
Privacy-Preserving Generalized Linear Models

using Distributed Block Coordinate Descent

Erik-Jan van Kesteren∗1, Chang Sun2, Daniel L. Oberski1, Michel
Dumontier†2, and Lianne Ippel:2

1Department of Methodology and Statistics, Utrecht University
2Institute of Data Science, Maastricht University

November 11, 2019

Abstract

Combining data from varied sources has considerable potential for
knowledge discovery: collaborating data parties can mine data in an ex-
panded feature space, allowing them to explore a larger range of scien-
tific questions. However, data sharing among different parties is highly
restricted by legal conditions, ethical concerns, and / or data volume. Fu-
eled by these concerns, the fields of cryptography and distributed learn-
ing have made great progress towards privacy-preserving and distributed
data mining. However, practical implementations have been hampered
by the limited scope or computational complexity of these methods. In
this paper, we greatly extend the range of analyses available for vertically
partitioned data, i.e., data collected by separate parties with different fea-
tures on the same subjects. To this end, we present a novel approach for
privacy-preserving generalized linear models, a fundamental and powerful
framework underlying many prediction and classification procedures. We
base our method on a distributed block coordinate descent algorithm to
obtain parameter estimates, and we develop an extension to compute accu-
rate standard errors without additional communication cost. We critically
evaluate the information transfer for semi-honest collaborators and show
that our protocol is secure against data reconstruction. Through both
simulated and real-world examples we illustrate the functionality of our
proposed algorithm. Without leaking information, our method performs
as well on vertically partitioned data as existing methods on combined
data – all within mere minutes of computation time. We conclude that
our method is a viable approach for vertically partitioned data analysis
with a wide range of real-world applications.

1 Introduction

With technological developments in computational power and storage capacity,
an increasing amount of data is collected and stored by a variety of data parties
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(Kaisler et al., 2013). Over the past decades, data mining has been successful
in extracting information from such datasets, but it is especially powerful when
various data sources are combined: collaborating data parties can mine data in a
larger feature space, allowing them to discover knowledge beyond their individ-
ual potential. For example, in the medical domain, personal health conditions
are significantly affected not only by genetic and biological factors, but also
by individual behaviour and social circumstances (World Health Organization,
2008); combining those sources has the potential to improve analytical models
for health outcomes (Kasthurirathne et al., 2017; Ancker et al., 2018).

However, there is a pertinent obstacle to unlocking the potential of combining
datasets: integrating various sources may reveal private information about indi-
vidual data subjects to the collaborating parties. Hence, data sharing is highly
restricted by legal and ethical concerns. This highlights the need for privacy-
preserving techniques which perform data mining tasks on multiple sources with-
out explicitly sharing their full data (e.g., Du et al., 2004; Gambs et al., 2007;
Karr et al., 2009; Gascón et al., 2017). In this paper, we develop a novel algo-
rithm for performing generalized linear modeling (GLM) in a privacy-preserving
way in such a partitioned data situation. GLM is a powerful statistical frame-
work for prediction and classification and is at the basis of a wide range of
analysis applications including linear, count, and logistic regression (McCullagh
and Nelder, 1989; Dobson and Barnett, 2008).

This paper is organized as follows. In Section 2, related work is discussed to
contextualize our contribution. In Section 3, we introduce our proposed method
for GLM on vertically partitioned data. Next, we describe in detail the privacy-
preserving and information sharing characteristics of this protocol in Section 4,
and we analyze how the information transfer affects the ability of the partner
organisation to recover the collaborator’s data. In Section 5, we benchmark
our implementation of the protocol against full-data analysis using Monte Carlo
simulations and we illustrate the functionality of our implementation using three
different real-life data sets from the UCI Machine Learning repository (Blake and
Merz, 1998). Finally, we discuss the strengths and limitations of our approach
in Section 6 and we provide suggestions for future research.

All of the methods described here are implemented in privreg, an open-
source software package for the R programming language (R Core Team, 2018).
This implementation includes encryption for all communication across parties
based on a pre-shared key, and includes a user-friendly interface based around
an object-oriented architecture. The package is available for installation from
https://github.com/vankesteren/privreg.

2 Related work

In practice, there are two main types of data partitioning (Vaidya and Clifton,
2005). Different data sources might collect the same features of different data
subjects, e.g., different hospitals collect the same type of information from their
own set of patients. This situation is referred to as horizontally partitioned
data. Alternatively, separate sources might collect different information from
the same data subjects, e.g., medical features by the hospital may be combined
with socioeconomic features from a government statistics department. This
situation is referred to as vertically partitioned data, which is the focus of the
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current paper. There is also a third scenario, where data are both vertically and
horizontally partitioned, which may be referred to as hybrid partitioning.

Our aim is to analyze data which is vertically partitioned without leaking
raw data to the collaborating parties (Alice and Bob). In order to analyze such
data, either the dataset may be combined but hidden from the collaborating
parties, or the analytical procedure should prevent leaking of information. The
former relies on the inclusion of an ‘uninterested’ or trusted third party (TTP):
Each party sends their raw data encrypted to the TTP, who then performs
the required analyses on the combined data sets. Afterwards, the TTP returns
the results to all data parties and the raw data of Alice stays hidden to Bob.
However, this solution requires all parties to fully trust the TTP, which might
not be possible in the face of restrictive legislation or sensitive data.

