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Abstract. In conversation genres like instruction, clarification questions
asked by a user may either relate to the task at hand or to common-sense
knowledge about the task domain, whereas most conversational agents
focus on only one of these types. To learn more about the best approach
and feasibility of integrating both types of questions, we experimented
with different approaches for modelling and distinguishing between task-
specific and common sense questions in the context of a cooking assis-
tant. We subsequently integrated the best ones in a conversational agent,
which we tested in a study with six users cooking a recipe. Even though
the three elements functioned well on their own and all participants com-
pleted the recipe, question-answering accuracy was relatively low (66%).
We conclude with a discussion of the aspects that need to be improved
upon to cope with the diverse information need in task-based conversa-
tional agents.

Keywords: Clarification · Cooking assistant · Natural language
processing · User study

1 Introduction

Today’s task-based conversational agents have been mainly built to generate
responses to direct knowledge questions, where the context is represented by the
relevant knowledge underlying these questions and is leveraged to determine the
user goal, perform slot-filling and answer follow-up questions [25,27]. Typical
examples of such task-domains are restaurant reservations and service agents. In
contrast, in conversational genres like instruction-giving, information requests
are typically related to the task at hand, where both the task-related concepts
and status are of importance for a proper interpretation of the request. An agent
giving directions in a virtual environment, for example, would need to consider
the current location and view of the user, as well as types and features of objects
along with their spatial relation [13].

In this paper we study the challenges of modelling information seeking dia-
logue as part of cooking instruction, a genre where both common-sense knowl-
edge and task-related knowledge are required by the agent to best assist the
user in its endeavour. In order to handle the diverse questions that may be
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asked during cooking instruction dialogue, the agent would need to incorporate
a vast body of recipe-related and cooking-related knowledge, recognise which of
the two needs to be drawn upon when faced with an information request, and
know whether a proper answer to the question is available. Such an application
hence comes at a larger risk of confusing a request with a different one and giving
the wrong response to a question, which is why most task-based conversational
agents limit the scope of requests that can be addressed to only task-related
questions (e.g.: [12,23]) or only questions about general domains (e.g.: [25]).

The studies that did apply conversational agents with both task-specific
knowledge and domain-specific knowledge did not obtain insight into the qual-
ity of responses to clarification questions when such a system converses with a
user. [29] created a dataset consisting of cooking recipes and annotated cooking
instruction dialogue grounded in these documents, and limit evaluation to per-
formance on this dataset. Participants in the recent Alexa Taskbot challenge [1]
who integrate a diverse set of knowledge sources, like Howdy Y’all [2], Grillbot
[14] and Miutsu [20], only focused on user satisfaction in their evaluation. In
contrast, in our study we propose detailed heuristics to draw upon a particu-
lar information source during conversation, and conduct a user study where we
evaluate the conversations on the answer accuracy and can pinpoint the nature
of the mistakes that are made. We address the following research questions:

RQ1) How can a task-based conversational agent distinguish task-
specific from general domain questions?

1. We deployed and evaluated a set of approaches to model general domain
knowledge and task-specific knowledge in the cooking domain, divided into:
(a) Cooking-related question answering based on question-answer pairs in a

community question answering platform
(b) Extracting knowledge from cooking recipes based on heuristics and seg-

menting the recipe procedure into conversational steps
(c) Classifying given questions into task-related or common sense

2. We integrated the approaches in a conversational agent, and formulate a set
of heuristics to enable the agent to draw upon the right knowledge module
during the conversation

RQ2) To what extent can a task-based conversational agent distin-
guish task-specific from general domain questions in a real-world set-
ting?

To answer this question, we evaluated the conversational agent through a
user study where the users are actually cooking when talking with the agent. All
conversations were specifically analyzed for the performance of the agent when
addressing user questions.

2 Related Work

2.1 Modelling Knowledge for Conversational Agents

Disclosure of the right knowledge at the right time is a key aspect to the success
of many task-based conversational agents, where the nature of the task defines
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the requirement of its knowledge-based capabilities. For tasks that are targeted
at fulfilling a request (e.g.: transfers in a banking context, or booking a restau-
rant), the most common approach is to train a model on dialogues that are
annotated for a pre-defined set of slots and values [25]. Another common task
is conversational search, where the right answer to a user’s query is coordinated
with the user through conversation. Since such agents need to accommodate a
wide range of questions, large datasets are typically used [33], and retrieved based
on question-question similarity (i.e., example-based) [32]. For tasks that require
the user or agent to perform a sequence of steps, like navigation [13], document
inquiry [12] or cooking [23,29], the agent needs to have a thorough understanding
of the important concepts and their relation in separate documents. Enabling
this required knowledge may be approached as a reading comprehension task
[6], or by transforming documents into a dedicated meaning representation for
the task at hand [7,21]. In our approach, we adopt an example-based approach
to model general domain knowledge, and parse recipes for a particular set of
information units to accommodate task-based knowledge.

