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ABSTRACT

In complex geologic settings and in the presence of sparse
acquisition systems, seismic migration images manifest as nonsta-
tionary blurred versions of the unknown subsurface model.
Thus, image-domain deblurring is an important step to produce
interpretable and high-resolution models of the subsurface. Most
deblurring methods focus on inverting seismic images for their
underlying reflectivity by iterative least-squares inversion of a local
Hessian approximation; this is obtained by either direct modeling
of the so-called point-spread functions (PSFs) or by a migration-
demigration process. In this work, we adopt a novel deep-learning
(DL) framework, based on invertible recurrent inference machines
(i-RIMs), which allows approaching any inverse problem as a
supervised learning task informed by the known modeling

operator (convolution with PSFs in our case): our algorithm
can directly invert migrated images for impedance perturbation
models, assisted with the prior information of a smooth velocity
model and the modeling operator. Because i-RIMs are constrained
by the forward operator, they implicitly learn to shape/regularize
output models in a training-data-driven fashion. As such, the re-
sulting deblurred images indicate great robustness to noise in the
data and spectral deficiencies (e.g., due to limited acquisition). The
key role played by the i-RIM network design and the inclusion of
the forward operator in the training process is supported by several
synthetic examples. Finally, using field data, we find that i-RIM-
based deblurring has great potential in yielding robust, high-quality
relative impedance estimates from migrated seismic images.
Our approach could be of importance toward future DL-based
quantitative reservoir characterization and monitoring.

INTRODUCTION

The ultimate goal of seismic imaging is to retrieve a subsurface
model that is as close as possible to the true geologic structures in
the subsurface, with amplitudes that could be reliably interpreted in
terms of physical parameters, such as impedance. In practice, a seis-
mic migration operator is either used to perform an imaging step in
the processing workflow or as an integral part of a more complex
inversion approach, such as least-squares migration or waveform
inversion. From the point of view of inverse problems, standard mi-
gration operators such as those encountered in Kirchhoff prestack
depth migration (PSDM) and reverse time migration (RTM) are
nonunitary and ill-posed (Claerbout, 1992) because of the band-lim-
ited nature of seismic data (Chavent and Plessix, 1999), limited

acquisition geometry (Duquet and Marfurt, 1999; Nemeth et al.,
1999), and complex geology (Rickett, 2003; Guitton, 2004; Clapp,
2005). As such, migrated images tend to be blurred with unbalanced
amplitudes (Gray, 1997). This means that seismic migration by in-
version (also known as least-squares migration) is either implicitly
or explicitly tied to the problem of deblurring migrated seismic
images.
The process of deblurring of seismic images can be formulated as

an inverse problem in either the data or image domains (Tarantola,
1987); early methods have focused on the data-domain formulation
and were initially developed to invert images based on least-squares
methods (Lailly, 1983; Tarantola, 1984) or with asymptotic func-
tionals in a global fashion (Beylkin, 1985; Bleistein, 1987). This
type of image-deblurring approach usually requires inverting the
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Hessian matrix, which often is, in practice, intractable. Therefore,
various attempts have been made to approximate the Hessian or its
inverse to alleviate such a computational burden (Lambaré et al.,
1992; Chavent and Plessix, 1999; Nemeth et al., 1999; Hu et al.,
2001; Rickett, 2003; Guitton, 2004).
Image-domain deblurring can be performed in a target-oriented

fashion by either explicitly computing the local Hessian for areas
of interest in the migrated images (Valenciano et al., 2006, 2009;
Tang, 2009) or by applying fit-for-purpose deblurring filters based on
the assumption of local layered media (Yu et al., 2006; Aoki and
Schuster, 2009). To further reduce the computation burden, the
so-called point-spread functions (PSFs) also can be used as a local
Hessian approximation in terms of the response of the imaging sys-
tem to a point scatterer. They, in fact, represent the local resolution of
the migrated image (Lecomte and Gelius, 1998) and capture the dip-
dependent illumination effects due to the acquisition geometry and
complex geologies (Letki et al., 2015). In this context, seismic images
can be deblurred by direct nonstationary deconvolution with their
corresponding PSFs (Sjoeberg et al., 2003; Fletcher et al., 2012).
Various approaches exist to compute the PSFs to be used in the