There is another class of methods which do not rely on a TTP, instead us-
ing cryptography to perform data mining tasks on vertically partitioned data.
These methods focus on preventing information leakage by creating protocols
which hide the raw data from the collaborator (e.g., for the construction of
decision trees, Agrawal and Srikant, 2000). In this class of methods Du and
Atallah (2001) and Du et al. (2004) investigated various protocols for secure
matrix computation for linear least squares regression and classification prob-
lems. Several other authors used and extended more general secure multiparty
computation protocols (e.g., the garbled circuit protocol; Yao, 1986) to perform
regression on vertically partitioned data (Amirbekyan and Estivill-Castro, 2007;
Slavkovic et al., 2007; Fang et al., 2013; Nikolaenko et al., 2013; Gascón et al.,
2016, 2017; Bloom, 2019). While their use of these general protocols yields cer-
tain privacy guarantees, their practical implementations and use are hindered by
requiring semi-trusted third parties, intermediate data sharing, computational
complexity, or a limitation to the linear regression situation.

Another line of research leverages the privacy-preserving properties of algo-
rithms from federated or distributed learning, a field researching data mining
on separated datasets (Li et al., 2019; Dobriban and Sheng, 2018). A canon-
ical example is by Sanil et al. (2004), who developed a method to compute
linear regression coefficients iteratively based on an algorithm by Powell (1964).
Other authors leverage specific distributed learning algorithms to implement
statistical learning for vertically partitioned data (Vaidya and Clifton, 2002,
2003, 2005; Vaidya et al., 2008). Our method is closely related to this branch
of research. Unlike existing regression methods from the TTP or cryptography
fields, our method does not make use of a trust assumption or complex crypto-
graphic protocols, but it is naturally secure due to its reliance on a federated
learning algorithm which never moves the data from its original location. In the
next section, we explain the concept and implementation behind our proposed
privacy-preserving GLM technique.

3 Proposed method

Our proposed method uses block coordinate descent (BCD) to estimate gener-
alized linear models (GLM) in a situation where data is vertically partitioned
across two or more parties. In BCD, parameters are iteratively updated for each
block of features, cycling over the blocks until an optimum is found (Hastie et al.,
2015). This optimization algorithm can be seen as a form of distributed learning
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(Bertsekas and Tsitsiklis, 1989; Richtárik and Takáč, 2016) which we exploit as
a privacy-preserving method because the features remain in different locations.
Only linear predictions need to be transferred across the feature blocks – the
full data is never shared.

Note that for the remainder of the paper, we assume that the records of the
data subjects are in the same order across databases, in line with Gascón et al.
(2017). Furthermore, we only consider the situation where the target attribute
is available to both parties (Sanil et al., 2004). In addition, we follow the tradi-
tion in the existing literature (e.g., Vaidya et al., 2008; Karr, 2010) to assume
semi-honest adversaries: data parties will follow the protocol as described, but
will still attempt to learn as much information as possible from other parties.
This contrasts with malicious adversaries that can arbitrarily deviate from the
protocol (Lindell, 2005).

In this section, we build up the BCD algorithm from the simpler case of
linear regression before extending it to full GLM. Therefore, we first explain the
necessary background on linear regression, as well as the notation used through-
out this paper. Then, coordinate descent estimation is introduced as a means
to estimate its maximum likelihood coefficients. In Section 3.3, this algorithm
is then extended to accommodate a vertically partitioned data structure, and
in Section 3.4 we generalize it to different outcome families in order to estimate
GLMs. Finally, we develop a novel method to obtain standard errors within
this framework.

3.1 Background

We consider the centered design matrix with features X P RNˆP and the cen-
tered target variable y P RNˆ1, where N is the sample size, or number of obser-
vations, and P is the number of features. The pth column in X is represented
as xp. The columns in X excluding the pth are denoted as X-p.

The basic regression model is then as follows:

y “Xβ ` ε (1)

where β P RP , ε „ N p0, σ2Iq, and ε K X. The well-known closed-form maxi-
mum likelihood estimator of the P regression coefficients β in this model is:

β̂ “ pXTXq´1XTy (2)

We further define the vector of predicted values as ŷ “ Xβ̂ and the vector of
residuals as ε̂ “ y ´ ŷ.

3.2 Cyclic coordinate descent estimation

When instead of the full design matrix X we consider only the pth variable,
the estimator in Equation 1 yields the marginal regression coefficient. Thus, by
simplifying Equation 1 to the univariate case, the marginal coefficient for the
pth variable β˚p is estimated as

β̂˚p “
xxp,yy

xxp ,xpy
“

covpxp ,yq

varpxpq
(3)
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where x¨ , ¨y indicates the inner product of two vectors. The covariance/variance
notation holds because we assume a centered design matrix X and outcome
variable y.

If xp covaries with any of the predictors in X-p, the marginal coefficient β˚p
is different from the conditional coefficient βp. The estimate of this coefficient

is an element of β̂ in Equation 1, but it can equivalently be estimated in a
coordinate-wise, univariate manner (Hastie et al., 2015) as follows:

β̂p “
xxp, ε̂-py

xxp ,xpy
“
xxp ,y ´X-pβ̂-py

xxp ,xpy
“
xxp ,yy

xxp ,xpy
´
xxp ,X-pβ̂-py

xxp ,xpy
(4)

The residual ε̂-p “ y ´ X-pβ̂-p is the residual with respect to the vari-
ables excluding xp, evaluated at the maximum likelihood (ML) estimates of β.
Equation 4 states that the conditional regression coefficient can be obtained by
computing the marginal regression coefficient of ε̂-p on xp. This relation holds
because ε̂-p represents the part of the outcome variable unrelated to X-p – by
definition, ε̂-p K X-p. In addition, the last part of Equation 4 shows that the
marginal and conditional estimate of the pth regression coefficient are equal if
xp and X-p do not covary, because the last term drops out.