2.2 Distinguishing Between Different Knowledge Sources

The main challenge for conversational systems that need to accommodate a
wide range of questions, is the large search space that increases the chance for
confusing a posed question with a similar one. A common approach to tackle this
is to deploy a module to first classify a question by its domain [2] or type [31]. A
different approach is taken by [28,29], who limited the commonsense-knowledge
in their cooking agent to a set of predefined topics (e.g., replacing ingredients,
use of cooking utensils, etc.) by creating databases with background information
for each topic, and deployed a set of rules and custom actions to select the
right knowledge source to address a question. We adopt both question type
classification and a set of heuristics to query the right knowledge-module (task-
specific or common sense) in our system. In contrast to [29], the commonsense
database that we make use of covers a broader range of questions in the cooking
domain. In addition, we conduct a user study where we zoom in on the quality
of question answering, which has not been done in the studies cited above.

3 Increasing the Coverage of Clarification Responses

We distinguish two broad types of clarification questions that may be asked dur-
ing cooking recipe instruction: commonsense questions and task-specific ques-
tions. For both types we set out to ensure a broad coverage in a data-driven
way, and additionally studied how well the two can be distinguished to reduce
the chance for confusion during conversation. In the following, for each of these
three sub tasks we will describe experimentation to inquire into the best per-
forming method. We focus our study on the Dutch language sphere, but the
methods we apply are mostly applicable to other languages as well.
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3.1 Commonsense Question Answering

The common-sense question-answering task is formulated as finding the best
answer to a general user question in the cooking domain from a large database with
QA-pairs. We experimented with two approaches to model question similarity.

Approach 1) Word2vec. The first algorithm aimed to find the sentence(s) from a
database with the largest similarity to the user’s query using a word2vec model
[22]. For this, SpaCy’s [16] Dutch pipeline nl core news lg was implemented,1.
For each sentence in the database, using word2vec, separate token embeddings
were computed, which were averaged to obtain a sentence embedding. An incom-
ing user query was represented in the same way and compared to each query
in the database using cosine similarity, selecting the sentence with the highest
similarity as the best match.

Approach 2) Sentence-BERT. The second algorithm consisted of finding the
sentence(s) from the database with the smallest distance to the user’s query,
using the context-dependent sentence-BERT trained on Dutch data.2 BERT
(Bidirectional Encoder Representations from Transformers) has shown to allow
for state-of-the-art performance in a wide range of tasks [10]. Sentence-BERT
computes the embeddings for each sentence separately, and then compares them
using a similarity metric [26]. Each sentence was mapped to a vector space of
768 dimensions, using mean pooling of the context-dependent token embeddings
with an attention mask. The sentence embedding of the user query was compared
to the embedding of each query in the database using cosine distance, selecting
the sentence with the lowest distance as the best match.

Dataset and Pre-processing. We chose to make use of a general community ques-
tion answering (CQA) platform, which aligned with our purpose of common sense
cooking knowledge. We downloaded 10,000 questions from the Dutch Commu-
nity Question Answering platform goeievraag.nl3, categorised with the Food
and Drinks label. Each QA-pair consisted of a user query and the most pop-
ular, or first given, answer. We pre-processed the queries in the database by
applying a CNN-based part-of-speech tagger by means of SpaCy.4 Afterwards,
only (proper) nouns, verbs and adjectives were maintained, as they represent
the central information to most cooking-related questions. Stop words were also
removed,5 after which each query was vectorised by either of the two approaches.

Experimental Procedure. We performed a controlled experiment by manually
selecting seventy queries from the database and testing how well the two

1 https://spacy.io/model/nl#nl core news lg.
2 jegorkitskerkin/bert-base-dutch-cased-snli.
3 https://www.startpagina.nl/v/eten-drinken/.
4 https://spacy.io/api/tagger.
5 Using the following stopwordlist: https://github.com/explosion/spaCy/blob/

master/spacy/lang/nl/stop words.py.

https://spacy.io/model/nl#nl_core_news_lg
https://www.startpagina.nl/v/eten-drinken/
https://spacy.io/api/tagger
https://github.com/explosion/spaCy/blob/master/spacy/lang/nl/stop_words.py
https://github.com/explosion/spaCy/blob/master/spacy/lang/nl/stop_words.py
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Table 1. Proportion of correct answers per algorithm and ranking on retrieving the
right common-sense cooking-related question-answer pair.

