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Capturing rare yet pivotal events poses a significant challenge for molecular simulations.
Path sampling provides a unique approach to tackle this issue without altering the
potential energy landscape or dynamics, enabling recovery of both thermodynamic
and kinetic information. However, despite its exponential acceleration compared to
standard molecular dynamics, generating numerous trajectories can still require a long
time. By harnessing our recent algorithmic innovations—particularly subtrajectory
moves with high acceptance, coupled with asynchronous replica exchange featuring
infinite swaps—we establish a highly parallelizable and rapidly converging path
sampling protocol, compatible with diverse high-performance computing architectures.
We demonstrate our approach on the liquid–vapor phase transition in superheated
water, the unfolding of the chignolin protein, and water dissociation. The latter,
performed at the ab initio level, achieves comparable statistical accuracy within days,
in contrast to a previous study requiring over a year.

rare events | path sampling | asynchronous replica exchange | infinite swapping |
Markov-chain Monte Carlo

The capacity to rapidly and accurately simulate molecular transition phenomena holds
the potential to significantly enhance chemical discoveries, thereby advancing catalytic
processes (1), optimizing drug molecule design (2), and guiding self-assembly for various
applications, such as organic photovoltaics (3). However, dynamic processes like chemical
reactions, nucleation, or protein (un)folding usually hinge on rare molecular events,
rendering direct molecular dynamics (MD) simulations ineffective (4). A way to bridge
the time gap is to use rare event sampling techniques like the Markov chain Monte Carlo
(MC)-based transition path sampling (TPS) method, which involves the collection of
numerous short MD trajectories (5).

Transition interface sampling (TIS) (6) and, even more efficiently, replica exchange
TIS (RETIS) (7) build upon this idea to calculate quantitative dynamical properties
through a series of path sampling simulations, each targeting a distinct path ensemble
reflecting different stages of the transition. Each trajectory evolves on the true potential
energy surface, and the sampling of trajectories follows the same distributions as what
would result if the relevant trajectories were extracted from a hypothetically long MD
run. Yet, the distinctive feature of path sampling simulations lies in their computational
emphasis on actual barrier-crossing events, which stands in contrast to plain MD where
the computational effort is primarily directed toward explorations within stable states.
Despite exponential speedup compared to direct MD, the study of complex systems
can still require months of simulation time due to the necessity of generating numerous
trajectories for achieving the required statistical precision.

In this paper, we leverage recent algorithmic innovations that achieve such results in a
matter of days or weeks. This transformative progress is driven by harnessing four recent
algorithmic innovations delineated in refs. 8 and 9. Initially, we improve the core MC
path generation move, opting for a sequence of intermediate short subtrajectories, yielding
enhanced decorrelation from the preceding trajectory upon acceptance. Subsequently,
by slightly adjusting the sampling distribution and compensating through reweighting,
we maximize the acceptance. Third, the integration of an asynchronous replica exchange
scheme facilitates seamless swapping between path ensemble simulations, tackling the
challenge of RETIS parallelization attributed to varying central processing unit (CPU)
costs in path-generating MC moves. Last, we amplify the impact of computationally
efficient replica exchange moves through the embrace of the infinite swapping limit (10),
all while circumventing the need for combinatorially explosive computations.

While the mathematical proofs establishing the exactness of these algorithms were
published in refs. 8 and 9, this article demonstrates their first implementation and
efficient management of numerous realistic molecular processes in parallel, leveraging
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both classical and ab initio dynamics on high-performance
computing (HPC) systems. Notably, the article showcases a large-
scale simulation utilizing 40 graphics processing units (GPUs)
in parallel— overcoming the challenge of effectively utilizing
multiple GPUs for parallel molecular simulations.

Results
Path Sampling and RETIS Path Ensembles. MC techniques are
valuable in various fields like statistical physics, finance, and
artificial intelligence, where the common goal is to sample states
following specific probability distributions. Within molecular
simulations, MC is generally used to sample configuration space
following the Boltzmann distribution. By an original insight
from Pratt (11), the concept emerged that MC sampling could
be applied to target the sampling of dynamic trajectories. In
this framework, a trajectory referred to as X is depicted as
a discrete sequence of phase points, called time slices X =
[x0, x1, . . . xL]. Each time slice xi encapsulates the coordinates
and velocities of atoms at a specific time t = iΔt. Here,
L denotes the trajectory’s length, and Δt represents a small
time step. The path probability distribution equals �(X ) ∝
�(x0)p(x0 → x1)p(x1 → x2) . . . p(xL−1 → xL), where �(x0)
is the equilibrium (Boltzmann) distribution of the first phase
point and p(x→ y) is the probability that the system’s dynamics
produces y after a Δt time step from x.