The coordinate-wise estimation of β̂p (Equation 4) requires the maximum

likelihood estimates β̂-p of the remaining variables to be known. However, when

estimation of β̂ is the goal, these estimates are not available. This can be solved
by an iterative updating procedure of the β̂ estimates:

Algorithm 1: Cyclic coordinate descent
(Hastie et al., 2015)

1. Initialize β̂ Ð β̂
˚

(marginal coefficients)

2. For each p P P :

(a) ε̂-p Ð y ´X-pβ̂-p

(b) β̂p Ð xxp , ε̂-py { xxp ,xpy

3. Repeat step (2.) for R iterations until convergence (i.e.,
the change in parameter estimates over iterations becomes
negligible)

An advantage of this method is that it does not require storing the full PˆP
covariance matrix in memory, and this matrix does not need to be inverted –
an OpP 3q operation. This advantage becomes especially relevant as P grows
(Hastie et al., 2015). Another advantage is that this estimation method allows
for regularization to be implemented naturally. For example, the `1 penalized
parameters can be computed by soft-thresholding xxp , ε̂-py in each iteration.
This is the approach taken by the popular regularized regression package glmnet
(Friedman et al., 2010).

A graphical display of the behaviour of the estimated parameters during the
cyclical coordinate descent procedure is shown in panel A of Figure 1. Here, 9
covarying features X were generated from a multivariate normal distribution.
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Then random parameter values β and random normal errors ε were created and
used to generate the target variable y “Xβ ` ε.
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Figure 1: Panel A: Coordinate descent paths for linear regression with
9 covarying features, simulated from a multivariate normal distribution.
The parameter lines converge from the marginal ML estimates (left) to
the conditional ML estimates (right). Note that the x-axis is on a loga-
rithmic scale and convergence happens around iteration 1000. Panel B:
Block coordinate descent path for regression with 9 covarying predictors,
applied to the same simulated dataset. There are two blocks, indicated
by the line types. Note that convergence happens before iteration 500,
faster than the cyclic coordinate descent algorithm.

Next, we show how coordinate descent generalizes to blocks of variables, and
how it may be used to estimate linear regression coefficients in the vertically
partitioned data scenario described above.

3.3 Securely estimating coefficients for linear regression

In this section, we develop the framework for analysing vertically partitioned
data. Our key contribution is the combination of two observations:

1. Coordinate descent estimation works the same for single features as well
as for blocks of features – resulting in a variant called block coordinate
descent (BCD; Hastie et al., 2015).

2. Vertically partitioned data is blocked data – the features held by Alice can
be considered the first block, and those held by Bob the second block.

Following these two observations, Algorithm 2 below thus provides an iter-
ative estimator for the parameters of Alice (βa) and those of Bob (βb) through
sharing of predictions. Predictions from Alice are written as ŷa “ Xaβ̂a, and
the working residual with respect to Alice, i.e., the part of y not related to the
features in Xa is then ε̂a “ y ´ ŷa.

6



Algorithm 2: Secure block coordinate descent

1. Initialize ŷb Ð 0

2. Alice:

(a) ε̂b Ð y ´ ŷb

(b) β̂a Ð pXT
aXaq

´1XT
a ε̂b

(c) ŷa ÐXaβ̂a

(d) Send ŷa to Bob

3. Bob:

(a) ε̂a Ð y ´ ŷa

(b) β̂b Ð pXT
bXbq

´1XT
b ε̂a

(c) ŷb ÐXbβ̂b

(d) Send ŷb to Alice

4. Repeat step (2.) and (3.) for R iterations until conver-
gence.

Upon convergence, the concatenated parameter estimates vector pβ̂a, β̂bq is
equal (up to a small predetermined tolerance value) to the parameter estimates
vector that would be obtained using the standard maximum likelihood estima-
tor in the combined data set (Tseng, 2001). It follows that the element-wise
summed prediction ŷa` ŷb is equal to the prediction ŷ that would be obtained
from the combined dataset. Thus, prediction can be done without sharing the
parameter estimates. Further analysis of the privacy-preserving properties of
this procedure is discussed in Section 4.

In panel B of Figure 1 we illustrate BCD, applied to the same data set as in
panel A. However, instead of P blocks of 1 feature each, now there are two blocks
with 5 and 4 features. BCD reaches convergence with fewer iterations than the
cyclic version, because it uses more information about the covariance between
the features. In general, convergence is obtained faster with fewer blocks, and
with less covariance between blocks (Richtárik and Takáč, 2016). In the case
of orthogonal blocks, only a single iteration is needed for convergence as the
marginal estimates equal the conditional estimates. Li et al. (2017, Theorem 8)
derived a general result about the iteration complexity of BCD, showing that for
smooth convex losses such as the GLM log-likelihood, the number of iterations
required for convergence is linear in the number of features P .