deconvolution process. One can conveniently construct them via a
demigration-migration process of well-separated point scatterers
placed in the smooth velocity background (Fletcher et al., 2012). This
approach has the main drawback that crosstalks can arise between
neighboring PSFs. Such interference can be avoided by constructing
PSFs through analytical approaches (Lecomte, 2008; Toxopeus et al.,
2008; Lund et al., 2022), at a reduced computation burden. Deblur-
ring migrated images with PSFs in the image domain has shown
increasing potential with applications such as reflectivity estimation
from Kirchhoff PSDM inversion (Valenciano et al., 2015; Cavalca
et al., 2016; Lund et al., 2022) and RTM (Fletcher et al., 2012;
Letki et al., 2015; Fletcher et al., 2016) or impedance inversion from
PSDM and RTM (Du et al., 2016, 2021; Wang and Lu, 2016).
With such an approach, inversion can be performed in parallel over
different local image patches at reduced costs, which also suites 4D
applications (Cavalca et al., 2020).
Recent years have seen the rise of deep learning (DL) and its

applications in various aspects of geophysics (Yu and Ma, 2021),
owing to its ability to assimilate a priori data, while potentially
reducing the computation cost compared with traditional algorithms
(once training is performed). For the seismic image deblurring prob-
lem, one straightforward way to exploit DL is to map low-resolution
(prestack or poststack) migrated images to their high-resolution
counterparts, using powerful techniques such as deep convolutional
neural networks (CNNs) (Wang and Nealon, 2019; Liu et al.,
2020a; Lu et al., 2020; Li et al., 2022a; Zhang et al., 2022) or gen-
erative adversarial networks (Halpert, 2018; Dutta et al., 2019; Kaur
et al., 2020; Zhang and Wang, 2022). Although these approaches
have yielded promising results, especially when assisted with the
additional prior information of a smooth background velocity
model (Kaur et al., 2020), they are purely computer-vision-based
direct-mapping methods that are completely separated from the mi-
gration process itself.
Alternatively, DL could be leveraged directly within the migration

process. For example, Liu et al. (2020b) use a support vector machine
as a preconditioner to separate noise from signal in the iterations of
least-squares RTM (LSRTM). Motivated by the connection between
sparse least-squares migration (SLSM) and CNNs, Liu et al. (2020c)
develop the neural network version of SLSM, which aims to find an

optimal quasireflectivity image. Similarly, Torres and Sacchi (2022)
propose to substitute the projection operators of LSRTM with sets of
CNNs and learn an update function at each iteration, while implicitly
accounting for the regularization effects.
Attempts also have been made to deblur seismic images with

PSFs by DL. Liu et al. (2022) propose using CNNs to map PSFs
directly to their inverse in the wavenumber (Kx − Kz) domain,
which are then used for the deblurring directly. Although such
an inversion was usually considered unstable, their method has
yielded reliable results when assisted by a weighting technique,
as shown by their benchmark against explicit least-squares inver-
sion by traditional optimization. Different but akin to Liu et al.
(2022), we intend to deblur local migrated images with the help
of a physics-based DL approach. Our key idea is to directly invert
seismic images for their impedance perturbation (i.e., the difference
between the true impedance model and its smoothed version) work-
ing in overlapping image patches and deconvolving the effect of the
PSFs via the so-called invertible recurrent inference machine (i-
RIM) network.
Fundamentally, the RIM is a special type of recurrent network ar-

chitecture designed to solve inverse problems iteratively by explicitly
exploiting a known forward operator (Putzky and Welling, 2017).
As a more memory-efficient evolution of RIM, i-RIM is modified
and combined with specially designed invertible layers to allow
(1) on-the-fly computation of the memory-hungry activation func-
tions, thereby relaxing the need for storage of intermediate activations
in the forward pass, and (2) more stable training (Putzky andWelling,
2019). Although most machine-learning applications in geophysical
inverse problems focus on choosing a suitable learning architecture
and a preprocessing pipeline that could replace the knowledge usu-
ally embedded in the forward operator, RIM naturally blends the
knowledge of the modeling process with the power of neural net-
works (Vasconcelos et al., 2022). For RIM, the crucial role of the
prior information embedded in the forward operator has been shown
to benefit the solution of a variety of inverse problems in diverse
fields, such as astrophysics (Morningstar et al., 2018, 2019), medical
imaging (Lønning et al., 2019; Putzky et al., 2019; Sabidussi et al.,
2021), and geophysics (Kuijpers et al., 2020).
To outline the generalization ability of i-RIMs, we deliberately se-

