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ABSTRACT: Keratan sulfate (KS) is a proteoglycan that is widely expressed in the 

extracellular matrix of various tissue types where it performs multiple biological functions. KS 

is the least understood proteoglycan, which in part is due to a lack of panels of well-defined 

KS oligosaccharides that are needed for structure-binding studies, as analytical standards, to 

examine substrate specificities of keratinases and for drug development. Here, we report a 

biomimetic approach that makes it possible to install, in a regioselective manner, sulfates and 

fucosides on oligo-N-acetyllactosamine (LacNAc) chains to provide any structural element of 

KS by using specific enzyme modules. It is based on the observation that a1,3-fucosides, a2,6-

sialosides and C-6 sulfation of galactose (Gal6S) are mutually exclusive and cannot occur on 

the same LacNAc moiety. As a result, the pattern of sulfation on galactosides can be controlled 

by installing a1,3-fucosides or a2,6-sialosides to temporarily block certain LacNAc moieties 

from sulfation by keratan sulfate galactose 6-sulfotransferase (CHST1). The pattern of a1,3-

fucosylation and a2,6-sialylation can be controlled by exploiting the mutual exclusivity of 

these modifications, which in turn controls the sites of sulfation by CHST1. Late-stage 

treatment with a fucosidase or sialidase to remove blocking fucosides or sialosides provides 

selectively sulfated KS oligosaccharides. These treatments also unmasked specific galactosides 

for further controlled modification by CHST1. To showcase the potential of the enzymatic 

strategy, we have prepared a range of poly-LacNAc derivatives having different patterns of 
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fucosylation and sulfation and several N-glycans decorated by specific arrangements of 

sulfates. 

 

INTRODUCTION 

Keratan sulfate (KS) is a highly complex proteoglycan abundantly expressed in extracellular 

matrix of cornea, bone, cartilage, brain, and on the surface of epithelial cells.1-4 Corneal keratan 

sulfate (KS-I) is attached to N-linked glycans of several core proteins, whereas in cartilage it 

is attached to O-linked glycans via a core-2 structure (KS-II) (Fig. 1a). A third type of KS that 

is mainly found in the brain is through a mannoside linked to the side chain of serine (KS-III).3-

7 One of the antennae of the N- and O-glycans is extended by a poly-N-acetyl-lactosamine 

(poly-LacNAc) chain that is modified by sulfate esters at C-6 positions of galactoside (Gal) 

and N-acetylglucosamine (GlcNAc) residues. The LacNAc backbone of KS-II can also be 

a1,3-fucosylated and because of biosynthetic restrictions, four different repeating units can be 

identified (Fig. 1b). These can be assembled in different orders resulting in considerable 

structural diversity. Furthermore, the termini of KS can be capped by a2,3- and a2,6-linked 

sialosides which in combination with sulfation give various terminal epitopes further 

increasing the structural diversity (Fig. 1c).8,9 

KS is involved in a range of biological processes such as cornea transparency, embryonic 

development, wound healing, cell adhesion, and migration.2,3,10 It also regulates inflammation 

and potentially can be exploited for the treatment of inflammatory conditions such as 

rheumatoid arthritis, asthma and chronic obstructive pulmonary disease.2,11 Dysregulation of 

KS biosynthesis has been associated with macular degeneration and keratoconus,1,10 

amyotrophic lateral sclerosis,12 Alzheimer’s disease,13,14 and mucopolysaccharidosis IV,15 and 

is associated with a poor prognosis of various cancers.16-20 

The biosynthesis of KS involves the assembly of a poly-LacNAc chains by β(1,3)-N-

acetylglucosaminyltransferases (B3GnT) and β(1,4)-galactosyl transferases (B4GalT) in 

combination with UDP-GlcNAc and UDP-Gal, respectively (Fig 1d).21 During the assembly 

of this chain, C-6 hydroxyls of terminal GlcNAc residues can be sulfated by GlcNAc-6-O-

sulfotransferases 2 and 6 (CHST2 and 6). The enzymes B4GalT4 can attach a β1,4-linked 

galactose to a 6-sulfo-GlcNAc residue whereas B4GalT1 and B4GalT7 can extend unmodified 