In the next section, we show how our BCD approach may be modified to
estimate generalized linear model coefficients for a wide range of applications.
Then, we provide a way to estimate standard errors within this framework.
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3.4 Extension to generalized linear models

Extending this procedure to generalized linear models (GLM) requires a slightly
different estimation approach: whereas the parameter estimates of full-data lin-
ear regression can be found analytically (Equation 2), GLM requires an iter-
atively reweighted least squares (IRLS) procedure (Wedderburn, 1974; Green,
1984). In each iteration i in full-data GLM, the estimates are computed as
follows:

β̂
pi`1q

“ pXTW piqXq´1XTW piqzpiq (5)

Here, W is a diagonal weights matrix and z is a transformation of the target
variable called the working response, computed as

zpiq “ ηpiq ` py ´ µpiqq

ˆ

dµpiq

dηpiq

˙

(6)

where ηpiq “ Xβ̂
piq

and µpiq is a function of ηpiq as predefined in the link
function (e.g., logit link for logistic regression; McCullagh and Nelder, 1989).
From this working response, a working residual needs to be obtained which acts
like ε̂-p in Equation 4: a response vector orthogonal to the predictors excluding
feature p. We define this working residual as follows (Friedman et al., 2010):

ε̂-p “ z ´X-pβ̂-p (7)

Using this working residual and the usual weights matrix from GLM, the coordi-
nate descent algorithm proceeds in a similar fashion to that of linear regression
(Algorithm 1). Just as with coordinate descent for linear regression, this algo-
rithm readily extends to a blockwise procedure, meaning it can be adapted for
the private regression method as discussed in Section 3.3.

3.5 Computing standard errors

A key component of inference in regression models is obtaining a measure of
sampling uncertainty about the obtained estimates, usually standard errors.
Under the assumptions of maximum likelihood theory, the limiting distribution
of the deviation of the parameter estimates is the following:

?
Npβ̂N ´ βq

d
ÝÑ N p0,Σβq (8)

where Σβ is the asymptotic variance-covariance matrix of β̂:

Σβ “ varpβ̂q “ σ2pXTXq´1 (9)

In linear regression, σ̂2 “ xε̂ , ε̂y{pN ´ P q and the standard errors of β̂ can be
computed as

ŝeβ̂ “

b

diagpσ̂2pXTXq´1q (10)

Thus, to compute an estimate of the variance-covariance matrix of the sam-
pling distribution of the β̂ parameters, the inverse covariance matrix of the fea-
tures is needed. However, when the data is vertically partitioned, part of this
covariance matrix is missing for each party. As a result, computing standard
errors using the above information matrix approach is impossible for vertically
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partitioned data without sharing the features.

We present a novel approach to compute standard errors of the regression
coefficient through creating a substitute V b of the partner’s data matrix Xb.
This substitute is then used as the partner’s data in the computation of the
asymptotic variance-covariance matrix as in Equation 9.

The substitute V b needs to contain the same information for the parameters
of Alice as the real data. This information is in the predictions received from
Bob – the parameter estimates of Alice depend only on Bob’s linear predictions.
Consider the inputs and outputs of Bob, as seen by Alice: as the coordinate
descent algorithm progresses along the R iterations, Alice can create two N ˆR
matrices, Êa and Ŷ b

Êa “

”

ε̂p1qa , . . . , ε̂pRqa

ı

Ŷ b “

”

ŷ
p1q
b , . . . , ŷ

pRq
b

ı (11)

These are the input and output matrices, respectively, from the projection
that Bob applies in each iteration. This projection is commonly known as the
hat matrix Hb P RNˆN . The hat matrix relates to Bob’s data matrix Xb as
follows:

Ŷ b “HbÊa

Ŷ b “XbpX
T
bXbq

´1XT
b Êa

Ŷ b “XbX
`
b Êa

(12)

where X`
b indicates the Moore-Penrose generalized inverse of Xb (Petersen and

Pedersen, 2012).
Alice can compute the projection that Bob applies in each iteration Hb as

follows:
Ĥb “ Ŷ bÊ

`

a (13)

Across iterations, this minimum-norm solution Ĥb performs the same pro-
jection as the true hat matrix of Bob. Using this projection, Alice can then
create the data substitute V b P RNˆPb . For this, V b should have the property
Ĥb “ V bV

`
b . Such a V b has the same effect on the coefficient estimates of

Alice that Xb does, because it generates the same predictions that Bob does:

Ŷ b “ ĤbÊa

Ŷ b “ V bV
`
b Êa

(14)

There is no unique solution to decomposing Ĥb into an N ˆ P matrix V b

and its pseudoinverse. However, a numerically convenient V b solution can be
found as the first Pb eigenvectors of Ĥb. This is a convenient choice, because
the columns of V b are then orthogonal, meaning they also have the following
property: V `b “ pV

T
b V bq

´1V T
b “ I

´1V T
b “ V

T
b . As follows from Equations 12

and 14, the V b matrix relates to Xb by means of an unknown positive definite
rotation matrix V b “ RXb (Pavel, 2019).

By leveraging this similarity of V b to Xb, Alice can create an augmented
data matrix of the following form: Za “ rXa,V bs. The augmented data matrix
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replaces the full data matrix in the computation of the asymptotic covariance

matrix: Σ
paq
β “ σ2pZTaZaq

´1. The partition of Σ
paq
β belonging to βa is then

identical to its counterpart from the full data asymptotic covariance matrix Σβ

(for proof see Appendix A). The square root of its diagonal elements are thus
the correct standard errors that would be obtained had the full data been avail-
able.

Alternative standard error procedures are available, e.g., profile likelihood
methods or bootstrapping, but those require additional iterations of the main
block coordinate descent algorithm. This yields additional information leakage
and dramatically increases time requirements. Conversely, in the novel proce-
dure we suggest here, both parties efficiently leverage the information in the
existing iterations to compute standard errors without additional communica-
tion.

4 Privacy analysis for block coordinate descent

In this section, we analyze the information transfer within our protocol for
privacy-preserving regression based on block coordinate descent. In line with
previous work on this topic (e.g. Gambs et al., 2007; Gascón et al., 2017; Vaidya
and Clifton, 2003, 2005; Vaidya et al., 2008), we take the viewpoint of semi-
honest parties: Alice and Bob follow the protocol accurately, though they may
be curious and aim to recover the other party’s data. In this section, we aim
to identify how well Bob can approximate Alice’s data using a model inversion
attack (Fredrikson et al., 2015; Wang et al., 2015).