Applying this within an MC algorithm does not yet yield
advantages over MD. However, the approach enables focusing
on specific path ensembles defined by initial and terminal
conditions, and/or reaction progress through sampling from a
truncated distribution �E(X ) = �(X ) · 1E(X ), where 1E(X )
equals 1 if the path adheres to the ensemble E conditions, and
0 otherwise. To obtain dynamical quantitative results such as
rates, a series of overlapping path ensemble simulations is needed.
The RETIS ensembles possess both initial and final conditions,
as well as a minimum progress requirement, that is gauged
through a series of nonintersecting interfaces: �0, �1, . . . , �n
(Fig. 1A). These interfaces are hypersurfaces within phase space,
often characterized by an order parameter �(x) that assigns a
progress value to the reaction. The ith interface corresponds to
the collection of phase points {x|�(x) = �i}. The first and last
interfaces define the reactant state A, {x|�(x) < �A = �0},
and the product state B, {x|�(x) > �B = �n}, respectively. The
RETIS path ensemble [i+] encompasses all paths that commence
by crossing �A toward the barrier region and conclude by either
re-entering A or entering B. Moreover, each path within the
ensemble is required to cross �i. This implies that the value of
L is not fixed but varies for each path and the average path
length typically increases with i. Alongside the [i+] ensembles,
there exists an additional [0−] ensemble that explores the internal
realm of state A (Fig. 1B).

Subtrajectory Moves. The primary MC move for generating
paths has been the shooting move (12). It evolves by modifying
the velocities of a random time slice of the old path, which
is then propagated forward and backward in time using the
MD time step integrator. Fine-tuning the shooting move
necessitates a delicate balance between maximizing decorrelation
and maintaining a satisfactory acceptance. When the adjustment
to the shooting point is minimal, the resulting path often
closely resembles its predecessor. Although this enhances the
chance of the trial path being valid for the considered path
ensemble, the substantial correlation among sampled paths

necessitates a large number of trajectories to achieve low statistical
errors. In subtrajectory moves, the creation of complete trial
trajectories involves preceding them with several intermediate
short subtrajectories. This ensures that successive accepted full
trajectories do not share any configuration points and exhibit
a greater degree of distinctiveness compared to shooting. The
subtrajectories are only part of the inner workings of the MC
move and are not stored or used for statistical analysis.

The initial subtrajectory moves (13) encountered certain
implementation challenges which led to the development of the
more flexible wire-fencing (WF) (8). The WF move involves
a parameter Ns, representing the number of subtrajectories,
and potentially a cap interface (Fig. 1C ). Within the ensemble
[i+], the WF move entails releasing a sequence of Ns short
subtrajectories with termination criteria at �i or �cap (or �n if
no cap is set). The first subtrajectory originates from a time slice
of the previous full path with randomized Maxwell–Boltzmann
velocities. Subsequent subtrajectories are generated from the
previous successful subtrajectory until Ns attempts have been
made. A subtrajectory ending at �cap in both time directions is
classified as unsuccessful. After the completion ofNs subtrajectory
trials, the last successful subtrajectory is integrated forward and
backward in time until reaching either �0 or �n, resulting in
the formation of a new full trajectory. Based on a Metropolis–
Hastings acceptance/rejection scheme (14, 15), this new path can
be accepted with a probability equal to

Pacc = 1[i+](X
(n))×min

[
1,

M�i(X (o))

M�i(X (n))

]
, [1]

where X (o) and X (n) are, respectively, the old and new paths, and
M�i(X ) is the number of possible shooting points for releasing a
first subtrajectory from X . It was found that subtrajectory moves
(with high acceptance) have the potential to improve RETIS’
CPU efficiency by a factor of twelve compared to shooting (13).

High Acceptance. The high acceptance technique represents
a significant enhancement for advanced shooting moves by
introducing two algorithmic modifications: i) Reverse the time
direction of the full trial path if it starts at �n and ends at �0
(Fig. 1C ). ii) Modify the targeted sampling distribution from
�[i+](X ) to �̃[i+](X ) = �[i+](X ) · wi(X ), where wi(X ) denotes
the high-acceptance weight defined as:

wi(X ) = M�i(X )q(X ) with [2]

q(X ) =
{

1 if X is of the type �0 → �0
2 if X is of the type �0 → �n

.

These two actions culminate in the outcome that nearly all
trajectories become viable for acceptance as Pacc of Eq. 1 becomes
identical to the indicator function, Pacc = 1[i+](X (n)), which is
always 1 for any trial trajectory within this scheme except for
those ending at �n in both time directions. That chance is mostly
negligible for all [i+] path ensembles except where �i is near
the peak of the barrier or beyond. The only other reason for a
rejection is when all Ns subtrajectories reach the cap-interface
in both temporal directions. In that case, the “last successful”
subtrajectory essentially comprises the path segment of the old
path from which the initial shooting occurred. Extending this
path segment likely generates a highly similar path to the old
one, leading us to reject it in our WF implementation instead of
investing CPU time in producing a significantly correlated path.
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A

C D

B

Fig. 1. RETIS path ensembles and path sampling methodology. (A) Concept of interfaces and states based on an order parameter � (reaction coordinate). The
horizontal axis represents an arbitrary additional order parameter. In this example, four interfaces are defined: �0, �1, �2, and �3. The first and last interfaces
define the reactant and product states, respectively. (B) RETIS path ensembles. The minimal progress interface is highlighted in green. Two representative
trajectories are shown for each ensemble. Two trajectories in [0+] and [1+] are identical, illustrating that ensembles overlap and paths may be sampled in
several ensembles via a swapping move. (C) Demonstration of the WF move with Ns = 6. The fourth subtrajectory is unsuccessful and subsequently dismissed.
Shooting points are indicated as orange circles and additional potential shooting points on both the old (Xo) and new (Xn) paths are represented by white
circles. Shooting from a �cap → �cap segment is disallowed. With the extension of the last subtrajectory, a time direction is randomly chosen, which is flipped
in the high-acceptance scheme if the resulting path is of the type �B → �A. The resulting high-acceptance weights for the old and new paths are, respectively,
10 and 12, based on M�i (X