Rank Algorithm

Word2vec sentence-BERT

1 0.47 0.66

2 0.09 (of 53% = 0.05) 0.24 (of 34% = 0.08)

3 0.06 (of 48% = 0.03) 0.20 (of 26% = 0.05)

Total 0.55 0.79

approaches perform in retrieving any of these queries when presented with a
differently worded version of it. We set the size of the database to 10,000. The
manual selection was done by one of the authors. So as to ensure a variety of
queries to evaluate on, the selected queries were evenly distributed across seven
question categories (see Appendix A for details).

To generate seed queries for each of the 70 selected queries, we used a com-
bination of two techniques: backtranslation [11,18] with deep-translator [3] and
paraphrasing [4] with the parrot [9] library. The augmenter aimed to produce
a maximum of 10 paraphrases, by collecting the input utterance and annota-
tions (intents, slots, slot types), and augmenting these [9]. To make sure that
the generated sentences covered the same meaning as the original query, but
differently phrased, one of the authors manually checked each generated sen-
tence and removed incorrect paraphrases. In the end, an average of almost four
sentences per original query remained (M = 3.97, SD = 1.91), for a total of 278.
Grammatically incorrect sentences were not removed, since end users could also
pose incorrectly formulated queries. The seed queries were pre-processed in the
same way as the queries in the database.

For the two approaches (Word2vec and Sentence-BERT) we tested how well
they could retrieve the right query from the database at different database sizes.
The approaches were presented with each of the 278 reformulated variants of the
queries. As evaluation, the average number of correct answers (i.e., belonging
to the exact original [non-paraphrased] query) was computed. To measure how
close an approach was, this number was computed for the correct answer at rank
1, 2 or 3. Significant effects were measured by performing an ANOVA with a
dichotomous dependent variable (correct/incorrect). The main effects as well as
the interaction between the independent variables ’database size’ and ’algorithm’
were assessed. This was done combining all three highest ranks: if the best match
was incorrect, the second best was also taken into account, if the second best
match was incorrect, the third best was also taken into account.

Results. The results per approach, database size and ranking are given in Table 1.
There was no significant interaction between database size and algorithm on
answer correctness (F (2) = 1.93, p = 0.15). A second ANOVA was performed
looking only at the main effects, showing that the best performing algorithm was
sentence-BERT F (1) = 177.56, p < 0.001), and changing the size of the database
did not significantly affect performance (F (2) = 0.62, p = 0.54).
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The sentence-BERT approach manages to retrieve a correct question for
around 80% of the queries when considering all three ranks. If the first retrieved
question-answer pair is not correct, the chance of finding a correct answer at
the second rank drops considerably to 0.24. In a conversational setting, these
outcomes are not trustworthy enough for presenting the user with an alternate
answer (e.g.: the second-ranked QA pair) when an initially retrieved result is
not satisfactory. Sentence-BERT gave the best results, for which scores higher
than 0.28 were associated with mostly incorrect answers. This approach will
be implemented in the cooking assistant for answering common-sense questions
in the cooking domain, using a threshold of 0.28 below which an outcome is
presented.

3.2 Task-Specific Question Answering

A cooking assistant should have a sufficient number of recipes to instruct to
the user, which are abundantly available on web-based cooking platforms. The
approach to modelling recipe-specific knowledge is strongly related to the par-
ticular recipe to model, and more specifically to the way the recipe is formatted.
We identify the following as the most important elements of a recipe: the recipe
name, the number of people for whom the recipe is meant, the expected cooking
time, the ingredients and quantities, the cooking utensils and the recipe proce-
dure.

Part of what we present below incorporates heuristics that are specific to the
website from which we extract recipes and their constituents (Smulweb6). The
extraction of other types of information is more generalisable to any website with
cooking recipes, namely separating quantity, unit and ingredient and dividing
the recipe procedure into steps that are suitable to a conversational interface.

Heuristics. Part of the heuristics were based on numerals and grammatical infor-
mation, for which we made use of SpaCy’s POS-tagger and lemmatizer, trained
on the Dutch pipeline nl core news lg.7. An example of the recipe lay-out and
type of information that was extracted is given in Fig. 1.

Fig. 1. Recipe ingredients split up using part-of-speech tags and heuristics.