4.1 Information transfer in vertically partitioned regres-
sion

Information about features cannot only leak through dataset sharing, but also
via sharing statistics based on this data. For example, a simple method for
regression without explicitly sharing the full dataset is that by Karr et al. (2009),
who compute the covariance matrix of X using secure inner-product methods
and share it between Alice and Bob. This covariance matrix allows even a
semi-honest Alice to (a) know how many features are used by Bob and – in the
case of categorical predictors – know how many categories there are, (b) predict
the values of the features held by Bob based on the values of the features held
by Alice, (c) compute standard errors around this prediction, and (d) compute
an R2 value for this prediction. In other words, in a shared covariance matrix
setting Alice can know up to a certain degree the values on each of Bob’s features
for each row in the dataset, and Alice can know how good this prediction is.
Moreover, each additional feature entered by Alice improves the prediction of
features at Bob by definition.

Thus, sharing the full covariance matrix is undesirable for privacy-preserving
regression. Newer methods (e.g., Du et al., 2004; Gascón et al., 2017) result in
additive shares of covpXq at Alice and Bob, without either of them possessing
the full covariance matrix. Afterwards, separate secure multiparty matrix in-
version protocols or linear system solvers are used to compute the regression
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parameters according to Equation 2. This generally requires complex protocols
involving multiple parties, but has been argued to be a secure procedure for
obtaining parameter estimates for linear regression with vertically partitioned
data. In these protocols, it is clear that information transfer does occur (be-
cause the full-data estimates are obtained) but its extent is not made explicit:
it is unclear how the additive shares of the covariance matrix (the “statistics”)
relate to the collaborator’s data – and thus it is unclear whether that data can
be reconstructed.

Conversely, in our protocol the covariance matrix of the combined data is
never explicitly computed. Our method uses a different “statistic”: predictions
ŷ over R iterations. Each of the R predictions are computed as follows by Alice:

ŷprqa “Xaβ̂
prq

a (15)

This prediction vector is then sent to Bob: the main information transfer. In this
protocol, how this information transfer relates to Alice’s data is thus explicit.
As a result, clear conclusions can be made as to the potential for data recovery.

In the case where Alice enters only a single continuous feature in the analysis
protocol, the information contained in ŷa is sufficient for Bob to reproduce the

values of this feature up to a multiplicative constant: ŷa “ xa ¨ β̂a. With
more than one feature per party, β̂a becomes a vector, meaning the problem
of recovering the values of any feature at Alice is underidentified. Moreover, if
the protocol is followed precisely, Bob does not know the number of features P
entered into the model, meaning there is additional uncertainty about the values
of Xa on the part of Bob. In its most basic form, the protocol is therefore fully
secure for semi-honest parties against reconstruction of the privacy-sensitive
data matrices.

4.2 Data reconstruction using shared metadata

In practice, there are many situations where the basic algorithm does not suffice
and metadata aboutXa should be shared with Bob. For example, to circumvent
multicollinearity and non-convergence, none of the features entered into the
model by Alice should be entered by Bob. Moreover, when distributing the
model results is a goal of the analysis, it is relevant to investigate how sharing
parameter estimates in addition to the predictions that are already shared leads
to information transfer about the original data.

In our protocol, Alice sends R predictions to Bob. These individual pre-
dictions can be appended in a columnwise fashion to create an N ˆ R matrix
Ŷ a “ rŷ

p1q
a , . . . , ŷpRqa s. Each prediction has an associated set of parameter es-

timates known only by Alice β̂
prq

a , which can be combined in a similar way to
create the matrix B̂a P RPˆR. These relate to the data matrix at Alice as
follows:

Ŷ a “XaB̂a (16)

In our protocol, all of Ŷ a is shared with Bob, and only the Rth column of
B̂a – the final model result – is shared. Using these estimates, Bob can make a
rank-1 minimum-norm approximation of the data held by Alice:

X̂
p1q

a “ ŷpRqa β̂
pRq`

a (17)
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where ` indicates the Moore-Penrose inverse (Petersen and Pedersen, 2012). We
show empirically in Appendix B that using this method with one set of shared
parameter estimates reveals a proportion 1{Pa of the variance in the data to
Bob. Only the combination of predictions and their associated parameter values
allows (partial) model inversion and reconstruction of the partner’s data.

Furthermore, as presented in Section 3.5, the predictions sent to and received
from Alice can be used to create a minimum-norm approximation of the hat
matrix of Alice – another statistic which is shared in our protocol. This hat
matrix is shown in Appendix A to not contain information about the features
of Alice directly, but only about a rotation of this data such that the parameter
estimates of Bob are adequately adjusted towards the conditional estimates.

In conclusion, the protocol is secure against reconstruction of the data in
the case of semi-honest parties, and sharing of the final parameter estimates β̂a
reveals a proportion 1{Pa of the variance in the data to the other data party.

4.3 Further privacy considerations

Purposeful attacks to recover data in the case of adversarial collaborations have
not been analyzed. It is possible to design such an attack, but it is also possible
to design safeguards against such attacks in the implementation of the protocol,
for example based on the expected smoothness of the regression paths over
iterations. We leave this analysis as a topic for further research.