(0)) = 10, q(X(0)) = 1, M�i (X
(n)) = 6, and q(X(n)) = 2. (D) Time spent per ensemble per worker in an actual asynchronous replica

exchange simulation double-well system (9). Arrows denote the moments when a worker completes a path to initiate the exchange of replicas between free
ensembles. Minimal computational time is consumed during this process and concludes when the worker is randomly reassigned to another (or the same)
free ensemble for a new path generation move. When both [0+] and [0−] ensembles are free, a point-exchange move is also incorporated into the random
reassignment. In this move, the worker creates two new paths: one in [0+] by extending the endpoint of the [0−]-path forward in time and another in [0−] by
extending the starting point of the [0+]-path backward in time (7).

The post-simulation analysis counteracts the impact of the
distorted distribution by employing weighted averages for the
sampled paths, assigning each path X a weight proportional to
1/wi(X ). In a simple one-dimensional double-well potential,
the acceptance rate of the WF move stood at 100% for the
path ensembles [i+] when �i was near state A and only slightly
decreased to 99.2% in the ensemble closest to state B (8).

AsynchronousReplicaExchange. Despite TIS being significantly
less efficient than RETIS, it has the advantage that its separate
path ensembles can be simulated entirely autonomously, allowing
parallel execution without communication overhead. In RETIS,
however, path-generating MC moves within a single ensemble are
alternatively succeeded by replica exchange moves between en-
semble simulations. The irregular CPU costs of path-generating
MC moves, stemming from the diverse path lengths, introduce
synchronization challenges within a parallel RETIS simulation
setup.

Assigning individual path ensembles with their own hard-
ware setup leads to instances where hardware managing faster

ensembles frequently remain idle, awaiting the completion of
MC moves by their slower counterparts. For this reason, open-
source path-sampling codes (16, 17) have implemented RETIS
as a fully sequential algorithm. However, this design choice limits
its potential to run simulations in a massively parallel manner.

In ref. 9, this challenge was addressed through an asynchronous
replica exchange approach, where the number of path ensembles
is set to be approximately double the number of hardware groups
(referred to as “workers”) that are assigned to execute path
generation moves. This design ensures that, at any given moment,
about half of the ensembles are “busily” engaged in path creation,
while the other half is labeled as “free.” Following the completion
of an MC move by a worker, the ensemble it was assigned to and
the newly formed path change status to free. Before the worker is
randomly reassigned to one of the free ensembles for performing a
new path generation move, a series of swapping moves take place
between randomly selected pairs of free ensembles in which they
attempt to exchange their current paths (Fig. 1D). For a selected
ensemble pair, [i+] and [j+] with j > i and, respectively, current
paths Xi and Xj are swapped with an acceptance probability:

PNAS 2024 Vol. 121 No. 7 e2318731121 https://doi.org/10.1073/pnas.2318731121 3 of 9
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Pacc = 1[j+](Xi)×min
[

1,
wi(Xj)wj(Xi)
wi(Xi)wj(Xj)

]
, [3]

where term 1[i+](Xj) is omitted as Xj ∈ [j+] is always a valid
trajectory for ensemble [i+] if �j ≥ �i.

Ref. 9 demonstrated that asynchronous replica exchange
significantly enhances wall time efficiency while minimally
impacting CPU efficiency. Surprisingly, it even led to occasional
improvements in CPU efficiency due to a more efficient distri-
bution of CPU resources among different path ensembles. The
algorithm tends to generate more trajectories in path ensembles
with shorter average path lengths, which contributes positively
to the overall efficiency.

Infinite Swapping. Generating a complete path may span min-
utes or hours, while evaluating Eq. 3 takes sub-seconds. This
allows for numerous swap moves, but when does it become
excessive? Plattner et al. (10) showed the feasibility of replicating
the impact of executing an infinite number of swaps within finite
CPU time, potentially maximizing the benefit of each swapping
opportunity. To determine the frequency of sampling a specific
state (path) in a particular ensemble after an infinite number
of swaps, one only needs to sum over the probabilities of all
permutations in which the considered state and ensemble are
linked. While this method is efficient for a modest number
of participating ensembles (≲10), computational costs increase
dramatically, transitioning from approximately a single second of
wall time to millions of years as the number of ensembles grows
from 7 to 20 (9).

Remarkably, this factorial scaling obstacle can be addressed by
employing an expression based on weight matrices’ permanents,
which is equivalent to the summation of permutations (9).
Despite being similar to the determinant, commonly taught in
high school mathematics textbooks, the permanent is relatively
unfamiliar among scientific researchers, potentially contributing
to the lack of prior discovery of this relationship.

Like determinants, a matrix’s permanent is recursively defined
as the sum of permanents of reduced matrices with a row and
column removed, but unlike determinants, it lacks alternating
plus and minus signs. Recursive relations also involve factorial
scaling, but faster methods exist for large matrices, such as
Gaussian elimination for determinants, leading to third-order
scaling.