GlcNAc moieties. After the assembly of the poly-LacNAc chain, the terminal galactoside can 

be modified by a2,3- or a2,6-linked sialoside by β-galactoside α-2,3-sialyltransferase 4 

(ST3Gal4) and β-galactoside-α-2,6-sialyltransferase 1 (ST6Gal1), respectively. C-6 hydroxyls 
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of galactosides can be sulfated by keratan sulfate galactose 6-sulfotransferase (KSGal6ST, 

CHST1)22 or chondroitin sulfotransferase-1 (CST1).23 α-1,3-Fucosyltransferases (FUTs) can 

further modify sulfated poly-LacNAc chain to install Lewisx (Lex) or sulfo-Lex moieties 

epitopes.24,25 

 

 
Figure 1. Keratan sulfate (KS) structure and biosynthesis. a) KS are N- and O- glycans having a poly-

LacNAc chain modified by sulfates and fucosides. b) The poly-LacNAc backbone is composed of four 

different substructures that can be assembled in different orders creating substantial structural diversity. 

c) The terminal epitope of KS is usually a sialylated LacNAc moiety having various types of sulfation. 

d) The biosynthesis of the poly-LacNAc chain of KS involves sulfation of terminal GlcNAc moieties 

by CHST2 to give GlcNAc6S that can be further extended by B4GalT4. CHST1 can sulfate internal 

Gal moieties and has a preference of residues that are flanked by a GlcNAc6S residue. 

 

The KS biosynthetic enzymes cooperate to construct specific epitopes that can recruit glycan 

binding proteins to mediate various biological processes. For example, CHST1 modifies only 

internal galactosides of a poly-LacNAc chain, however, it greatly prefers galactosides that are 

neighbored by a GlcNAc6S residue.4,23 The presence of a 2,3-linked sialoside further 

modulates the site of sulfation and a galactoside that is positioned in between an a2,3-Neu5Ac 

and GlcNAc6S is a preferred substrate for this sulfotransferase.23,26 Furthermore, fucosylation 

of GlcNAc to give Lewisx (Lex) blocks the activity of ST6Gal1 whereas an a2,6-sialoside 

prevents fucosylation by FUT5 and FUT6.27,28 There is an interplay between sulfation of Gal 

by CHST1 and fucosylation of GlcNAc by fucosyl transferases.24,27 In particular, fucosylated 
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LacNAc moieties cannot be sulfated by CHST1 whereas sulfation of Gal to give Gal6S-1,4-

GlcNAc6S cannot be fucosylated by FUT5 or FUT6. Due to these biosynthetic restrictions, the 

poly-LacNAc chain can be composed of four different substructures (Fig. 1b) and capped by 

three common terminal epitopes (Fig. 1c). 

Despite their importance, the preparation of KS oligosaccharides has received little 

attention. Well-defined KS oligosaccharides are, however, needed to examine ligand 

requirements of glycan binding proteins, as standards for analytical method development and 

as probes to investigate biosynthetic pathways. Chemical approaches, which require time 

consuming protecting manipulations and glycosylations, have only given relatively small 

structural motifs such as di- and tetrasaccharides.29-33 Sulfated LacNAc derivatives have been 

chemically synthesized that could be enzymatically fucosylated and sialylated but this 

approach has only yielded relatively small structural elements.34 To prepare larger KS 

oligosaccharides, chemically synthesized oxazolines have been linked by trans-glycosylation 

using a mutant keratanase II.35,36 The substrate preferences of recombinant sulfotransferases 

have been employed to prepare several KS oligosaccharides,26 however, it does not provide 

strict control over the exact positions of sulfate esters, and therefore cannot provide any 

possible sulfation patterns and may require tedious purification protocols. Currently, no 

synthetic methodology is available that can provide large panels of KS-I and KS-II 

oligosaccharides. 