In addition, because of the explicit link between the shared statistics and
the original data, it is possible to limit the information shared with the collabo-
rator in several ways. For example, in each iteration Alice may add noise to the
computed parameter estimates or to the predictions sent to Bob – a technique
from the differential privacy literature (Dwork et al., 2006). Another method is
to put an upper bound on the number of iterations based on the number of fea-
tures in the data. This has two effects: (a) it shrinks (regularizes) the parameter
estimates towards the marginal estimates and (b) it creates an upper bound ε
on the information shared, depending on the allowed number of iterations.

In the next section, we show how our implementation of the BCD with
vertically partitioned data performs in comparison to full-data generalized linear
modeling (GLM) in simulated data as well as three real-world datasets.

5 Experiments

Our implementation of the BCD algorithm for vertically partitioned data is pro-
vided as an R package at https://github.com/vankesteren/privreg. Here,
we use this implementation (version 0.9.5) to estimate models on both simulated
data (Section 5.1) and real-world data with multiple parties from the UCI data
repository (Section 5.2). Reproducible code for this section is available in the
supplementary material to this paper.

5.1 Simulated data

The goal of this section is to compare our proposed privacy-preserving regression
method to a benchmark method under controlled conditions. The benchmark
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method for these experiments is linear and logistic regression with a complete
dataset, since the optimum privacy-preserving method would attain the same
results with vertically partitioned data. For this section, data with multiple
features and one target were simulated in the R programming language (R Core
Team, 2018), with the following manipulations:

Target Either a normally distributed or a binomial target vari-
able. In the case of the normal target, the R2 was set
to 0.5.

Dimensionality The total number of features was either 10, 50, or 100.
Covariance The covariance matrix of the features was had 1 on the

diagonal and either 0.1 (low covariance) or 0.5 (high
covariance) on all off-diagonal elements.

For each condition, 100 datasets were randomly generated. For the privacy-
preserving regression method, the generated features were then equally dis-
tributed among Alice and Bob, after which the estimation was started. As a
baseline comparison, a generalized linear model was estimated on the full dataset
with all the features using the glm() function from the base R stats package.
The exact data-generating mechanism, as well as the estimation method and
hyperparameters can be found in the supplementary material.

The empirical convergence rates for the privacy-preserving regression method
are shown in Figure 2. As expected from the work of Li et al. (2017), the number
of iterations required increases linearly with the number of features. In addition,
the high covariance leads to slower convergence due to the conditional estimates
lying further away from the marginal estimates. As mentioned in Section 3.3,
with no covariance the number of iterations would be 1.
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Figure 2: Observed amount of iterations required for convergence is ap-
proximately linear in the number of features and increases as there is
more covariance between the features. Error bars indicate 95% simula-
tion percentile intervals.

The obtained parameter estimates (β̂) of our method are equal to those
found by the baseline comparison method in all simulated conditions, up to a
computational tolerance in the convergence of the estimation algorithm (Figure
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3). This lack of relative bias indicates that the proposed privacy-preserving
regression approach performs as well as full-data generalized linear models, at
least for the extent of these simulations.

● ● ● ● ● ●

●

●

gaussian binomial

0 50 100 150 200 0 50 100 150 200

−5e−06

0e+00

5e−06

Number of features

Co
ef

fic
ie

nt
 b

ia
s 

%

Feature
covariance

● low
high

Figure 3: The parameter bias relative to the baseline GLM method is
negligible for any number of features and feature covariance strength.
Note the small y-axis range.

Standard errors indicate uncertainty in the dataset around the coefficient
values, and they are the basis for statistical significance tests. Figure 4 shows
the bias in the standard errors relative to the baseline GLM method for the
different conditions. The figure shows that variation of this bias over different
datasets increases with the number of features (larger error bars). In addition,
there seems to be a very slight relative overestimation of the standard errors on
average. This is due to slightly different convergence criteria and tolerances for
both methods, which propagates through the standard error procedure (Section
3.5). Despite this, the standard error bias is overall small (ă 3%).
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Figure 4: Standard error bias in percentage relative to the baseline GLM
method. Variation across datasets increases with the number of features,
and there is a very slight trend (ă 1%) towards overestimation of the
standard error for larger datasets.
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In conclusion, the simulations have shown that privacy-preserving regres-
sion using block coordinate descent on vertically partitioned data has equal
performance to established regression methods on full data. However, in this
section the data has been simulated to behave according to specification. In the
next section, we compare the performance of these two methods on real-world
datasets.

5.2 UCI datasets

In this section, we tested our proposed method on three different real-life data
sets from the UCI (University of California at Irvine) Machine Learning repos-
itory (Blake and Merz, 1998). The datasets were chosen because they can be
naturally partitioned into two sources, and their size and targets are different
(Table 1). As before, the full preprocessing and analysis code for this section
is available in the supplementary materials. Analyses were run on two separate
computers (an Intel Core i7-8750H at 2.20 GHz and an Intel Xeon E5-2650 v4 at
2.20GHz) connected via a gigabit Ethernet connection on a university network.

Dataset Features Instances Task Parties
Forest fire 13 517 Regression Weather & Fire dept.
HCC 49 165 Classification Lab & Clinic
Diabetes 43 15 000 Classification Clinic & Pharmacy

Table 1: Properties of the datasets used from the UCI machine learning
repository after dataset cleaning and pre-processing. Code can be found
in the supplementary materials.

5.2.1 Forest fires data

The forest fire data comes from the Montesinho natural park in Portugal (Cortez
and Morais, 2007). It contains several weather observations by a meteorological
station (e.g. wind speed, temperature, relative humidity, etc) as well as fire
department risk assessments. In this dataset, the target is to predict the area
of forest burned by a particular fire using the features from the aforementioned
parties.