Unfortunately, this technique does not extend to the compu-
tation of permanents, for which more complex approaches are
necessary, characterized by steeper scaling (18, 19). Nonethe-
less, these methods are still considerably faster than factorial
computations. Furthermore, since many elements of the weight
matrices are zero, permanents only need to be computed for
a limited number of low-dimensional sub-blocks of the weight
matrix. As demonstrated in this paper, this enables us to conduct
infinite swapping replica exchanges involving 80 ensembles and
40 workers, with the infinite swaps constituting only a minor
portion of the CPU cost compared to that of path creation.

Application I: (Superheated) Water Boiling. We employ RETIS
with the aforementioned algorithmic advancements, hereafter
referred to as ∞RETIS (9), to study the liquid–vapor phase
transition. Boiling phenomena have previously been explored
using TPS (20, 21). However, the ∞RETIS approach offers a
notable advantage in quantification, enabling the calculation of
rates– a feat not easily achieved with the previous TPS method,
even for the more common occurrence of surface boiling. Hence,
the previous TPS studies were more qualitative than our current
investigation and did not provide information on transition
rates.

In the first boiling study, we aimed to compute the boiling
rate in superheated water at 573.15 K. Superheated liquid is
produced by gently heating a liquid beyond its boiling point
(22). While establishing superheated water at this temperature
is difficult experimentally, in our nano-sized simulation system
devoid of nucleation sites like walls or impurities, the metastable
liquid has a long lifetime. Consequently, this transition to vapor
serves as a unique test for assessing our path sampling protocol’s
hardware scaling capabilities.

We conduct two simulations using different numbers of
identical, GPU-equipped nodes. In the first simulation i), 20
interfaces and 10 workers run on one node, utilizing the
NVIDIA Multi-Process Service (MPS) feature, which enables
multiple compute unified device architecture (CUDA) processes
or applications to share and utilize a single GPU. The other
simulation ii) involves 40 interfaces and 20 workers, each
operating on their exclusive nodes without MPS.

Fig. 2A illustrates the crossing probabilities, PA(�|�A), of
these simulations. This is the probability that the system’s order
parameter function �(x) reaches the order parameter value

A B

Fig. 2. The crossing probability for density reduction, with the snapshot in (A) describing the system at 0.40 g/cm3. The legend acronyms represent (N)odes,
(W)orkers, and (D)ays. The vertical dashed lines indicate the interface placements. (A) Metastable liquid water at 573.15 K. Two∞RETIS simulations are performed
on identical, GPU-equipped nodes, where the single node simulation utilizes MPS (Optimizing GPU Utilization and Fig. 5) while the multi-node simulation does
not. The 30-d plot is the continuation of the 7-d plot. (B) The results of a 1-d∞RETIS simulation of liquid water at the SPC/E boiling temperature equal to 396.0 K
based on 40 workers each utilizing their own individual nodes. Based on equilibrium MD runs, an average density of 0.57 g/cm3 is obtained for A and 0.92
g/cm3 for (B).

4 of 9 https://doi.org/10.1073/pnas.2318731121 pnas.org
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� > �A after crossing �A in the positive direction without
recrossing �A (6). In our case, the order parameter was defined
as minus the density of the system (the minus signs are omitted
in Fig. 2). Hence, the computed probability is reflecting the
likelihood of a small density fluctuation below the metastable
density of 0.55 g/cm3 causing the density to continue decreasing
until reaching the point of no return. At this point, the system
transitions to the gas phase with minimal probability of returning
to the metastable liquid state, which occurs when the density falls
below 0.45 g/cm3. This trend is evident as the crossing probability
converges to a consistent horizontal plateau beyond this density
threshold.

Simulation (ii) requires just 7 d to generate the same total
MD steps as simulation (i) would in 59 d. Additionally, from
the graph, it is evident that simulation (ii) achieves excellent
convergence, with minimal differences in the crossing probability
observed after continuing the 7-d simulation up to 30 d.
However, simulation (i) benefits from MPS utility, enabling it
to run with 10 workers in parallel on a single GPU, maximizing
output per node.

To explore the transformative potential of our methodology,
we also assessed∞RETIS’s capability in investigating the liquid-
to-vapor transition at the actual SPC/E boiling temperature of
396.0 K (23). At the phase transition temperature, the critical
nucleus size for the vapor bubble diverges, leading to a vanishingly
small rate in the thermodynamic limit. We therefore examined
exceedingly rare density fluctuations that do not yet indicate an
irreversible transition to the vapor phase, akin to a point of no
return. Although these fluctuations are likely to be dependent
on system size, their occurrence rate presents an exceptional
computational challenge. In this work, we have used this as
a litmus test for ∞RETIS, probing its ability to converge
calculations of exceedingly small probabilities within a short
wall time period when operating on a massively parallel GPU
computer.

By employing 40 workers on 40 individual nodes and 80
interfaces for 1 d, ∞RETIS manages to compute the crossing
probability and the corresponding rate for the scenario in which
random fluctuations lead the system to reach a density below 80%
of the stable liquid phase, see Fig. 2B and Table 1. To the best
of our knowledge, the final value of the crossing probability,
astonishingly low in the order of 10−86, represents a world
record for the lowest computed crossing probability in a realistic
molecular system.

