2022). Practice trials were discarded from all analyses. Blinks in the pupil data were interpolated 
(Mathôt & Vilotijević, 2022), downsampled to 100Hz and remaining missing data were linearly 
interpolated. To isolate the effects of external and internal attention, we picked a time window 
of 0–3000 ms after stimulus onset and a separate later window of 0–2600 ms upon retro-cue 
onset. Subtractive baseline correction was applied on both windows using the median pupil 
size of the first 100 ms of each respective window (Mathôt et al., 2018) – this interval was also 
used to compute baseline pupil size (see Discussion). The absolute difference in hue between 
the memorized and reported color was used as an index of VWM precision. We chose this index 
of VWM precision to be consistent with previous work (e.g. Gresch et al., 2023; Koevoet, Naber, 
et al., 2023). Unlike Wilschut and Mathôt (2022), we did not consider categorical differences 
between colors (i.e. red vs. blue) since this is a more rigid and less sensitive outcome measure 
of VWM precision. To assess whether and when pupil size differs during encoding and/or 
prioritization, linear mixed-effects (LME) models were used to analyze pupil size over time for 
the internal and external windows (every 10 ms; R formula: pupil size ∼ absolute hue error + 
probe type + (1+probe type|participant). Probe type was added as a covariate and we modelled 
random slopes for the probe conditions for these analyses over time (Barr, 2013) to ensure this 
did not drive potential effects of interest. Note that for visualization only (see Figure 1), trials 
(5890 in total) were split into three precision groups: precise (≤5° error), intermediate (>5 and 
≤15° error) and imprecise (>15° error).

To determine whether these pupillary dynamics predict the precision of VWM representations on 
a trial-by-trial basis, another LME was conducted. For every trial, the absolute error of the response 
(in hue) was calculated as a measure of the precision of VWM content. Next, we computed average 
pupil size within 1000–2000 ms after stimulus onset and within 1000–2000 ms after retro-cue 
onset, respectively. These windows were determined based on the results from the analysis of 
pupil size over time to ensure external and internal attention were captured accurately. These 
pupillary dynamics were then used to predict the precision of VWM representations on a trial-by-
trial basis. Due to problems with convergence during Akaike information criterion based selection 
(AIC), we chose not to include random slopes during model selection (R formula for selected 
model: absolute hue error ∼ encoding constriction + prioritization dilation + trial number + probe 
type + (1|participant); see Supplementary Materials for full details). For all analyses, effects were 
deemed significant whenever t > 1.96 corresponding to α = 0.05.

3. RESULTS
3.1 PUPIL CONSTRICTION REVEALS ENCODING PRECISION

We first investigated whether pupil size would capture the intensity of external attention during 
encoding of the three colors. Based on our previous findings, we hypothesized that stronger 
pupil constrictions would accompany more precise reports. Indeed, pupil size was significantly 
smaller already 750 ms after stimulus onset when more precise responses were given at the end 
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of the trial (top right in Figure 1), and this effect lasted throughout the rest of the time window. 
This replicates our previous findings (Koevoet, Naber, et al., 2023), although the response profile 
of pupil size differed considerably from those previously reported. The here observed pattern 
includes a relatively late re-dilation after constriction that is possibly caused by the relatively 
long presentation of to-be-encoded stimuli (2000 ms vs. 500 ms in Koevoet, Naber, et al. (2023)), 
leading to sustained rather than transient pupil constrictions. This is likely driven by the average 
higher brightness of the color stimuli compared with the background, leading to a sustained PLR 
until the offset of the stimuli at 2000 ms, which in turn elicits a re-dilation. Although the shape 
of the trace differs compared to previous work, we nevertheless replicate the core finding that 
smaller pupils during encoding reflect more precise uptake into VWM.

3.2 INTENSITY OF INTERNAL ATTENTION IS REFLECTED IN PUPIL DILATION

Next, we assessed whether pupil size also indexes the intensity of internal attention (middle 
right in Figure 1). Previous work showed that internal prioritization of memorized material leads 
to a pupillary dilation (Robison et al., 2023; Unsworth & Robison, 2018). We hypothesized that 
the extent of this dilation betrays how strongly internal attention is deployed. In line with our 
hypothesis, the pupil dilated more upon prioritization whenever VWM representations were 
preciser. More specifically, this pupillary dilation effect established itself around 650 ms and was 
sustained until 2010 ms after retro-cue onset. This shows that internal attention is deployed at 
different intensities, enhancing VWM precision at varying degrees.