Here, we report a biomimetic approach that makes it possible to install sulfates and fucosides 

in a regioselective manner at an oligo-LacNAc chains to provide any structural element 

observed in KS-I and KS-II. It exploits that the sulfotransferase CHST2 only modifies terminal 

GlcNAc moieties to give GlcNAc6S (Fig. 2a).37 The latter residue can then be extended by a 

b1,4-galactoside using recombinant B4GalT4 and UDP-Gal. Furthermore, we found that 

FUT6, the bacterial a2,6-sialyltransferases Pd2,6ST and the sulfotransferase CHST1 can 

readily accept 6-sulfo-LacNAc as a substrate to give the corresponding products (Fig. 2b). A 

critical component of the biomimetic strategy was the recognition that a1,3-fucosides, a2,6-

sialosides and Gal6S are mutual exclusive (Fig. 2c) and cannot occur on the same LacNAc 

moiety providing opportunities to install fucosides and sulfates at specific galactosyl residues. 

Thus, it was expected that structures such Gal6S-1,4-GlcNAc6S cannot be modified by a1,3-

fucosyl transferases such as FUT6 and a2,6-sialyltransferases such as Pd2,6ST. Furthermore, 

Lewisx (Lex) or 6-sulfo-Lex moiety should be resistant to a2,6-sialylation by for example 

Pd2,6ST and sulfation by CHTS1. Finally, it was the expectation that an a2,6-sialyl-LacNAc 
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moiety cannot be fucosylated by fucosyltransferases such as FUT6 and obviously the sialoside 

also blocks sulfation by CHST1. Based on these considerations, two strategies were explored 

to control the pattern of sulfation at Gal by installing  a1,3-fucosides or a2,6-sialosides to 

temporarily block certain LacNAc moieties from sulfation by CHST1. The pattern of a1,3-

fucosylation and a2,6-sialylation was controlled by the mutual exclusivity of these 

modifications, which in turn controls the sites of sulfation by CHST1. Late-stage treatment 

with a fucosidase or sialidase to remove blocking fucosides or sialosides provides selectively 

sulfated KS oligosaccharides. These treatments also unmasked specific galactosides for further 

controlled modification by CHST1. The methodology makes it possible to prepare any 

structural motif found in KS-I and KS-II by employing specific enzyme modules. To showcase 

its potential, we prepared a range poly-LacNAc derivatives and N-glycans having various 

patterns of fucosylation and sulfation. 

 

 
Figure 2. Biomimetic synthesis of KS oligosaccharides exploiting inherent substrate specificities of 

sulfo-, sialyl- and fucosyl-transferases. a) CHST2 only modifies terminal GlcNAc moieties. b) FUT6, 

Pd2,6ST and CHST1 can modify Galb(1,4)GlcNAc6S moieties. c) Certain modifications are mutually 

exclusive and cannot occur at the same LacNAc moiety. d) Transformations that are due to biochemical 

restrictions cannot occur. 
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CHST1. Analytical studies of KS-II have indicated that a1,3-fucosylation of GlcNAc (Lex) 

and 6-sulfation of galactose do not occur at the same LacNAc moiety, and thus are mutual 

exclusive.4 Thus, we anticipated that a1,3-fucosylation of LacNAc should block the action of 

CHST1 thereby providing means to regioselectivity install sulfates at Gal moieties. 

Pentasaccharide 1 was prepared starting from a chemically synthesized LacNAc derivative 

having a benzyloxycarbonyl (CBz) protected amino pentenyl linker at the anomeric center by 

consecutive actions of B3GnT2, B4GalT1, and B3GnT2. Compound 1 has a terminal GlcNAc 

moiety and thus could be selectively sulfated by the sulfotransferase CHST2 in the presence of 

the sulfate donor PAPS resulting in the formation of 2. The latter compound was modified by 

FUT6, which only modifies internal GlcNAc moieties, and as anticipated it resulted in the 

selective formation of heptasaccharides 3 which has two Lex moieties and a terminal GlcNAc 

residue having a sulfate at C-6. The later residue could be extended by a  b1,4-linked 

galactoside by treatment with B4GalT4 and UDP-Gal to provide 4 which was subjected to the 

prokaryotic sialyltransferase PmST1 M144D38 and CMP-Neu5Ac to install an a2,3-sialoside 

resulting in the formation of glycan 5. As expected, treatment of 5 with CHST1 and PAPS 

resulted only in sulfation of Gal flanked by the sialoside and GlcNAc6S to give nonasaccharide 