Application II: Chignolin Unfolding. The CLN025 mutant of
chignolin is a popular test system for rare event methods, and
we examine the unfolding of this mini protein with two different
order parameters. The first-order parameter is the RMSD of the
protein backbone from the folded state. During this simulation,
the system quickly began exploring a set of long-lived misfolded
states.

Paths going through these misfolded states were characterized
by low weights in their corresponding path ensembles due to
their length. In addition, an actual experiment will hardly be
able to discriminate between the misfolded and native states,
and grouping them into an ensemble of folded structures is
more meaningful (28). Based on these arguments, we include the
misfolded structures in the folded state definitions and perform
an additional simulation with a second-order parameter; a neural
network trained on a diffusion map created from a couple of
reactive trajectories from previous simulation data, an approach
we denote Deep-DM. In Fig. 3A, we illustrate the conditional
free energy from the first simulation mapped onto the two deep-
DM coordinates, in which the misfolded states are apparent.

Fig. 3A sheds light on the vast conformational landscape that
even a mini protein like chignolin covers during its transition to
the unfolded state and illustrates the extensive sampling enabled
by our rare event protocol. Notably, we observe a total of 1,000
and 1,600 reactive trajectories during the RMSD and deep-DM
simulations, respectively, which allows us to sample a wide range
of transition paths. In comparison, brute force Anton simulations
of almost twice the length observed around 30 to 40 transitions
(24), and we observed 14 transitions in the course of an 80 μs
equilibrium simulation.

We also see that instead of a single unfolding route, the
protein explores a variety of configurations during the unfolding
process, which is not characterized by a single well-defined free
energy barrier. This gives rise to the complex kinetic behavior
reported previously in long unbiased simulations (24). Such
processes can be challenging to model with other methods
that rely on assumptions regarding the transition state and the
reaction coordinate, which in our protocol can be obtained post-
simulation (29).

It is interesting to note the resemblance of the D state to
an �-helical structure even though chignolin is a �-hairpin in
its native state. Experimental evidence suggests that �-hairpin
formation may occur competitively with �-helical formation
(30). Fig. 3C presents the running averages of the rates for both

Table 1. The results and setup for all the simulations ran in this paper
Simulation Rate Flux PA(�B|�A) Nodes Workers Days

Boiling573.15K 4.73e+06 s−1
± 102% 8.05e+09 s−1

± 71% 5.88e−04 ± 45% 1 10 59
Boiling573.15K 4.76e+06 s−1

± 54% 5.59e+09 s−1
± 52% 8.51e−04 ± 14% 20 20 30

Boiling396.0K 4.03e−75 s−1
± 61% 5.33e+10 s−1

± 13% 7.56e−86 ± 64% 40 40 1

ChignolinRMSD 0.17 μs−1
± 59% 14,000 μs−1

± 19% 1.2e−05 ± 50% 1 16 19
ChignolinDeep-DM 0.17 μs−1

± 29% 17,000 μs−1
± 6 % 9.9e−06 ± 32% 1 10 15

Eq. sim. 0.18 μs−1

Anton (24) 0.45 μs−1

Deep-TICA (27) 0.31 μs−1

HLDA (27) 0.16 μs−1

Dissociation* 1.17e−01 s−1
± 92% 2.22e+12 s−1

± 13% 5.28e−14 ± 90% 20 40 10
Ref. (25)* 1.29e−01 s−1 2.92e+12 s−1 4.40e−14

The number of ensembles for each reported simulation is twice the number of workers. *The reported rate, flux, and crossing probability for the dissociation simulation and ref. 25 in
this table is for �B = 5.0, which is different from the results reported in ref. 25. Additionally, due to a difference in subcycles (26), the flux and crossing probability between the simulation
data and ref. are not directly comparable, but the rate is. Reported errors are estimated based on block-averaging procedures using single SDs.
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B

C D

A

Fig. 3. (A) The conditional free energy (i.e., based on phasepoints lying on paths coming from the folded state) mapped onto the deep-DM coordinates, where
a set of metastable states is apparent. These results correspond to the simulation with the RMSD order parameter. We do not see a minimum in the path free
energy around the unfolded region because of the decreasing probability of reaching such high-order parameter values, given that the path starts in A. We
also plot the final phasepoint of each reactive path in orange, which corresponds to a backbone RMSD ≥ 6.0 Å from the folded structure. The curved black lines
represent the interface positions of a second set of path simulations with another order parameter, which is a combination of the two deep-DM coordinates. In
this second simulation, �A′ refers to the folded state interface, which is now a collection of three structures, and �B′ refers to the unfolded state. (B) Chignolin
conformations illustrating the native state, a set of misfolded states (B, C1, C2), a metastable state (D), and a representative sample of the unfolded state that
was observed during our simulations. For each metastable state, we also annotate the difference in amino acid conformations compared to the native state.
(C) The running average of the unfolding rates using the two order parameters, and comparisons with rates obtained from unbiased simulations with Anton
(24) and our own equilibrium simulation (Eq. sim.). The legend gives the total simulation time used in the running averages. (D) The crossing probabilities from
the two simulations and the corresponding interface locations. The order parameter is scaled for comparability.

simulations, while Fig. 3D displays the crossing probabilities and
interface locations. The calculated rates are in good agreement
with those obtained from extensive unbiased simulations and
enhanced sampling simulations, even when one of the order
parameters incorporates two misfolded states, underscoring the
robustness of our approach. A summary of the results can be
found in Table 1.