6 https://smulweb.nl/.
7 https://spacy.io/models/nl#nl core news lg.

https://smulweb.nl/
https://spacy.io/models/nl#nl_core_news_lg


Increasing the Coverage of Clarification Responses for a Cooking Assistant 177

Extracting Recipe Steps. The task of extracting recipe steps can be formulated
as a segmentation task, where each segment should be suitable as a single unit
of instruction in a conversational setting. In line with [17], we defined single
instruction steps as instructions where a single action is performed. A difficulty
is that a single sentence may include multiple actions.

To identify cooking actions and their accompanying information from a recipe
instruction, it was first split up into sentences.8 We then generated a dependency
tree for each sentence using the NLTK library.9 In parallel, the full sentence
was tagged using SpaCy’s POS-tagger. The assumption was made that each
step (sub-tree), should contain at least a verb (i.e., cooking action) as its root,
of which the children down to the leaves represented the context (ingredients,
quantities, utensils, etc.). Whenever a token was indicated to be the root of a
subtree, it was assessed whether this token was considered a verb as indicated
by the tagged sentence. If both of these conditions were met (i.e., token is the
root of a subtree, and token is a verb), the subtree was treated as a step. The
root of the main tree and the remaining tokens served as a step on its own.

Since POS-tagging models are usually not trained on imperative sentences
[7], which are common in cooking instructions, we retrained the tagger using a
Random Forest classifier. The classifier used different features in order to find the
best fitting tag for a token: the token itself, its precedent, its subsequent token,
its prefix (3 first letters), its suffix (3 last letters), whether it is the beginning or
the end of a sentence, whether it is a number, and whether it has capitals. For
training purposes, a dataset of 284 sentences (3,851 tokens) was extracted from
a variety of Dutch cooking instructions posted on Smulweb. For this dataset,
the SpaCy tagger’s results were used as a reference, after which the tags were
manually corrected where necessary by one of the authors. The focus of this
correction was on tokens that were wrongfully (not) tagged as verbs, since the
verbs were used to split up the procedure.

Experimental Procedure. To evaluate the quality of recipe segmentation with and
without a re-trained Pos-tagger, we extracted ten cooking recipes from Smulweb.
The ten selected recipes were annotated manually by one of the authors to set a
ground truth for evaluation. They were then fed into the different algorithms.10

Apart from recipe segmentation, the information units of the recipes were also
annotated. We found that this information could be identified by means of the
heuristics at near-perfect accuracy for the ten recipes, which can be explained
by their accommodation to the platform.

We compared the two segmentation approaches to two baselines: a baseline
that consisted of selecting each sentence as a single step, and a semi-random base-
line which segmented a sequence at each position with probability 1/k (where k
is the average segment length of the ground truth). We represented the output
of the four approaches by marking each token with a 0 or 1, where the latter
indicated the end of a step.

8 https://spacy.io/api/sentencizer.
9 https://www.nltk.org/ modules/nltk/tree.html.

10 See (Appendix C) for the annotation guidelines.

https://spacy.io/api/sentencizer
https://www.nltk.org/_modules/nltk/tree.html
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Results. The best performing algorithm was the dependency tree-based seg-
mentation using POS-tagging, closely followed by the dependency tree-based
segmentation using the re-trained tagger (Table 2). The Sentencizer errors were
almost all false negatives (i.e., predicted not to be the end of a step, while it
actually was), while the tree-based segmentations yielded some false positives as
well (i.e., predicted to be the end of the step, while it actually was not).

Table 2. Confusion matrices between each approach and the ground truth segmenta-
tion.

Ground truth Random

baseline

Sentencizer

baseline

Tree-based with

regular POS

Tree-based with

fine-tuned POS

0 1 0 1 0 1 0 1

0 1,058 159 1,216 1 1,200 17 1,195 22

1 152 18 63 107 25 145 27 143

3.3 Combining Question-Answering Methods

To assist a conversational agent to distinguish between task-specific and
common-sense questions in the cooking domain, we set out to train a machine
learning classifier to differentiate between the two.

Question Type Classification. We approached question type classification as a
supervised machine learning task, aiming to detect features that distinguished
both types of questions, which served as a basis for classifying new instances. Two
features were created: the number of tokens and the number of characters in a
query. Then, the queries were preprocessed by lemmatising, removing stop words
and lower-casing. Sentence embeddings were again computed using Sentence-
BERT [26], returning a total of 768 features. The five embedding positions with
the highest scores on the training data were selected by using the ANOVA F-
value between each feature and the label (i.e., indices 2, 112, 284, 320, 420).
This resulted in seven features, when added to the two length-based features.
A random forest classifier with 100 estimators was used to classify sentences as
belonging to the general question type or to the recipe-specific question type.