6. The other Gal moieties are blocked from sulfation by the fucosides at the neighboring 

GlcNAc moiety. Several other fucosylated structures were prepared and these were also 

resistant to sulfation by CHST1 confirming that Lex and sulfo-Lex are not substrates for this 

enzyme. KS-I oligosaccharide 7 could be prepared by treatment of 6 with the fucosidase of the 

human gut symbiont Ruminococcus gnavus.39 This fucosidase can hydrolyze α1,3/4 fucosides 

of Lewisx and Lewisa, respectively and can also operate on their sialic acid counter parts (sialyl 

Lewisx/a epitopes).39 The facile hydrolysis of the two fucosides of 6 demonstrates that this 

fucosidase also accepts sulfated Lex moieties as substrates. When the sequence of enzymatic 

transformations was changed and 5 was treated with the fucosidase of R. gnavus and then 

CHST1, a mixture of compounds was obtained. Size exclusion column chromatography over 

Bio-Gel P2 or P6 was employed to purify intermediates and final compounds which were fully 

characterized by homo- and heteronuclear two-dimensional NMR experiments and by LC-MS. 

Positions of sulfates were confirmed by chemical shift differences of relevant C-6 carbon and 

H6a,b protons. 

Next, we examined whether the methodology can be employed to prepare higher sulfated 

derivatives (Scheme 1b). Thus, compound 9, which was prepared by stepwise sulfation of 

terminal GlcNAc moieties by CHST2 and PAPS followed by galactosylation by B4GalT4, was 
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exposed to FUT6 and GDP-Fuc to give di-fucoside 10. Thus, this transformation showed that 

LacNAc as well as well as sulfated LacNAc moieties can readily be fucosylated by FUT6. The 

latter compound was galactosylated by B4GalT4 to give 11 which was sialylated using PmST1 

M144D38 and CMP-Neu5Ac to provide 12. As expected, in this case only one of the 

galactosides of 12 was sulfated by CHST1 to give 13. Treatment of the latter compound with 

the fucosidase of R. gnavus gave target compound 14. Thus, one sequence of enzymatic 

transformations resulted in a range of biologically relevant KS-I and KS-II oligosaccharides 

(11-14). 

 

 
Scheme 1. Enzymatic synthesis of selectively sulfated KS oligosaccharides by exploiting 1,3-

fucosylation as a blocking group for sulfation of Gal by CHST1. R = (CH2)5NHCbz 

 

Blocking Sulfation of Galactose by a2,6-Sialylation. Next, we explored whether 

sialylation of C-6 positions of galactosides can be employed to control sulfation at specific 

galactosides. The bacterial α2,6-sialyltransferase from Photobacterium damselae 

(Pd2,6ST)40,41 can sialylate terminal as well as internal galactosides and thus we anticipated 

that its activity can be exploited to block certain sites from sulfation by CHST1. To implement 

this strategy, it was critical to explore whether Pd2,6ST can use Gal-1,4-GlcNAc6S moieties 

as substrate. Thus, compound 9 was subjected to Pd2,6ST in the presence of CMP-Neu5Ac, 

which gratifyingly provided compound 15 demonstrating the enzyme is compatible with 

substrates having sulfates at a neighbouring GlcNAc moiety. Galactosylation of 15 with 

B4GalT4 and UDP-Gal to produce 16 proceeded very sluggishly and the reaction could not be 

driven to completion, and thus it appears that the unnatural a2,6-sialoside interferes with 

substrate recognition by B4GalT4. However, the use of the bacterial galactosyltransferase from 

Helicobacter pylori β4GalT (Hpβ4GalT)42 could readily convert 15 into 16. The latter 
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compound was sialylated by PmST1 M144D resulting in the facile formation of tri-sialoside 

17. Only one galactoside of 17 has a free C-6 hydroxyl and therefore treatment of this 

compound with CHST1 in the presence of PAPS resulted in selectively sulfation to yield 

compound 18. The terminal a2,3-sialoside of 17 was critical for sulfation of the neighboring 

galactoside because CHTS1 does not modify terminal galactosides such as in compound 16.23,26 

The promiscuous neuraminidase from C. perfringens could remove all sialosides, and exposure 

of the resulting compound to an a2,3-sialyltransferase (PMST1 M144D) gave target compound 

14. The structural integrity and purity of the latter derivative was confirmed by LC-MS and 

NMR experiments. 