Application III: Ab Initio Water Dissociation. We replicate the
RETIS study (25) of calculating the water dissociation reaction
rate at 300 K using ab initio MD with the CP2K (31) engine.
Satisfactory agreement with the RETIS simulation is obtained
from a 10-d ∞RETIS simulation using 40 workers and 80
ensembles, as shown in Fig. 4. A subtle qualitative difference
becomes evident within the 3.0 to 4.0 Å shoulder region. The
presence of intermediate horizontal plateaus can be attributed
to the Grotthuss mechanism, involving a simultaneous double
proton transfer (25). This leads to the excess proton residing
at an oxygen atom not in direct proximity to the hydroxyl
group. Notably, while the original RETIS results suggest that
this subprocess consistently reaches completion once initiated,
the new∞RETIS findings paint a more nuanced picture. They
reveal a slightly shorter plateau, implying that some double
proton transfers may fail and reverse, despite being nearly
completed. In terms of wall time, over 1 y was spent running

the RETIS simulation, so a rough estimate of the increased
wall time efficiency when using ∞RETIS would be 365/10 =
36.5. A considerable contributor to this difference lies in the
sequentiality of the RETIS algorithm. As the average path length
generally increases with the ensembles number [i+], the wall time
required to generate new paths increases as well. For this system,
trajectories generated by ensembles in the gradual 3.0 to 5.0 Å
range can be up to 100 times longer than those from ensembles
in the steeper 1.0 to 1.5 Å region (Fig. 4). Consequently, in the
context of RETIS, even though the lower ensembles hold the
potential for rapid sampling due to their shorter average path
lengths, the sequential sampling of higher ensembles leads to
extended periods between each ensemble update, as these higher
ensembles demand significantly more wall time to generate new
trajectories. This sequential challenge is circumvented in the
∞RETIS simulation, where any of the participating workers
can initiate MC moves in the lower ensembles whenever they
are available. In addition to these algorithmic enhancements,
other factors may have contributed to the performance increase,
including hardware and software advancements since the original
study in 2018.

Optimizing GPU Utilization. Asynchronous replica exchange ef-
fectively harnesses the benefits of current and future develop-
ments of HPC by allowing the initialization of high worker
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Fig. 4. The rate of water dissociation (crossing probability multiplied by
the flux) is compared between the previously reported result, ref. 25, and
the result generated from a 10 d ∞RETIS simulation using 20 (N)odes,
40 (W)orkers and 80 ensembles, where each node employs two workers
each. The x-axis is the composite order parameter described in ref. 25
and in Materials and Methods. While the MD time step is identical for both
simulations, there is a slight variation in the time between frames, Δt,
caused by differences in the frame-saving rate. Although this discrepancy
may influence factors like flux and crossing probability, the product remains
independent of it (26), allowing for a direct comparison.

numbers to the high amounts of compute hardware (CPU,
GPU, and nodes) available on HPCs. However, an additional
benefit is also the effective utilization of NVIDIA MPS (32)
when running GPU-accelerated MD, as MPS allows multiple
independent processes to concurrently run on the same GPU.
For our GPU acceleratable application examples, we observe a
2.4-fold increase in the effective throughput (total ns/day) when
running a 12,165 particle boiling system on a node with a 12-
core Intel Xeon E5-2690 v3 CPU and an NVIDIA Tesla P100 16
GB GPU, as seen in Fig. 5. With even better scaling, we observe
a 6.0-fold increase for a 5,889 particle Chignolin system on a
node with a 16-core Intel Xeon E5-2687W CPU and NVIDIA
GeForce RTX 3090 GPU. Therefore, large worker numbers (i.e.,
10 to 16 in our case) can be readily initialized without necessarily

Fig. 5. Total relative throughput (ns/day) for the studied water boiling
and chignolin systems running on one GPU-equipped node, with a varying
number of concurrently running simulations. At zero parallelization, i.e., when
one simulation employs all of the hardware resources of one node, MD
throughput averages at 75.0 and 646.2 ns/day. Optimally, with the use of
NVIDIA’s MPS service, throughputs of 178.8 ns/day (14.9 ns/day× 12 parallels)
and 3896.0 ns/day (243.5 ns/day × 16 parallels) are achieved. The irregular
spacing between the data points is due to the sharing of CPU cores (constant)
between the number of workers (variable). The hardware specification for
each system is detailed inMaterials andMethods. The data points are averages
based on 10 repeated trials per data point, with a low to insignificant SD.

requiring multi-node hardware. MPS on multiple parallel nodes
would be even more powerful but was not feasible on the available
computing resources.

Discussion
Utilizing the power of recent path sampling innovations, we
have developed an efficient path sampling protocol referred to
as ∞RETIS. In challenging realistic applications, our protocol
demonstrated outstanding scalability across diverse GPU and
CPU computing platforms using both classical and Ab Initio
dynamics. Its remarkable sampling efficiency enabled swift
convergence of transition rates within high-dimensional systems
that previously would require months to years for convergence.
With the∞RETIS algorithm deployed on potent HPC systems,
they now succumb within mere days or weeks. This is a significant
advancement, as path sampling offers a distinct advantage over
other rare event techniques, such as metadynamics (33) and
steered MD (34), by enabling the study of completely unbiased
dynamics. However, its computational costs have slowed down
the widespread adoption of quantitative path sampling simula-
tions in large molecular systems. The algorithmic innovations
detailed in this paper are poised to revolutionize this landscape,
making previously unattainable systems accessible and potentially
guiding experimental discoveries.