A total of 359 queries (70% training and 30% evaluation) were selected and
written to train and validate the classifier on. These consisted of 223 general
cooking questions selected from the previously described Dutch food and drinks
questions database, and 136 recipe-specific questions which were manually writ-
ten based on the types of questions that the cooking assistant was able to answer.
Ten splits were created, so that the average performance of the classifier over
these different train/evaluation sets could be computed. The classifier’s per-
formance was evaluated using precision, recall and F1-score. We compared the
Random Forest classifier to a majority baseline.

Results. The random forest classifier performed better on the evaluation set than
the majority baseline (Table 3). The accuracy of the classifier was approximately
85% (M = 0.85, SD = 0.01, for ten evaluation/test splits).
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Table 3. Classifier performance based on 108 test queries

General Specific Macro-F1

Precision Recall F1-score Precision Recall F1-score

Baseline 0.60 1.00 0.75 0.00 0.00 0.00 0.37

Random forest 0.87 0.91 0.89 0.85 0.79 0.82 0.86

4 Analyzing the Quality of Clarification Responses
in Real-world Cooking Assistant Conversations

4.1 Conversational Agent Architecture

To test our question-answering models in action, we developed a conversa-
tional agent with a dialogue management component based on the Information
State Update paradigm [30], connected to the Google Dialogflow conversational
design interface to handle natural language understanding and interface with
the user (Fig. 2). We developed Chefbot11 to plan and manage the cooking
instruction dialogue and draw upon the agent’s knowledge about recipes and
the cooking domain. A Django12 application was developed to connect Chefbot
to Dialogflow.13 In Chefbot, moves of the agent are specified and linked to pre-
conditions and effects, such as the previous intent of the user and the position
in the recipe. The information state is updated based on a move’s effects.

Fig. 2. Google Dialogflow interface.

The general conversation flow was modelled as follows: After an initial greet-
ing, the agent asks the user what recipe s/he would like to cook. When a decision
11 https://github.com/fkunneman/Chefbot NCF.git.
12 https://www.djangoproject.com/.
13 https://github.com/fkunneman/smoothbot.

https://github.com/fkunneman/Chefbot_NCF.git
https://www.djangoproject.com/
https://github.com/fkunneman/smoothbot
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is made, the agent presents the ingredients and utensils on the screen, for the
user to confirm that all preparations have been made. Then the recipe instruction
starts, where at each instructed step the user has the option to ask for details or
clarification, as well as to ask commonsense cooking questions. When the recipe
is completed, the agent does a last topic check and closes the conversation.

4.2 Selecting Clarification Responses

Whereas answers to common-sense questions could directly be extracted from
the database, recipe-specific information was stored as part of the recipe in a
Json-file to be retrieved by Chefbot. Based on the heuristics and segmenta-
tion approach described in Sect. 3.2, recipes were parsed and transformed into
a json-file with the following elements: Recipe title, Number of people, Cooking
duration, Ingredients (including unit and amount), Cooking utensils and Recipe
steps (consisting of Step description text, Ingredients used in step, Quantities of
ingredients used in step, Image and More extensive step description texts).

When a user query was classified task-specific, it was matched to one of the
predefined intents (Appendix B). Each of the intents required specific bits of
information, which were extracted from the json-file and/or from the context of
the conversation (e.g., previous steps, already used ingredients...).

Fig. 3. Decision tree for selecting a response to the user query based on the conversation
context, question type classification and answer confidence.

We defined a decision-tree by which the agent decides what knowledge source
(task-specific or common-sense) to draw upon to answer a query (Fig. 3). Ques-
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tions asked before selecting a recipe were answered by drawing upon the knowl-
edge that the agent has of the available recipes and the agent’s capabilities. Once
a recipe had been selected, the user’s query was assessed by the question type
classifier (see Sect. 3.3). If the query was classified as general and the distance
score was below 0.28 (which was found to be the optimal threshold in Sect. 3.1),
the answer to the best matching question (based on the best-performing BERT
with cosine distance approach) in the general QA database was returned to the
user. If the user’s query was classified as recipe-specific and the confidence of the
best matched Dialogflow intent was above 0.7 (empirically determined), the best
match’s answer was returned to the user. If the confidence was too low, or the
distance score too high, the other path was tried. If the threshold was not met,
it was checked for the other response-type, now checking for a 0.3 threshold.
This lower threshold than the 0.7 described previously was used since it was the
value that was set for the first version of the implemented cooking assistant, and
allowed to reduce the number of fallback intents. If in this case the confidence
was again too low or the distance score too high, a fallback intent was triggered.
Otherwise, the best matching answer was returned.