 

Scheme 2. Enzymatic synthesis of selectively sulfated KS oligosaccharides by 2,6-sialylation of Gal 

moieties to block sulfation by CHST1. R = (CH2)5NHCbz 

 

Exploiting the Mutual Exclusivity of a1,3-Fucosylation and a2,6-Sialylation. We 

exploited the mutual exclusivity of a1,3-fucosylation and a2,6-sialosylation to modify 
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gnavus resulted in the formation of 14. 

We anticipated that the fucosyl- and sialosyl moieties are orthogonal masking groups 

allowing further modification of specific LacNAc moieties. For example, removal of the a2,6-

sialoside at the central LacNAc moiety of 23 to give 24 made this structural element a substrate 

for CHST1. Indeed, subjecting 24 to this enzyme in the presence of PAPS resulted in selective 

sulfation of the central galactoside to give 25 (Scheme 3b). Treatment of the latter derivative 

with the fucosidase of R. gnavus gave KS-I oligosaccharide 26. Interestingly, compound 26 

only provided a properly resolved 1H NMR spectrum in PBS D2O (40 mM, pH 6.5). 

The terminal a2,3-sialyl LacNAc moiety of 14 is modified by a sulfated galactose (Gal6S) 

that is not a substrate for fucosyltransferases. The other two LacNAc moieties were expected 

to be proper substrates for FUT6. Indeed, treatment of 14 with FUT6 in the presence of GDP-

Fuc resulted in the formation of di-fucoside 13 (Scheme 3c). 

 

 
Scheme 3. Enzymatic synthesis of KS oligosaccharides. a) Fucosylation controls the site of a2,6-

sialylation. a2,6-Sialosides and a1,3-fucosides block sulfation by CHST1. b) Selective removal of 

sialoside reveals new site for sulfation by CHST1. c) Sulfation of Gal blocks fucosylation by FUT6 to 

give KS-II oligosaccharides. R = (CH2)5NHCbz 

 

Controlling a1,3-Fucosylation by a2,6-Sialylation. The strategy described above relies 

on introduction of a fucoside at an early stage of the synthesis when only one LacNAc moiety 

is present. To address this limitation, we exploited the ability of a2,6-sialosides to temporarily 

block specific LacNAc moieties from fucosylation to install such moieties in a controlled 

manner. Furthermore, we exploited the orthogonality of the fucosidase and sialidases to 

unmask one of these residues to reveal a substrate for CHST1 to allow diversification of 

specific intermediates. 
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Thus, compound 27 was prepared using the strategy described above. It has only one 

galactoside that could readily be sialylated at the C-6 position by Pd2,6ST in the presence of 

CMP-Neu5Ac to give 28 (Scheme 4). Next, the glycan chain of 28 was extended by subsequent 

modifications by the bacterial glycosyltransferases Hpβ4GalT42 and β3GlcNAcT from 

Helicobacter pylori (Hpβ3GlcNAcT)42,43to give 30 which was sulfated at the terminal GlcNAc 

moiety by CHST2 in the presence of PAPS to provide 31. The GlcNAc moieties at the reducing 

and non-reducing end are blocked from fucosylation because of the presence of an a2,6-

sialoside and being positioned terminally, respectively. Therefore, only the central LacNAc 

moiety was fucosylated when treated with FUT6 in the presence of GDP-Fuc resulting in the 

formation of compound 32. The application of another module of enzymatic transformations 

by B4GalT4, B3GnT2 and CHST2 made it possible to convert 32 into 35. The central LacNAc 

moiety of 35 is fucosylated and therefore is blocked from sialylation by Pd2,6ST and thus only 

the LacNAc moiety at the non-reducing end is a substrate for this enzyme. As expected, 

sialylation of 35 with Pd2,6ST in the presence of CMP-Neu5Ac resulted in the selective 

formation of 36. The latter compound was galactosylated by Hpβ4GalT and then further 

modified by a a2,3-linked sialoside using PMST1 M144D to provide 38. The Gal moiety 

between the sialoside and GlcNS of 38 is an appropriate substrate for CHST1 whereas the 

others are not available for sulfation due to the presence of an a2,6-linked sialoside or an a1,3-

fucoside. As expected, treatment of 38 with CHST1 and PAPS resulted in mono-sulfation to 

give 39. Finally, all sialosides were removed by treatment with the neuraminidase of C. 