lect our training data set to be composed of a single synthetic model
(the right part of the SEAM Phase I model [Fehler and Keliher, 2011]
referred to as “SEAM right”), that is mostly composed of horizontal
fine sedimentary layering and mild lateral variations. During the
training process, the i-RIM is initialized with a smooth velocity
model and tasked to map the migrated image into its corresponding
impedance perturbation, with the guidance of PSFs as the forward
operator. Following Putzky et al. (2019), we use i-UNet as the bench-
mark network to compare to our i-RIM. The i-UNet is a modified
UNet architecture (Ronneberger et al., 2015) combined with invert-
ible layers; in this case, i-UNet takes the migrated image and imped-
ance perturbation as input and output, respectively. For testing, we
select (1) one synthetic model/data set, which is the left part of
the SEAM Phase I model with realistic basin geologic features
(referred to as “SEAM left”) and (2) the Volve 2D field data set.
We refer to Ravasi et al. (2015, 2016) for more details on the
preprocessing of the Volve data set.
The rest of this paper is organized as follows. In the “Method”

section, we first present the imaging setup, i.e., derive the imped-
ance kernel for Kirchhoff PSDM, which describes the process of
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generating migrated images and PSFs. Next, we provide a detailed
introduction to the i-RIM network architecture and associated train-
ing process. In the “Numerical examples” section, we benchmark
i-RIM with the i-UNet network for four cases of increasing com-
plexity: three cases for the SEAM left model (without/with various
noise types and with blended shots) and then the Volve field
data set.

METHOD

Imaging parameterization: Deblurring for impedance

In this study, we consider a linear least-squares form of PSDM as
our imaging algorithm to create seismic images parameterized in
terms of impedance kernel, whose mathematical derivation we
revisit in this section. Due to our reliance on supervised learning
with i-RIM and i-UNet, the choice of parameterization used in im-
aging and a consistent implementation of the forward operator used
to create the training data are key for the successful application of
our methodology to field data. Thus, we begin by revisiting the
Born approximation parameterized in terms of impedance and
velocity. Starting from the linear isotropic acoustic wave equation
in terms of velocity c and impedance Z ¼ ρc (where ρ is the den-
sity) (e.g., Clayton and Stolt, 1981), we have

LðpÞ ¼
�
ω2

Zc
þ ∇ ·

c
Z
∇
�
p ¼ 0; (1)

where ω is the angular frequency, L is the wave equation operator,
and p is the pressure field. Next, we define scattering potential V as

V ¼ ω2

�
1

Zc
−

1

Z0c0

�
þ ∇ ·

�
c
Z
−
c0
Z0

�
∇; (2)

where Z0 and c0 are the background impedance and velocity mod-
els, respectively. When considering constant density ρ, we have
ðc=ZÞ − ðc0=Z0Þ ¼ 0, and therefore equation 2 becomes

V ¼ ω2

�
1

Zc
−

1

Z0c0

�
¼ ω2δ

�
1

Zc

�
(3)

with

δ

�
1

Zc

�
¼ 1

Zc
−

1

Z0c0
; (4)

where δð1=ZcÞ denotes the medium perturbation in terms of the
inverse of impedance and velocity product. The corresponding scat-
tering-related coefficient α is defined as

α ¼
δ
�

1
Zc

�
1

Z0c0

¼ c20 − c2

c2
; (5)

such that

V ¼ ω2
α

Z0c0
: (6)

Equations 5 and 6 provide the formalism that informs how a point
scatter can be introduced to generate a PSF in terms of impedance-

consistent model weighting. It can be shown (e.g., Clayton and Stolt,
1981) that the scattered-field data acquired at the acquisition surface
can be expressed as the well-known Born-modeling integral:

dsðxr;xs;ωÞ¼
Z

Gr
0ðxr;x;ωÞVðx;ωÞGs

0ðx;xs;ωÞdx2; (7)

where x; xr; xs indicate the coordinates of the image points, receivers,
and sources, respectively, and Gr

0ðxr; x;ωÞ and Gs
0ðx; xs;ωÞ are the

receiver and source wavefields computed in the background, respec-
tively. From this point forward, we will drop the functional depend-
encies for simplicity in our derivation and only keep them whenever
necessary. Using equation 3, equation 7 becomes

ds ¼ ω2

Z
Gr

0δ

�
1

Zc

�
Gs

0dx
2: (8)