4.3 Experiment Design and Data Analysis

We conducted a user study to evaluate the quality of question answering during
cooking instruction.

Participants. Six participants cooked a recipe using the cooking assistant. Their
average self-reported cooking skills score was 63.5 (M = 63.50, SD = 17.40, [19])
out of a maximum score of 98. The participants had some prior knowledge about
the study’s goal: to assess the performance of a smart cooking assistant. Since the
number of participants was relatively small due to the limited resources, they
were encouraged to ask as many questions as they could come up with. This
allowed the small number of participants to still give the researchers relevant
quantitative and qualitative insights, by assessing the types of questions that
might arise at the time of cooking a recipe (i.e., in a natural setting), concerning
both task-specific knowledge as well as domain knowledge.

Procedure. Before using the cooking assistant, participants completed the self-
reported cooking skills questionnaire, were instructed about the main goal of the
study and received some information about the ingredients and cooking time
needed to complete the dish. All participants cooked a spicy Mexican casserole,
which was selected based on its linearity (i.e., no temporally overlapping steps)
and limited complexity. Each participant cooked the dish in their own kitchen.

The experiment was done by means of a video-call, during which participants
were instructed to ask as many questions as they could come up with, while
preparing the given dish. The experimenter shared their screen, and entered all
user queries, such that it was not necessary for participants to download any
of the required software. Then, the answer given by the cooking assistant was
returned to the participants. Shortly after finishing the recipe, the participant
was asked to fill in the System Usability Scale [5].
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Evaluation. The quality of clarification responses during the six conversations
was measured by manually checking their correctness, based on which precision,
recall and F1-score were computed.

Table 4. Classifier performance the 293 queries asked during recipe instruction.

Label Precision Recall F1-score

General 0.53 0.70 0.61

Specific 0.92 0.85 0.88

Weighted avg. 0.85 0.82 0.83

4.4 Results

A total of 297 queries (M = 49.50, SD = 16.93) were asked. 6 of these were
manually labeled as “Before classification” (i.e., before selecting a recipe), 57 as
“General” and 234 as “Specific”. This is a relatively small dataset. However, it
serves as a first indication of the types of questions that users ask in a natural
setting, on top of the more artificial setting explained above.

The results of the random forest classifier on distinguishing between general-
domain and task-specific questions are reported on in Table 4. The weighted
average F1-score was 0.83 for the random forest classifier. General domain ques-
tions were more difficult to identify than task-specific questions. Out of the
incorrectly classified queries (18%), the heuristics (i.e., maximum distance score
or minimum confidence score) corrected 29%. This means that a total of 87% of
the queries ended up being correctly classified.

The influence of different components in the decision tree on returning the
right answer is presented in Table 5. 66% of all questions were correctly answered,
while 87% were correctly classified. This could be partly attributed to directing
the wrong answer to a question answering component (21% of the questions were
not correctly recognised or failed to pass the threshold-based heuristics), and for
the other part to a wrongly retrieved answer by the algorithm or the absence of
an answer in the database. The latter applies for a large part to the general QA
database, where only for 56% of the questions an answer would be available in
the database (had they correctly passed through the decision tree to be retrieved
by the Sentence-BERT approach). The threshold-based heuristics accounted for
13 queries that wrongfully did not pass the threshold and 5 queries that were
passed to the right question-answering module after a wrong classification.

Out of the incorrect responses, only 6% was still relevant to another part of
the recipe, and used by the participant at some point later in time. In 19% of
the cases where the agent could not give a correct response, a fallback intent
was triggered (e.g., “Can you rephrase your question?”). The remaining 74% of
non-correct answers led to confusion amongst participants, since an unexpected
answer was returned. Only 25% of the general cooking questions was answered
correctly. Of the remaining 75%, most mistakes were made because the posed
query was not present in the database. Of the recipe-specific questions, a much
higher percentage of 76% was answered correctly.
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Table 5. Influence of different components in the conversational agent on returning a
wrong answer.

General Recipe-specific Total

N P N P N P

# Questions asked 57 1.0 234 1.0 291 1.0

# Questions available in
database

32 0.56 205 0.88 237 0.81

Remaining questions after
question type classification

40 0.70 199 0.85 239 0.82

Remaining questions after
decision tree heuristics

37 0.65 194 0.83 231 0.79

Correct answers returned by
QA component

14 0.25 178 0.76 192 0.66

System Usability. The average score on the system usability scale, from 0 to 100,
was 82.08 (M = 82.08, SD = 4.85). Three participants gave a score above 80,
showing that they liked it and would probably recommend it to other people.
The remaining participants gave a score between 68 and 79, showing that they
thought the agent performed okay, but still needs some improvement.