perfringens followed by a2,3-sialylation of the terminal Gal6S using PMST1 M144D in the 

presence of CMP-Neu5Ac to give target compound 40. NMR analysis of this compound could 

be performed in D2O, however, after removal of the Cbz moiety to give compound S23 a PBS 

D2O buffer (40 mM, pH 6.5) was required to provide well resolved signals (Figure S6a,b). 
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Scheme 4. Preparation of KS-II oligosaccharides by controlling the sites of fucosylation by 2,6-

sialosides. The fucosides and sialosides block sulfation by CHST1. R = (CH2)5NHCbz 

 

Intermediate compounds can be employed to prepare additional derivatives and for example 

the fucosyl moiety of 39 could readily be removed by treatment with the fucosidase of R. 

gnavus to provide 41 (Scheme 5). Removal of the fucoside unmasks the corresponding 

galactosyl moiety that could readily be sulfated by CHST1 and PAPS to provide 42. The latter 

compound could easily be transformed into selectively sulfated derivative 43 using standard 

procedures. 

Detailed NMR analysis confirmed the positions of sulfates, α2,3- and α2,6-sialosides and 

α1,3-fucosides. For example, 1D 1H NMR and 2D 13C–1H HSQC spectra of compound 39 

made it possible to assign all proton and carbon signals (Figure S3a-c). The C-6 of the three 

internal sulfated GlcNAc residues substantially shifted downfield from δ60.5 to δ66.3 for 

GlcNAc-C, δ66.6 for GlcNAc-E, and 66.3 for GlcNAc-G. The corresponding protons also 

exhibited expected chemical shift differences from H6a δ3.98 and H6b δ3.82 to H6a,b δ4.35 

for GlcNAc-C, H6a,b δ4.35 for GlcNAc-G and H6a δ4.40 and H6b δ4.30 for GlcNAc-E. C-

6of the internal sulfated galactosyl moiety had also substantially shifted downfield (δ60.9 ® 

δ66.7) and the corresponding protons also showed a chemical shift difference (H6 δ3.74 ® 

δ4.18). The H-3 of the fucosylated GlcNAc moiety had substantially shifted from δ3.77 to 

δ3.90 and the corresponding nearby H-2 also shifted from δ3.83 to δ3.97 which confirmed the 

regioselectivity of the α1,3-fucosylation of GlcNAc. C-6 of the two internal α2,6-sialylated 

galactoside moieties had substantially shifted downfield from δ 61.1 to δ63.5 for Gal-B and 

Gal-F. The corresponding H-6 protons also shifted from δ 3.76 to H6a δ4.00 and H6b δ3.55 
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which confirmed the regioselectivity α2,6-sialylation of the galactosides. H-3 of the terminal 

α2,3-sialylated galactoside had substantially shifted from δ3.72 to δ4.16, which confirmed the 

regioselectivity of α2,3-sialylation of galactose. Although overlap was observed in the 2D 

NOESY spectrum (300 ms, Figure S3c), inter-residue connectivities of Gal-H H-1 to GlcNAc-

G H-4, GlcNAc-G H-1 to Gal-F H-3, Gal-F H-1 to GlcNAc-E H-4, GlcNAc-E H-1 to Gal-D 

H-3, Gal-D H-1 to GlcNAc-C H-4, GlcNAc-C H-1 to Gal-B H-3 and Gal-B H-1 to GlcNAc-A 

H-4 could be assigned, which is agreement with the following connectivity H(1→4)G, 

G(1→3)F, F(1→4)E, E(1→3)D, D(1→4)C, C(1→3)B and B(1→4)A linkages, respectively. 