Materials and Methods
Rate Calculation. Rates were computed from the RETIS ensembles by writing
kAB = fAPA(�B|�A) where fA is the frequency for the system to exit state A,
and PA(�B|�A) is the crossing probability, the very small chance that after an
exit, the system manages to reach state Bwithout revisiting state A. In RETIS, the
flux is determined from the average path lengths in the [0−] and [0+] path
ensembles. The total crossing probability is obtained from the product of local
crossing probabilities,PA(�B|�A) =

∏n−1
i=0 PA(�i+1|�i)wherePA(�i+1|�i)

is estimated from the fraction of sampled paths in the [i+] ensemble that cross
the next interface �i+1. Further improvement in the statistical analysis (29, 35)
has been obtained using the weighted histogram analysis method (WHAM)
(36). All estimated errors on computed properties have been based on a block-
averaging procedure. Additional properties like the conditional free energy
(Fig. 3A) were obtained using a WHAM (36) reweighting procedure on the
collective phase points of the trajectories of all RETIS ensembles (29, 35).

Initialization. Like in standard RETIS and TIS, the interface positions in∞RETIS
are initially configured so that PA(�i+1|�i) is approximately the same across
different i values, a tuning process conducted during preliminary initialization
runs. However,∞RETIS does not aim for a specific target value like the rule of
thumb value of 0.2 (37), which fixes the number of required interfaces. Instead,
the number of interfaces (n + 1) is based on the available hardware, i.e., the
number of workers that can be launched. To ensure plenty availability of free
ensembles with sufficient overlap at each infinite swapping step, n is set to be
twice the number of workers. Once n is fixed, we aim to place the interfaces
such that PA(�i+1|�i) ≈ PA(�B|�A)(1/n) for all i using an estimation for
PA(�B|�A) from the short initialization run.

Sampling. The WF move was employed in all [i+] ensemble simulations for
0 < i < n. We determined the parameters Ns and �cap without conducting
an extensive optimization analysis; instead, we chose values that appeared
reasonable. This approach led us to use the same Ns value for all ensembles,
rather than aiming for ensemble-specific values based on the ratio of each
ensemble’s average path length to the average path length of the subtrajectories
(8). While significantly enhancing the efficiency compared to standard shooting,
moreefficientparametersets likelyexist.Weplantoexploreautomaticparameter
adjustment and initialization in the future. The [0−] and [0+] ensembles
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employed normal shooting without high acceptance. In these ensembles, where
the path length of subtrajectories matches that of full paths, the WF move has
a reduced impact. Furthermore, the absence of high acceptance implies that
the MD-intensive point exchange move [0−]↔ [0+] can always be accepted.
Instead of high acceptance, these ensembles use an early rejection scheme (6)
that allows for the interruption and rejection of the generation of excessively
long paths, which would have been rejected anyway in the Metropolis–Hastings
step.

In quantitative terms, the acceptance of the WF in the boiling simulation
at 396.0 K reached 100% due to the absence of a stable B state attainable
from A. Likewise, in the water dissociation study, the WF move demonstrated a
similarly remarkable acceptance rate of 98.9%. However, in boiling simulations
conducted at the higher temperature of 573.15 K, the WF move exhibited lower
acceptances of 74.1% and 84.9% for the simulations utilizing 10 workers (21
interfaces) and 20 workers (41 interfaces) respectively. Rejections predominantly
occurred within the last set of easily converging path ensembles, where the �i
interface required for crossing is already proximate to state B. Focusing on the
challenging part wherein the system ascends in free energy, disregarding the
latter path ensembles where paths have over a 50% likelihood of reaching state
B, the WF acceptance escalates to, respectively, 89.3% and 94.2%. This hints
at the potential for even greater efficiency by adhering to a slightly modified
protocol than the one described in the previous section, aligning the (n− 1)th
interface such that PA(�n|�n−1) < 0.5.

The protein unfolding study exhibited a similar trend in the acceptance
rate of the WF move, demonstrating nearly 100% acceptance in the initial
path ensembles before decreasing for interfaces closer to state B. Across the
simulations shown in Fig. 3, the overall WF acceptance rates were 73.8% (RMSD)
and 45.3% (Deep-DM). The relatively lower acceptance observed in the latter
case is attributed not only to the suboptimal positioning of �n−1, but also
arises from the asymmetric shape of the free energy landscape, requiring �cap
to be placed farther from state B, closer to the peak of the barrier. With the
current interfaces, the generation of a single A→ B trajectory tends to provide
shooting points predominantly within the basin of attraction of state B, which
can lead to dramatically low shooting acceptance (38). Consequently, there is
a high likelihood that all Ns subtrajectories become unsuccessful. This shows
that the very high acceptance and optimal efficiency is achieved with fine tuning
of the method’s parameters, but even with suboptimal WF parameters, both
acceptance and decorrelation are still superior to those achieved with standard
shooting especially for the asymmetric barrier case (38).