5 Discussion

The main take-away from our study is that the approaches we took to answering
general domain questions and task-specific questions show good performance in
a controlled experiment, while this drops considerably when they are posed with
questions asked by a user that is involved with the actual task. Our heuristics for
handling user requests in combination with our detailed analysis of the conver-
sations permits to pinpoint the two main causes for this performance gap: per-
formance of general QA and confusion between common-sense and task-specific
questions. In the following, we will provide explanations for these causes and dis-
cuss their implications for an improvement of conversational systems covering a
knowledge space of similar width.

As for the first cause, a significant difference was seen in the performance on
general cooking-related questions, where the F1 score dropped from 0.89 in the
controlled experiment to 0.61 in the user study. This can be foremost ascribed
to a mismatch between the used source for general domain questions, a CQA
platform where at least part of the queries are posed out of curiosity, and the
application area of users that are involved in the act of cooking when posing
their questions. Improvement can be made by filtering types of queries from
the database that are typically not posed during cooking instructions, and by
iteratively adding queries that are not present in the database but have been
posed by users. Alternatively, the use of a CQA could be discarded altogether
and replaced by a dataset grounded in dialog as [29] have done, which does limit
the number of questions that can be addressed.
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The second cause, the confusion between common-sense and task-specific
questions during the cooking instruction conversations, has led to a considerable
portion (21%) of wrong answers given. Part of this can be attributed to the
question type classifier, although it did yield a consistent performance on the
controlled evaluation (macro F1 = 0.86) and user study (weighted F1 = 0.83).
The heuristics (cosine distance <0.28 or confidence> 0.7) were another factor
that led to a failed match in some cases. These failed question type categoriza-
tions were partly due to incomplete formulations of the user, that could be dealt
with by using slot-filling. In addition, recipe-specific questions about the quan-
tity of an ingredient were often mistaken for general questions, which could be
improved upon by either omitting ingredient names as a feature for question type
classification, or by training dedicated classifiers on particularly distinguishing
different requests that include a recipe ingredient. Finally, the conversational
interface itself could be used, by asking the user for a confirmation when there
is confusion between particular question types, or relying on the user to perform
conversational repair when a wrong response has been given. [8] show that wrong
answers by a home assistant can be instrumental to move forward in a conver-
sation. The system itself should of course be properly equipped to interpret user
repair after a wrong response. A final point of discussion is the consideration to
refrain from giving an answer when a question is out of scope. This option is
currently only triggered in the heuristics when a threshold has not been met, but
not integrated as central feature. Arguably, a system that is aimed at covering a
wider knowledge space in a domain should also be knowledgeable of what it does
not have the answer to. One way to identify questions that can not or should
not be answered by the agent is by training a classifier on a set of unanswerable
questions, as has been done in [24].

A central limitation to our study is that we only tested the system with six
participants who were encouraged to ask many questions to the agent. This has
been suitable as a first exploration, but in future work this number should be
higher to draw strong conclusions, and participants should not be tasked with
anything else than making the recipe to learn more about system performance
and common questions that are asked. Apart from that, a strength of the cur-
rent set-up is that participants were actually in their kitchen when talking to
the assistant, and the thorough analysis of the conversations has given a clear
indication of system requirements and challenges when expanding on the agent’s
knowledge. A question that the outcomes raise is whether a task-based conversa-
tional system should cover a long tail of questions that may someday be asked by
a user, at the cost of confusing more questions with different ones. The current
study shows that this cost is too significant, but the gain may be worthwhile
when the rate of wrong answers can be reduced. Our study highlights a number
of directions to explore further to this end.

6 Conclusion

We set out to increase the coverage of clarification responses for a cooking assis-
tant, by drawing upon a community question answering platform for answering
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common sense questions related to cooking and a recipe platform for modelling
recipe-specific knowledge. The approaches to answer cooking-related questions
based on these data were tested in a controlled set-up and in a user study as part
of a cooking assistant. The outcomes of the user study supported that having to
distinguish between commonsense and task-specific questions can lead to a con-
siderable proportion of questions that are not answered by the right module. In
addition, much improvement can be made by increasing the coverage of common
sense questions. Testing the quality of clarification responses in a user study has
been vital to gain empirical insights into the information-seeking challenges of
an instruction conversation in a broad knowledge domain.

A General Question-Answering: Question Types

Questions in seven categories were selected:

1. Replacing ingredients: with what a certain ingredient can be replaced (e.g.,
with what can I substitute golden caster sugar?).