By assuming constant ρ, the impedance kernel for RTM is (Douma
et al., 2010)

I ¼ 1

2

�
c
Z
∇2ðpp†Þ

�
; (9)

where † indicates the adjoint operation. Here, we have assumed that
the imaging areas are sufficiently far away from the sources and
receivers, and therefore have dropped the adjoint-source term.
Although equation 9 is initially derived for finite-frequency RTM,
it also is valid for the high-frequency-approximation-based PSDM,
for which we replace the wave equation-based pðx; xsÞ and p†ðx; xsÞ
with asymptotically derived Gs

0ðx; xsÞ and ∫Gr
0ðxr; xÞd†sðxr; xsÞdx2r ,

respectively. Together with equation 8, this yields the impedance ker-
nel for PSDM:

I ¼ ω2
c
2Z

∇2I (10)

with

I ¼ Gs
0

Z
Gr

0

�Z
Gr†

0 δ

�
1

Zc

�
Gs†

0 dx
2

�
dx2r : (11)

It can be seen from equation 10 that the conventional migrated image
I is scaled by the local impedance and velocity, after Laplacian filter-
ing. Moreover, when combined with equation 11, one can observe
that the image I obtained from observations at the surface represents
the true medium perturbationm ¼ δð1=ZcÞ blurred by the HessianH
as follows:

I ¼ Hm: (12)

Because the Hessian represents multidimensional convolutions with
the global, nonstationary imaging-operator PSFs, the target medium
perturbation can be inferred by undoing the effects of such PSFs on
the migrated image I . Here, we rely on a local PSF approximation
to model the effect of the Hessian of the imaging operator. Although
the preceding derivation is based on m ¼ δð1=ZcÞ, in this study we
choose to define the target model as the impedance perturbation
m ¼ δðZÞ instead to enable its practical usage for reservoir imped-
ance inversion. Note that this practical modification in the definition
of model perturbation only changes the relative scaling of the image,
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whereas the overall geologic structure remains the same. This imag-
ing setup choice provides a consistent framework for generating the
migrated image and PSFs parameterized in terms of acoustic imped-
ance. The relation in equation 12 is shown in Figure 1, where
Figure 1a and 1b shows the local PSF and impedance perturbation,
respectively. Figure 1c and 1d shows IH and I , respectively, with
IH being the reconstructed image by the convolution between the
PSF in Figure 1a and the impedance perturbation in Figure 1b.
Figure 1e shows the difference between Figure 1c and 1d. We
observe that I is an acceptable approximation to IH , apart from
a minor phase shift and the presence of high-frequency noise induced
by the Laplacian filter — this supports our use of local PSFs to
approximate the effect of the full global Hessian. In this study, we
aim at performing deblurring through i-RIM inference, using PSFs
as the forward operator. In principle and in practice for deterministic
deblurring approaches, high-frequency noise can affect the deblurring
process; as such, it can be removed by filtering in a preprocessing
step. However, we decide to keep it in the image as we observe that
the deblurring process is implicitly regularized by the i-RIM network.

Invertible recurrent inference machines

I-RIMs are a special family of recurrent neural networks, particu-
larly designed with inverse problems in mind. Let us consider the
following linear problem with known forward operators:

d ¼ Amþ ϵ; (13)

where the observed data d are obtained by applying the forward
operator A to the target model parameterm, in the presence of noise
ϵ. As an iterative inverse model, i-RIM takes the general form
(Putzky and Welling, 2019)

mtþ1; stþ1 ¼ FðA; d;mt; st;ϕÞ; (14)

where mt is the estimated model parameter and st is the auxiliary
(memory) variable at iteration t. Here, the parametric functionF is a
neural network (NN) with trainable parameter ϕ. The network is
tasked to produce an updated model (alongside an updated memory
variable) combining the information of four inputs: whereas the lat-
ter two are the current estimates of the model and auxiliary param-
eters, the former two provide useful information about the data and
forward model of the current problem. By unrolling equation 14
(i.e., writing it for each t from 1 to a total number of T), two

alternative interpretations can be given to the i-RIM network: first,
this can be seen as a recurrent neural network with a single learnable
unit with shared parameters across the different steps; second, it
can be interpreted as a natural extension of conventional iterative
schemes such as the conjugate gradient or the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithms, for which a nonlin-
ear learned transformation is used to update the model parameters at
every iteration (instead of a linearly scaled version of the current
and past gradients). For these reasons, i-RIMs also are usually re-
ferred to as a special case of the wider family of unrolled networks,
which are nowadays ubiquitous in any scientific discipline dealing
with inverse problems. Finally, the parametric function F of an
i-RIM network is trained in a supervised fashion by minimizing
the following loss function:

J ¼ 1

N

XN
i¼1

Lðmi
T ;m

iÞ; (15)

where N is the number of training samples, mi
T is the ith estimated

model from the last recurrent step, and mi is the corresponding
ground truth. Finally, L is the loss function, which in this work
is defined as the structural similarity index (SSIM). It is important
to note that the training loss function is designed for the purpose of
training/optimization of the NN architecture and is not the same as
the metric/objective function that defines the inverse problem and
constrains the gradient operator used within the i-RIM to constrain
training and inference, which is identified in the following as D.
When combined with an invertible structure h, the update equa-

tions of i-RIM for the forward step from t to tþ 1 can be written as

s 0t ¼ st þ ∇D½d;AðmtÞ�;
mtþ1; stþ1 ¼ hðmt; s 0t Þ: (16)

Correspondingly, the update equations for the reverse step from tþ
1 to t are

mt; s 0t ¼ h−1ðmtþ1; stþ1Þ;
st ¼ s 0t − ∇D½d;AðmtÞ�; (17)

where h−1 is the inverse of h. In this study, the same invertible struc-
ture h is shared through all recurrent steps, and therefore we drop the
time dependency of h. Note that this choice may not be optimal for

Figure 1. Numerical illustration of equation 12: (a) a PSF representing one column of the Hessian approximation; (b) a patch of the impedance
perturbation modelm; (c) PSF-reconstructed image patch IH by convolving (a) with (b); (d) a patch of the migrated image I from the PSDM
impedance kernel, wherein the high-frequency noises are caused by the Laplacian filter and retained in the input data set for the i-RIM and the
i-UNet; and (e) the difference plot between (c and d). The clipping factors used for (a–e) are 50%, 30%, 50%, 50%, 50%, and 100%, re-
spectively.
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other applications of i-RIM. Here, ∇D½d;AðmtÞ� is the gradient of
the data misfit term, which — within the i-RIM network architecture
— ensures that the estimatedmt is consistent with the measured data
d under the action of the forward operator A (Putzky and Welling,
2019). The additional s 0t is the hidden pairing variables of st, intro-
duced such that the NN has an invertible structure. During the train-
ing and testing stages, s0 and s 00 are initialized with zero, whereasm0

can be initialized with either the observed data d or a prior estimate of
the target model m. A schematic representation of the forward and
reverse steps of the i-RIM recurrent unit is shown in Figure 2a and 2b,
respectively. The invertible structure h comprises of L layers in total
(from h1 to hL). With the property of memory complexity Oð1Þ, h
can be layer-wise inverted as

h ¼ hL · hL−1 ··· h1;

h−1 ¼ ðhLÞ−1 · ðhL−1Þ−1 ··· ðh1Þ−1; (18)

where hL indicates the Lth layer in terms of depth. The forward and
reverse computations of one exemplary invertible layer hL are shown
in Figure 3. The unique property of equation 18 allows the backpro-
pagation of the invertible layers, without storing activations in a
memory-efficient way.

NUMERICAL EXAMPLES

Preparation of training and testing data sets

In this section, we present the creation process for the training/test-
ing data sets that will be used to teach the i-RIM and i-UNet networks
to deblur migrated seismic images. A single synthetic model, shown
in Figure 4, is used for training. In the following, we refer to this
model as the SEAM right model. Figure 4a–4c shows the true veloc-
ity, smoothed velocity, and impedance perturbation obtained by sub-
tracting the previous two models, respectively. The smoothed model
shown in Figure 4b is used to initialize the i-RIM during training.
Figure 4d–4f shows the migrated image, PSFs, and the strongly
smoothed velocity background, used to generate the PSFs, respec-
tively. The models in Figure 4b and 4f are generated by smoothing
the model in Figure 4a with 20 pixels (smoothness factor 0.05) and
1000 pixels (smoothness factor 0.001), respectively. The smoothing
process is applied to the inverse of the velocity model, using the Con-
volve2D operator in PyLops. Here, the source wavelet is a Ricker
wavelet with a peak frequency of 20 Hz (see Appendix A). For
all the forward modeling in this study, we use the spectral-
element-based software Salvus (Afanasiev et al., 2019), without
the free surface.
For training, the migrated images, the slightly smoothed velocity