Code Implementation and Availability. We run an in-house∞RETIS Python
code which mainly consists of PyRETIS (17) function imports together with the
use of the Dask (39) package which handles scheduling worker tasks. To start
a simulation, the user determines the number of workers to be employed
based on the hardware available and the type of system to be simulated. An
additional user variable is subcycles, which controls the number of frames to be
saved between the number of generated MD steps. For instance, if a trajectory
comprises 200,000 MD steps, the trajectory in the path ensemble is delineated
by 200 time slices, each corresponding to every 1,000th MD frame when
subcycles is set to 1,000. Once the setup is completed, the Python code schedules
available workers to perform MD-based MC moves. The running of MD, engine
input/output, and data storage are mainly handled by the PyRETIS functions that
externally start and stop GROMACS/CP2K simulations. The code used to generate
the paper data is available at https://doi.org/10.5281/zenodo.8380343, but
an updated code that is under development is accessible via GitHub
https://github.com/infretis/.

Simulation Details on Superheated Water Boiling. Superheated liquid
water in the form of 4055 H2O water molecules is simulated with periodic
boundary conditions and a timestep of 0.5 fs in the NPT ensemble at 1 bar
and the two temperatures 396.0 and 573.15 K using Gromacs 2021.5 (40). The
temperature and pressure are kept constant by applying a V-rescale thermostat
(41) of 2.5 ps relaxation time and a C-rescale barostat (42) with a relaxation time
of 10 ps. As with the previous TPS studies (20, 21), the SPC/E water model (43)
is also used. The order parameter is simply the water density, and the initial
reactive trajectories are obtained by quickly heating an equilibrated system.
The∞RETIS simulation ran with a subcycle of 1,000 and the number of WF

subtrajectories equals 4. The simulations were run on HPC nodes consisting of
12 core Intel Xeon E5-2690 v3 CPU and NVIDIA Tesla P100 16 GB GPU.

Simulation Details on Chignolin Unfolding. The simulations of the CLN025
mutant of chignolin are performed with the setup described by Bonatti (44),
using their provided input files available online. The mini protein is modeled
with the CHARMM22* force field and solvated with TIP3P water molecules at
340 K. The terminal amino acids and the ASP and GLU amino acids are modeled
in their charged states, and the system is neutralized by adding two sodium
ions. The equations of motion are integrated with a timestep of 2 fs using the
velocity Verlet scheme, and canonical sampling is achieved with the V-rescale
thermostat (41).

The first path sampling simulation is performed with an order parameter
defined as the RMSD between the protein backbone and the folded structure
(the average structure from a long simulation, not the crystal structure). The
folded and unfolded interfaces were given by an RMSD of 0.6 and 6.0 Å,
respectively, and we used an interface cap at 4.0 Å. Multiple misfolded states
were observed during this simulation. We train a neural network that includes
the B and C1 states as part of the folded ensemble in the following manner;
we first construct a diffusion map with the approach outlined in ref. 45 using
chignolin configurations representing the native folded state, the misfolded
states observed in the first path simulations, unfolded configurations, and a
set of configurations from the transition path ensemble. The protein backbone
RMSD is used as a distance metric to construct the diffusion map. We then train
the neural network directly on the two leading eigenvectors of the diffusion
map. We use the 741 interatomic distances between backbone atoms as input
features for the network, with architecture 741-50(ReLu)-25(ReLu)-12(ReLu)-2.
This is motivated and similar in spirit to the approach described in ref. 46, except
that we do not fit the network to pre-assigned positions, but rather on the output
of the diffusion map. Using this approach, we can discriminate between the
folded, misfolded, and unfolded states as well as some other metastable states.
The A and B interfaces were given by an order parameter of −0.85 and 1.5,
respectively, and we used an interface cap of 1.2.

For all systems, we use 16 Intel Xeon E5-2687W CPUs and partition 1
NVIDIA447 GeForce RTX 3090 GPU among the workers using MPS. For the
RMSD, we use 16 workers, and for the deep-DM system, we use 10 workers. The
∞RETIS timestep was 4 ps (2000 MD integration steps with a 2 fs timestep),
and the number of WF subtrajectories was 3.

Simulation Details on Ab Initio Water Dissociation. We replicate the
previous RETIS study (25), i.e., 32 water molecules are simulated in a periodic
9.85 Å cubic box with ab initio DFT MD using CP2K 9.1 (31). The DFT calculations
use Becke–Lee–Yang–Parr functional (47, 48) with a DZVP-MOLOPT (49) basis
set and a plane-wave cutoff of 280 Ry. The MD simulations were run with a
timestep of 0.5 fs, the number of subcycles is set to 5 for the∞RETIS simulation
and the number of WF subtrajectories is set to 2. The new velocities generated
by the shooting/WF move are drawn from a Maxwell–Boltzmann distribution
corresponding to an average temperature of 300 K. The order parameter is the
longest O-H distance in the case where no dissociated species exist in the system.
When OH− + H3O+ pair(s) are detected, the order parameter becomes the
shortest distance between the oxygen in OH− and hydrogens in H3O+. The
∞RETIS simulation was run on the Sigma2 HPC system Saga with 20 nodes
equipped with Intel Xeon-Gold 6138 CPUs, where two workers were run on each
node.

Data, Materials, and Software Availability. All study data are included in
the main text.
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