2. Meaning of ingredients: the question might rise what a certain ingredient is
(e.g., what are goji berries?).

3. Difference between ingredients: what is the difference between two (similar)
cooking ingredients (e.g., what is baking soda?).

4. Ingredient sustainability: how long an ingredient can be kept before it goes
bad (e.g., how long is opened, organic coconut oil sustainable??).

5. Cooking time of ingredients: how long it takes to bake/cook a certain ingre-
dient (e.g., for how long does sweet potato need to bake in the oven?)

6. Health: whether some ingredient or its usage is healthy (e.g., is it unhealthy
to re-use a tea bag?)

7. Performing cooking techniques: how a certain cooking technique is performed
(e.g., how do I boil water quickly in a pan?).

Table 6. Cooking domain predefined measurement units and English equivalents.

Language Units

NL gram, gr., gr, g., g, kilogram, kilo, kg., kg, liter, l., l, milliliter, ml., ml,
centiliter, cl., cl, deciliter, dl., dl, eetlepel, eetlepels, el., el, theelepel,
theelepels, tl., tl, kop, bos, zak, beetje, plak, plakken, scheut, handje,
snuf, pond, ons, pint, tak, teen

EN gram, gr., gr, g., g, kilogram, kilo, kg., kg, liter, l., l, millilitre, ml., ml,
centilitre, cl., cl, decilitre, dl., dl, tablespoon, tablespoons, tbsp, tbsp,
teaspoon, teaspoons, tsp, tsp, cup, bunch, bag, bit, slice, paste, dash,
hand, snuff, pound, ounce, pint, branch, clove
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B Recipe-Specific Question-Answering: Intent Types

Which recipes. Ask which recipes are available for the user to cook.

Cooking recipe. Choose which recipe to cook, out of the available ones from
Chefbot’s database.

Confirm recipe. Confirm that they want to make the chosen recipe.

Number of people that the recipe is meant for. The user can ask the agent for how
many people the recipe is intended. Users could subsequently use this informa-
tion in order to adapt the quantities of the ingredients to the number of people
for whom they want to cook.

Estimated preparation time. The estimated time for preparing the recipe has
been added to the recipe’s context. This allows the user to ask the agent how
long it should take them to prepare a certain recipe.

Recipe name. Allows the user to ask what the name of the current recipe was.

Time or steps passed/left. The user can ask how far along they are with the
recipe, or how much is left, in terms of time and/or in terms of steps. Such a
question would lead to the answer “According to the recipe, the preparation
should take around 30–60 min. You have already been cooking for 27 min. You
have executed 14/20 steps”.

Ingredients not used yet. The user can ask the agent about the recipe that have
not been used yet in previous steps. This allows them to check whether they are
still on the right track, or whether there are any ingredients that should have been
used already, but have not been used yet. Additionally, this functionality can
be helpful whenever a recipe step states to “add all the remaining ingredients”.
The user could then ask which are the remaining ingredients.

Continuation. Go to the next step after completing the current one.

Repeat. Repeat the current step.

Previous step. Go back to the previous step.

Update. Let the agent know that the current step has been executed

Elicit. Ask for some clarification whenever a step is unclear. The agent can only
respond to this when a step has been written in a more detailed and a more
basic way.

Accept repair: show gratitude. Thank the agent for clarifying.
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Accept repair: understood. Let the agent know that the clarification is under-
stood.

How much. Ask how much of the ingredient in the current step is needed.

How to. Ask to explain how a specific cooking technique needs to be executed.
For this, the technique needs to be explicitly explained within the recipe.

Motivate. Ask why a certain step is needed.

Close recipe. Finish the recipe.

C Recipe Annotation Guidelines: Ground Truth

Recipe name. The recipe name was the title of the recipe at the top of the page.

Number of people. The number of people for whom the recipe is intended, was
indicated at the beginning of the ingredients list as follows: “Ingredients for N
people”.

Category. Found below the title of an individual recipe on smulweb.nl [15].

Cooking time. Found below the categories of an individual recipe on smulweb.nl
[15].

Ingredients list. The ingredients were split up in three parts (if present): the
amount, the measurement unit, and the name of the ingredient.

Utensils. For the cooking utensils, the list was split up depending on its format.
The most frequent formatting was a list of comma-separated utensils names,
however, other options also occurred, such as bullet-point lists.

Procedure. In order to split up the procedure, first of all, it was split up into
sentences. If one sentence contained more than one cooking action (e.g., boil the
water and put the pasta in it), this was again split up into two separate steps.
Whenever there are multiple ingredients, for all of which the same action needs
to be performed (e.g., add the onion and the garlic), they were kept together in
one same step.
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