3.3 INTERNAL AND EXTERNAL ATTENTION JOINTLY PREDICT PRECISION

The analyses above established that the intensity of both external and internal attention are 
captured by pupillary responses, but how do these forms of attention shape the quality of VWM 
representations? To address this directly, we analyzed whether pupillary dynamics predicted 
VWM precision on a trial-by-trial basis (Figure 2). To this end, pupil constriction during encoding 
and pupil dilation during prioritization were entered into an LME to predict the absolute hue 
error of the response at the end of the trial (also see Supplementary Materials). We found 
that both pupil constriction, β =.001 ± .0004, t = 2.45, p = .014, and pupil dilation amplitudes 
significantly predicted the error in hue at the end of the trial, β =.002 ± .0006, t =2.68, p =.007. 
Specifically, stronger pupil constriction during encoding and more pronounced pupil dilation 
elicited by internal prioritization predicted more precise responses (i.e. smaller absolute errors). 
Trial number did not significantly predict the precision of VWM reports, β =.005 ± .0028, t =1.66, 
p =.097. The model was determined using AIC-based backward selection, favoring a model 
that included neither baseline pupil size nor the interaction between encoding constrictions 
and prioritization dilations (Supplementary Materials). The fact that baseline pupil size and the 
interaction term did not meaningfully explain additional variance shows that 1) baseline pupil 
size was not significantly predictive of VWM precision when controlling for trial number and 
2) external and internal attention may not interact to shape VWM precision. Together, these 
analyses indicate that pupil size indexes the intensity of external and internal attention, and 
that these components idiosyncratically predict the quality of VWM representations.

Errors significantly differed between the probe conditions, ts > 2.2, ps < .024 (bottom right 
in Figure 1). More specifically, whenever participants were probed with the exact color that 
was retro-cued, the absolute error was smaller compared with the other conditions. This is 
not surprising, since participants could refresh their representation of the color shortly before 
having to reproduce it. Note that the predictive pupil effects reported above are not driven by 
the probe conditions because probe types were considered in the analysis.

Figure 2 Relationships 
between visual working 
memory precision and 
A) encoding constriction 
amplitude (external attention), 
and B) prioritization dilation 
amplitude (internal attention). 
Thin lines represent linear fits 
per individual and the thick 
like represents the relationship 
across all data. Shaded error 
bars represent bootstrapped 
95% confidence intervals. 
Y-axes are shared between 
A and B. To account for 
individual differences, data 
were normalized to robust 
z-scores by subtracting the 
median and dividing by the 
median absolute deviation for 
each datapoint per participant 
(Rousseeuw & Hubert, 2011). 

*p < .05, **p < .01.
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4. DISCUSSION
Here, we found that the intensities of internal and external attention independently contribute 
to the quality of visual working memory content. Using openly available data (Wilschut & 
Mathôt, 2022), we show that the intensities of both types of attention are captured by distinct 
pupillary responses.

Recent studies employing subtle gaze biases (<1°) to track the focus of internal attention 
support the idea that internal attention is deployed at different intensities (de Vries & van Ede, 
2023; Liu et al., 2023; Liu et al., 2022; van Ede et al., 2020; van Ede et al., 2019). The extent 
of these gaze biases toward internally attended content is associated with faster responses, 
indicating varying intensities of internal attention (van Ede et al., 2020; van Ede et al., 2019). 
Our study extends such findings by demonstrating that the intensity of internal attention, as 
measured through pupillary responses, enhances the precision of stored representations.

Turning to external attention, we report that smaller pupils during encoding lead to more precise 
VWM representations, complementing our previous work (Koevoet, Naber, et al., 2023). Our 
findings are consistent with the idea that distinct pupillometric response components inform 
about different operations of VWM such as encoding (external attention) and prioritization 
(internal attention) (Koevoet, Strauch, Van der Stigchel, et al., 2023; Strauch, Wang, et al., 
2022). As such, relatively early pupil constrictions reveal encoding, while dilation responses 
to retro-cues reflect prioritization. Our approach overcomes inherent limitations of behavioral 
measures that cannot separate and quantify contributions of external and internal attention.