 

 
Scheme 5. Further diversification of KS oligosaccharides by selective removal of fucosides to reveal a 

new site for sulfation by CHST1. R = (CH2)5NHCbz 

 

Chemoenzymatic Synthesis of a Selectively Sulfated N-Glycan. To showcase the scope 

of the methodology, we prepared KS-I derivative 54 which has one galactoside moiety that is 

modified by a sulfate (Scheme 6). It made use of key intermediate 52 in which two galactosides 

are blocked from sulfation by neighboring fucosides and another one by the presence of an 

a2,6-sialoside. The synthesis started with N-glycan 44 derived from a sialoglycopeptide (SGP) 

isolated from egg yolk powder that was subsequently treated with pronase to remove most of 

the peptide and leaving a single asparagine moiety, and a sialidase to remove the sialosides and 

selective resialylation of the a1,3-antennae using ST6Gal1.26,44 The terminal galactoside of the 

 a(1,6)-arm of 44 was extended by a GlcNAc moiety by treatment with B3GnT2 in the presence 

of UDP-GlcNAc (®45), which was selectively sulfated by CHST2 and PAPS to provide 46 

Next, the GlcNAc6S moiety was extended by an additional 6-sulfo-LacNAc moiety by 

subsequent treatment with B4GalT4 (®47), B3GnT2 (®48) and CHST2 to give 49. The 

terminal 2,6-sialylated GlcNAc moiety of 49 is not a substrate for FUT6, hence it was possible 

to selectively fucosylate the two internal GlcNAc units to provide compound 50. The terminal 

galactoside of compound 51 was modified by an a2,3-sialoside using PmST1 M144D in the 

presence of CMP-Neu5Ac to give 52. The galactoside that is neighbored by an a2,3-sialoside 
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and GcNAc6S moiety is a proper substrate for CHST1, whereas the other galactosides are 

blocked from modification due to the presence of an a2,6-sialoside or an a1,3-linked fucoside 

at the neighboring GlcNAc moiety. As expected, treatment of 52 with CHST1 in the presence 

of PAPS resulted in the selective formation of 53 which after treatment with the fucosidase 

from R. gnavus provided KS-I derivative 54 having a selective sulfation pattern. 

 

 
Scheme 6. Total synthesis of KS-I oligosaccharide starting from an N-glycan obtained from a 

sialoglycopeptide (SGP) isolated from egg yolk powder. 

 

CONCLUSIONS 

Enzymatic and chemoenzymatic synthesis of glycans and glycoconjugates have progressed 

considerably and makes it possible to prepare a wide variety of highly complex compounds.45-

49 Many prokaryotic and eukaryotic derived glycosyltransferases have been described and can 

readily be expressed using Escherichia coli or mammalian cell based platforms. These enzymes 

can install glycosidic linkages in a regio- and stereo-specific manner and reactions can be 

driven to completion by using alkaline phosphatases to hydrolyse nucleotide products that can 

act as product inhibitor.50-52 The efficiency of glycosyltransferase mediated glycan assembly 

has made it possible to prepare complex oligosaccharides in an automated fashion.53-55 

Complex glycans can have several acceptor sites for a given glycosyltransferase making it 

difficult to prepare discrete compounds. Site selective glycosylations can, however, be 

accomplished by careful synthetic planning,44 the use of unnatural sugar nucleotide donors,56,57 
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chemical modifications58-60 or temporary monosaccharide blocking groups.41 

Complex carbohydrates can be modified by entities such as sulfates,61-63 however, methods 

to install such modifications in a site-specific manner are still lacking. Here, we describe a 

biomimetic approach that can provide a wide range of differently sulfated and fucosylated KS 

oligosaccharides. Although the KS biosynthetic enzymes cooperate to construct specific 

epitopes, they do not provide strict control over the exact positions of sulfates, fucosides and 

terminal structural elements. As a result, it has not been possible to exploit enzymes for the 

preparation of a wide range of well-defined KS-oligosaccharides especially those having highly 

complex structures. To address this deficiency, we developed a biomimetic approach that can 

install any structural motif of KS in a controlled manner. It exploits the specificity of 

sulfotransferase CHST2 that only sulfates terminal GlcNAc moieties of a poly-LacNAc chain. 

The resulting terminal GlcNAc6S residue can then be extended by B4GalT4 or Hpβ4GalT to 

give sulfo-LacNAc, which in turn can be extended by further LacNAc or sulfo-LacNAc units. 