We performed linear regression where the target was log-transformed to nor-
malize the residuals. Continuous features were standardized before they were
entered into the analysis. The analysis took 450 BCD iterations in the privacy-
preserving regression case. Including encryption and networking overhead, es-
timation took 14.51 seconds and computing standard errors took 0.61 seconds.
Figure 5 shows that the coefficients and their 95% confidence intervals are equal
for the full-data analysis and the privacy-preserving procedure. Several months
show a significant positive effect on the log-area, meaning that – conditional
on the ratings of the fire department – fires in these months (e.g., August and
December) burn larger areas of forest.
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Figure 5: The coefficients and standard errors for the forest fire analysis
are exactly the same for the GLM and our privacy-preserving regression
estimation methods. The shading indicates data partitioning into the
weather service (light) and fire department (dark).

5.2.2 Hepatocellular carcinoma data

This dataset was collected by Coimbra’s Hospital and University Centre in Por-
tugal for studying an epithelial cell cancer of the liver called hepatocellular
carcinoma (HCC) (Santos et al., 2015). It contains heterogeneous data on de-
mographics, risk factors, laboratory and overall survival features from HCC
patients. The goal of the analysis is to use lab results for a tissue sample as well
as clinical data for the patient to predict survival after diagnosis. Since survival
is a binary target, a binomial family GLM (logistic regression) was performed.
For this analysis, continuous features were standardized before the analysis,
which improved the convergence characteristics. The privacy-preserving GLM
converged in 1636 iterations. Including encryption and networking overhead,
estimation took 3 minutes and 16 seconds and computing standard errors took
0.63 seconds.

The results of the analysis (Figure 6) show that the estimates are exactly
equal across the full-data and the privacy-preserving analyses, meaning survival
probability predictions for new incoming patients based on these models will
be the same. Despite slight deviations in the width of the confidence intervals,
conclusions about the effects of the features on survival are also the same in this
dataset.
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Figure 6: The coefficients and standard errors for the carcinoma analy-
sis are very similar for the GLM and our privacy-preserving regression
estimation methods. The shading indicates data partitioning into the
lab results (light) and clinic (dark).

5.2.3 Diabetes

The diabetes dataset is an extract representing 10 years (1999-2008) of clinical
diabetes care at 130 hospitals and integrated delivery networks throughout the
United States (Strack et al., 2014). It is a large and also heterogeneous data
set including encounter data (emergency, outpatient, and inpatient), provider
speciality, demographics, laboratory data, pharmacy data, in-hospital mortality,
and hospital characteristics. In this dataset, we predict readmission to the
hospital using both administrative features and pharmaceutical features. To
keep the computation of the standard errors for this analysis possible, 15000
patients were randomly selected from the dataset. Features were re-coded where
necessary, and categorical features with only a single category in the sample were
excluded from the analysis. The full pre-processing pipeline can be found in the
supplementary material.

Since readmission is a binary target, a binomial family GLM (logistic re-
gression) was performed. The diabetes data analysis required 284 iterations
of the BCD algorithm. Including encryption and networking overhead, esti-
mation took 1 minute and 37 seconds and computing standard errors took 42
seconds. This analysis is particularly interesting with respect to the effect of
insulin (insulinYes) on the readmission probability. In the analysis of only the
medication data, insulin has a significant positive effect on readmission (OR =
1.20, p ă .001), whereas conditional on the administrative data, insulin signif-
icantly reduces the readmission probability (OR = 0.88, p ă .001). This is a
strong argument for including the data of both parties in the analysis.
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Figure 7: The coefficients and standard errors for the diabetes analysis
are exactly the same for the GLM and our privacy-preserving regression
estimation methods. The shading indicates data partitioning into the
clinical data (light) and pharmaceutical data (dark).

In this section, we have shown that privacy-preserving regression using block
coordinate descent is not only a theoretical possibility, but also a viable imple-
mentation of GLM for analyzing data with varied characteristics – both in simu-
lated data under controlled conditions (Section 5.1) and in real-world prediction
and analysis problems with various targets (Section 5.2). The time constraints
on the real-world analyses are manageable, with all example analyses converg-
ing in under 4 minutes. We have shown that the parameter estimates exactly
match those of the existing reference methods, and that our novel estimation
method for the standard errors generally agrees with its full-data counterpart
– and where it did not the difference was so small that it lead to the same
conclusions in the analysis.

6 Discussion

In this paper, we have argued that block coordinate descent is a general method
for estimating conditional parts of a generalized linear model (GLM) in a verti-
cally partitioned data situation. Using this approach, two or more data parties
can collaboratively estimate a GLM without sharing their features. This is use-
ful when the features are not allowed to be shared, for example when there are
privacy issues.

Our method falls within the category of federated learning algorithms. This
means it can be implemented for situations when data mining is to be performed
over remote devices or siloed data centers (Li et al., 2019), where aggregating the
data tables is prohibitively expensive in terms of time, computation, or storage
costs. This work aligns with several recent contributions that seek to exploit the
privacy-preserving aspects of federated learning algorithms (see, e.g., Bonawitz
et al., 2016; Geyer et al., 2017).
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Due to the accessibility of our protocol and its similarity to existing regres-
sion estimation methods, extensions are relatively simple to implement. First
and foremost, our framework can be extended to multiple parties as coordi-
nate descent naturally extends to multiple blocks. In addition, our algorithm
could include penalties for regularized estimation of the regression parameters
through thresholding (Friedman et al., 2010). Through further research into
combining coordinate descent with missing data methods such as full informa-
tion maximum likelihood (Enders, 2001), our protocol could even be extended
for a hybrid partitioning situation where data is both horizontally and vertically
partitioned.