models, and the impedance perturbation models are cut regularly
into square patches with a fixed size of 640 m. An overlapped ran-
dom cutting also is applied to augment the training data set to sev-
eral 20,480 patches in total. The PSFs are generated using the same
modeling/migration procedure, by scaling the velocity at each of the
point scatterers placed 320 m apart in Figure 4f. The obtained PSFs
are interpolated when necessary, then masked with a circular mask
and padded to the size of 640 m to reduce the crosstalk effects from
the neighboring PSFs. For each benchmark, we perform training
using the i-UNet; the same parameters are used wherever possible,
in terms of the initial learning rate and the structure of the network.
During all the training procedures, the total number of epochs is
fixed to 100, and the learning rate is set to decay with a period

of 30 epochs and a multiplicative factor of 0.1. All of the input/out-
put patches are normalized to their maximum absolute values, such
that i-RIM and i-UNet converge to desired results.
For testing, we design a series of three experiments of increasing

complexity for the SEAM left model, namely with and without
noise and with blended shots. The SEAM left model has a total
of 948 patches. Figure 5a–5c shows the true velocity model, the
slightly smoothed velocity model, and the impedance perturbation
resulting from the difference between the previous two models, re-
spectively. Figure 5d–5f shows the migrated image, PSFs, and the
PSFs-related velocity background, respectively. The models in Fig-
ure 5b and 5f are generated by smoothing the model in Figure 5a
with 20 pixels (smoothness factor 0.05) and 1000 pixels (smooth-
ness factor 0.001), respectively. To compare the deblurring results
for the different cases, we select a large area indicated by the cyan
box in Figure 5d and three smaller areas indicated by the blue, red,
and purple boxes. Appendix A shows the smoothed velocity model
for these small areas (with smoothing of 50 pixels and smoothness

Figure 2. (a and b) The forward and reverse recurrent units of
i-RIM, respectively. (c and d) The corresponding units for the
i-UNet. All are adapted from Putzky and Welling (2019).

Figure 3. Adapted from Putzky and Welling (2019): (a and b) the
forward and reverse computations of one invertible layer hL, respec-
tively. Here, U is a specially designed orthogonal 1 × 1 convolution
with the property of U−1 ¼ UT . (c) The residual block G for spatial
downsampling and upsampling, where GLU represents the gated
linear unit. The up and down arrows indicate up and downsampling,
respectively.
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factor equal to 0.02) used for i-RIM during testing, as well as the
unsmoothed velocity model for comparison.
The input patches used for testing are cut by the size of 640 m,

with a vertically and horizontally overlapping distance of 320 m.

Due to the fact that the input data are normalized and also that
NNs have an implicit input-dependent scaling factor that cannot
be determined in advance, the output impedance perturbation
patches are scaled inconsistently when compared with the ground

truth. Therefore, two postprocessing steps are
proposed to alleviate this issue. First, each out-
put patch of the network is normalized by the
maximum absolute value of the corresponding
original image patch, before it is normalized
to be fed to the network. Second, we use the
Patch2D operator in the open-source toolbox
PyLops (Ravasi and Vasconcelos, 2020) to as-
semble the output from i-RIM and i-UNet with
a tapered overlapping. This first postprocessing
step further reduces the relative scaling mis-
match compared to the ground truth impedance
perturbation, with an overall scaling factor.
The second step yields an image with balanced
amplitudes and smooth transitions between
patches, albeit with the persistent scaling
mismatch.
For the field Volve example, the data set com-

prises of 100 patches. Figure 6a–6d shows the
PSDM-migrated image, the smooth velocity
model (provided in the open-source data set) used
for initializing the i-RIM network, the velocity
background for the computation of the PSFs,
and the PSFs generated with the field wavelet,
respectively (see Appendix A). The model in Fig-
ure 6c is generated by smoothing the model in
Figure 6b with 1000 pixels (smoothness factor
0.0001). The entire training and testing setup
for the aforementioned scenarios (in total four
cases) is summarized in Table 1. For comparison,
the training data are always set to be consistent
with the testing data, in terms of the presence
of noise and/or blending.