The strategy further exploits the mutual exclusivity of several structural elements of KS. We 

carefully analyzed the structural elements of KS which indicated that fucosylation of GlcNAc 

and sulfation of Gal cannot occur at the same LacNAc moiety.23,64 This observation was 

exploited for the selectively installation of sulfates at galactosides by preparing oligo-LacNAc 

chains having specific patterns of fucosylation. Fucosylation could efficiently be accomplished 

by FUT6 that accept LacNAc as well as sulfo-LacNAc (Gal-1,4-GlcNAc6S) as substrate to 

give Lex and sulfo-Lex moieties, respectively. It was observed that the mammalian fucosyl 

transferase, FUT5, cannot efficiently modify sulfo-LacNAc resulting in incomplete 

modifications. We examined a range of fucosylated substrates and confirmed these cannot be 

modified by CHST1. The pattern of fucosylation could be controlled by temporary 

modification of C-6 positions of galactosides by an a2,6-sialoside. In this respect, 

Photobacterium damselae a2,6-sialyltransferase (Pd2,6ST) has flexible acceptor substrate 

specificity and can install a2,6-sialosides at internal as well as external LacNAc moieties.41 

We found that Pd2,6ST can accepted LacNAc as well as sulfo-LacNAc moieties and that the 

resulting a2,6-sialoside also blocks fucosylation by FUT6. Interestingly, a GlcNAc6S that 

neighbors a Gal residue having an a2,6-sialoside could not readily be galactosylated by 

B4GalT4, however, bacterial Hpb4GalT could quantitatively perform this transformation. At 

an appropriate stage of the synthetic strategy, the a2,6-sialosides can be removed by the 

sialidase of C. perfringens and the a1,3-fucosides by the fucosidase of R. gnavus to give KS 

oligosaccharides. The fucosides and sialosides are orthogonal blocking groups and can 
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individually be removed to reveal galactosides that can be further sulfated by CHST1. Our 

studies also confirm that sulfation of Gal blocks fucosylation by FUT6 thereby providing an 

orthogonal approach for site-specific fucosylation and an entry into KSII oligosaccharides. We 

also developed an alternative approach to control the site selectivity of CHST1 by installing 

a2,6-sialosides that block specific galactosides from sulfation. 

The biomimetic approach is highly modular and by using specific enzymatic sequences 

(enzyme modules), it is possible to assemble the various KS sub-structures (Fig. 1c) in any 

possible order (Fig. 3), which can then be capped by the different terminal epitopes. In the case 

of KS-I oligosaccharides, the pattern of sulfation at Gal can be controlled by installation of 

specific patterns of a2,6-sialosides or a1,3-fucosides. KS-II is structurally more complex and 

is also modified by a1,3-fucosides. For the preparation of these compounds, a2,6-sialylation 

is used to control the pattern of fucosylation and sulfation at Gal. We have also demonstrated 

that by one sequence of enzymatic transformations several KS oligosaccharides can be 

prepared and for example the blocking fucosides and sialosides are orthogonal and can 

selectively be removed to give sites for further sulfation by CHST1. The biomimetic approach 

has given KS oligosaccharides of unprecedented complexity, including N-glycans. 

 

 
Figure 3. Any KS-I and K-II oligosaccharide can be prepared using specific enzyme modules to install 

specially modified LacNAc moieties. After oligosaccharide assembly, specific galactosides are sulfated 

by CHST1 and sialosides and/or fucosides removed by a sialidase or fucosidase (converter) to give 

target structures. 
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KS is the least understood member of proteoglycans,3,62,65 which in part is due to a lack of 

panels of well-defined KS oligosaccharides. The methodology described here makes it possible 

to prepare KS-I and KS-II oligosaccharide having intricate patterns of sulfation and 

fucosylation. The resulting compounds will provide opportunities to establish binding 

selectivities of KS binding proteins, which in turn may uncover a possible sulfation and 

fucosylation codes. It will also make it possible determine ligand requirements of KS-binding 

antibodies that are used to determine the presence of specific structural motifs on cells and 

tissues. Collections of KS oligosaccharides will make it possible to determine substrate 

specificities of keratinases which are used for partial degradation for subsequent structure 

elucidation. These molecules will also provide analytical standards to develop methods for 

structure determination. It has been realized that KS is involved in many disease processes2 

and the ability to prepare well-defined KS oligosaccharide is expected to provide leads 

compound for drug discovery. 
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