Our novel approach is a natural modification of the familiar linear modeling
framework – without changes in the assumptions. We argue that our protocol
restricts statistical information sharing as much as possible, while being explicit
in how the shared information relates to the original data. Because of this, data
parties know how much information they share, and the protocol could even
incorporate methods from the differential privacy literature – such as additive
noise or early stopping – to put a restriction on the amount of information
shared with the partner institution (Dwork et al., 2006).

The main tradeoff of this flexibility compared to existing methods is rel-
atively high communication cost: each iteration requires N prediction values
to be sent to the partner institution. In addition, like other methods for this
situation the block coordinate descent assumes (probabilistic) linkage of the in-
dividual records – both parties need to have their records in the same order.
Lastly, this method is possible only when the target can be shared, although
in absence of a shareable target collaborators could still perform some form
of transfer learning, e.g., by predicting a shareable feature related to the true
target.

Considering the prospect of these extensions and the availability of an ac-
cessible open-source implementation, we believe the proposed block coordinate
descent protocol can be a springboard for future developments in the privacy-
preserving data mining field.
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A Proof for recovery of standard errors

Let A “ XTX, partitioned into four submatrices A11 (held by Alice), A22

(held by Bob), and A22 (unknown to either). The standard inverse of such a
partitioned, positive definite symmetric matrix is

A´1 “

ˆ

B11 B12

B22 B22

˙

“

˜

`

A11 ´A12A
´1
22 A

T
12

˘´1
´A´1

11 A12

`

A22 ´A
T
12A

´1
11 A12

˘´1

´A´1
22 A

T
12

`

A11 ´A12A
´1
22 A

T
12

˘´1 `

A22 ´A
T
12A

´1
11 A12

˘´1

¸

(18)

Following the procedure outlined in Section 3.5, Alice replaces X2 with
V2 “ R2X2, and Bob replaces X1 with V1 “ R1X1, where Rj are unknown
orthogonal rotation matrices. This gives two new matrices, Ap1q and Ap2q, and
their inverses, Bp1q and Bp2q. By substition,

A
p1q
12 “ XT

1 R2X2

A
p1q
22 “ XT

2 R
T
2 R2X2

(19)

So that

B
p1q
11 “

´

A
p1q
11 ´A

p1q
12 pA

p1q
22 q

´1pA
p1q
12 q

T
¯´1

“
`

pXT
1 X1q ´ pX

T
1 R2X2qpX

T
2 R

T
2 R2X2q

´1pXT
1 R2X2q

T
˘´1

“
`

pXT
1 X1q ´ pX

T
1 X2qpX

T
2 X2q

´1pXT
1 X2q

T
˘´1

“
`

A11 ´A12A
´1
22 A

T
12

˘´1

“ B11

(20)

This shows that the part of the usual ACOV to do with β̂1 can be estimated
correctly, and therefore the standard errors are available: ACOVpβ̂jq “ σ2Bjj .
Moreover,

B
p1q
21 “ ´pA

p1q
22 q

´1pA
p1q
12 q

TB11

“ ´pRT2 R2q
´1R2B21

(21)

so that
“

pZTZq´1ZT y
‰

p1
“ B11X

T
1 y ´ pR

T
2 R2q

´1RT2 R2B
T
21X

T
2 y

“ B11X
T
1 y ´B

T
21X

T
2 y

“ β̂1

(22)

This shows that the exact same estimates are obtained for β̂1. The same proof
can be given for Bob and β̂2.

Note further that:

1. Alice cannot get β̂2 right because R2 does not drop out in the other’s part
of the vector

2. We cannot get the ACOV of pβ̂1, β̂2q for this same reason
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B MSE of rank-R data approximation

From Equation 16 we can create the following approximation:

Ŷ a “XaB̂a

X̂a “ Ŷ aB̂
`

a

(23)

where Ŷ a P RNˆR, Ba P RPˆR, and Xa P RNˆP and all matrices are
full rank. For simplicity, but without loss of generality, we assume here that
the variance of all the features in Xa is the same, σ2

a, and these features are
uncorrelated.

The relation between P , R, and the accuracy of the approximation X̂a is
as follows: as R Ñ P , the MSE improves linearly, with perfect approximation
being achieved when R “ P . As mentioned in-text, when P “ 1, sharing one set
of parameters (R “ 1) means the data can be recovered completely. Empirical
simulations show that the relation between R, P , and expected mean square
error of approximation is MSE “ σ2

ap1´ R{P q, where σ2
a is the variance of the

features in Xa (see Figure 8).
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Figure 8: Mean square error (MSE) of the approximation of the data
Xa at Alice by Bob if B̂a is known. Xa was simulated as having
P “ 20 uncorrelated features with variance σ2

a “ 2. Note that the
approximation linearly improves as the rank of B̂a increases, with a
perfect approximation reached when R “ P . Dashed line indicates
expected MSE, using the formula ErMSEs “ σ2

ap1´R{P q.

Phrasing the above in terms of information sharing and privacy preservation:

in sharing R sets of parameter estimates β̂
prq

a with their associated predictions

ŷprqa , Alice reveals a proportion of at least R{P of variance in the data. This
proportion is a lower bound: in case there are correlations among the features
of Alice, this proportion increases. When R “ P the data of Alice can be

reconstructed by Bob. When either of a pair pβ̂
prq

a , ŷprqa q are shared but not the
other, no information is revealed.
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