Using pupillary responses, we show that encoding and prioritization dynamically shape the 
quality of VWM representations. The two pupil response components explained idiosyncratic 
variation in VWM precision, and did not interact significantly. This shows that internal and 
external attention may idiosyncratically enhance stored material in a ‘more is better’ fashion 
– possibly without interacting strongly. These distinct pupillary response components serve as 
indices of the intensities of internal and external attention. Using (de)convolutional modeling 
techniques (see below), future work may provide more detailed insights into the interplay 
between external and internal attention on a trial-by-trial level.

Why is it beneficial to deploy attention at differing intensities? Deploying attention is often 
considered costly (Just et al., 2003; Kahneman, 1973; Koevoet, Strauch, Naber, et al., 2023), 
and stronger, more intense deployments of attention should be more expensive. To optimize 
such costs, the intensities of external and internal attention should be dynamically adjusted to 
only be deployed as strongly as necessary for a task. In contrast, an all-or-none deployment 
of attention does not allow for such a cost-efficient mechanism. The current data cannot test 
this costs-perspective directly as only naturally occurring fluctuations of internal and external 
intensities were investigated (e.g. due to fluctuations in the efficiency of attentional shifting 
across trials or failures to engage in the task, see De Jong et al., 1999). Thus, future work could 
experimentally manipulate task demands to elucidate whether the intensity of attention can 
be flexibly adjusted to optimize costs based on the current goals.

Two other potentially relevant pupillary dynamics were not directly assessed here: Baseline pupil 
size and pupil dilation during maintenance. First, baseline pupil size reveals tonic fluctuations in 
arousal, and has been linked to VWM precision/performance previously (Galeano-Keiner et al., 
2023; Koevoet, Naber, et al., 2023; Robison & Unsworth, 2019; Starc et al., 2017). Specifically, 
baseline pupil size is thought to be linked to VWM precision following an inverted-U curve (Aston-
Jones & Cohen, 2005; Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011; Koevoet, Naber, et 
al., 2023; Koevoet, Strauch, Van der Stigchel, et al., 2023; Teigen, 1994; Yerkes & Dodson, 1908). 
Baseline pupil size did not affect VWM precision when controlling for trial number in the current 
data (Supplementary Materials). This could have multiple reasons: 1) Participants were at the 
performance optimum around the peak of the inverted-U curve. This is feasible since responses 
were overall very precise. 2) Trials were relatively long (7.7s) leading to reduced predictive 
power of baseline pupil size or 3) encoding constrictions and prioritization dilations are stronger 
predictors of VWM precision, accounting for similar variance as baseline pupil size.

Second, memorizing more items causes increased pupil dilation until one’s (V)WM capacity 
is reached (Beatty, 1982; Granholm et al., 1996; Kahneman & Beatty, 1966; Kosachenko et 
al., 2023; Robison & Unsworth, 2019; Zhou et al., 2022). Note that this dilatory pupil effect is 
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also elicited in tasks that do not employ retro-cues (i.e. no internal prioritization is facilitated). 
This component is difficult to isolate in the current data because a caveat to utilizing pupillary 
dynamics to capture distinct processes is the temporal sluggishness of the signal. When 
(cognitive) processes occur in close temporal proximity to one another, delineating between the 
effects of pupil responses during encoding, maintenance and prioritization becomes complex 
(Mathôt & Vilotijević, 2022). To fully capture encoding, maintenance and prioritization in a single 
task on a trial-by-trial basis, trials need to be relatively slow-paced, allowing for the pupil to 
resolve cognitive events. The sluggishness of the pupil response could also be accounted for 
using (de)convolutional modeling techniques (Denison et al., 2020; Knapen et al., 2016; Korn & 
Bach, 2016; Wierda et al., 2012). Future work could incorporate such methods and/or techniques 
to obtain a complete picture of all cognitive operations employed when flexibly using VWM.

Together, our findings show that the intensities of internal and external attention are 
captured by pupil size on a trial-by-trial basis. The intensity of internal and external attention 
independently predict the quality of VWM representations. Our approach holds promise to 
elucidate the intricate interplay between internal and external attention to effectively guide 
behavior in the rich visual world.
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