Case 1: Testing on SEAM left model

We first show the testing results of image de-
blurring for the SEAM left model with the Ricker
wavelet. For the area indicated by the cyan box in
Figure 5d, Figure 7a–7d shows the migrated im-
age, the ground truth impedance perturbation, and
the outputs of i-RIM and i-UNet, respectively. For
the blue box area, Figure 8a–8d shows the mag-
nified plot for the migrated images, the ground
truth impedance perturbation, and the outputs of
i-RIM and i-UNet, respectively. Figure 8e–8h
and 8i–8l corresponds to the areas indicated by
the red and purple boxes, separately. In Appen-
dix A, we compare the results of applying i-RIM
and i-UNet directly with the PSFs. The training
and validation losses of the i-RIM and the i-UNet
for this case are shown in Figure 9a and 9b,
respectively. We further illustrate the deblurring
results by comparing a specific 1D profile in
Figure 10a, with its location indicated by the
red line shown in Figure 8i.

Figure 4. The synthetic model used for training in this study: (a and b) the true and
slightly smoothed velocities of the SEAM right model. (c) The difference between (a
and b), as the target impedance perturbation. (d–f) The migrated image, PSFs, and the
smoothed background velocity used for generating PSFs, respectively. The red triangles
in (a) indicate the locations of colocated sources and receivers. The clipping factors used
for (a–f) are 100%, 100%, 20%, 20%, 1%, and 100%, respectively.

Figure 5. The synthetic SEAM left model used for testing. (a and b) The true and slightly
smoothed velocities of the SEAM left model. (c) The difference between (a and b), as the
target impedance perturbation. (d–f) The migrated image, PSFs, and the smoothed back-
ground velocity used for generating PSFs, respectively. The red triangles in (d) indicate the
locations of colocated sources and receivers. The blue, red, and purple boxes in (d) denote
the selected areas for the magnified comparison. A larger area indicated by the cyan box is
chosen for a more general comparison. The blue, red, and purple stars in (e) are three PSFs
selected to illustrate the PSF-deblurring effect. The clipping factors used for (a–f) are
100%, 100%, 20%, 10%, 5%, and 100%, respectively.
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Case 2: Testing on SEAM left model with noise
scenarios

In this second example, we assess the testing results of image
deblurring for the SEAM left model with data modeled using a
Ricker wavelet and further contaminated by the noise. More pre-
cisely, the noise is generated by filtering white Gaussian noise with
a Ricker wavelet with a peak frequency of 26 Hz and added to the
data directly before migration. Noise also is normalized trace wise
such that its maximum amplitude is set to be 20% of the maximum
amplitude of each data trace. For the area indicated by the cyan box
in Figure 5d, Figure 11a–11d shows the migrated image, the ground
truth impedance perturbation, and the outputs of i-RIM and i-UNet,
respectively. Figure 12a–12d shows the magnified plots for the blue
box area, in the same order as in Figure 8a–8d. Figure 12e–12h and
12i–12l corresponds to the areas indicated by the red and purple
boxes, separately. The training and validation losses are shown in
Figure 9c and 9d, respectively. Similar to case 1, we show the 1D
profile comparison in Figure 10b.

Case 3: Testing on SEAM left model with blended
data

Here, we show the testing results of image deblurring for the
SEAM left model using blended shots gathers. The same blending
scheme, namely three neighboring shots firing simultaneously with
random dither time between 0.1 s and 0.5 s, is used to create the
training and testing data sets. For the area indicated by the cyan box
in Figure 5d, Figure 13a–13d shows the migrated image, ground
truth impedance perturbation, and outputs of i-RIM and i-UNet, re-
spectively. Figure 14a–14d shows the magnified plots for the blue
box area, in the same order as in Figure 8a–8d. Figure 14e–14h and
14i–14l corresponds to the areas indicated by the
red and purple boxes, separately. For this case,
the training and validation losses are shown in
Figure 9e–9f, respectively, and the 1D profile
comparison in Figure 10c. For the blue, red, pur-
ple, and cyan box areas, the correlation coeffi-
cients between the output from two different
networks and the ground truth impedance pertur-
bation are compared in Table 2.

Case 4: Testing on Volve field data

Finally, we present the application of our
i-RIM network to the Volve field data set, for
the target area indicated by the black box in Fig-
ure 6. Figure 15a–15d shows the input migrated

image and the outputs of three different i-RIM networks, respec-
tively. These i-RIMs are trained with different choices of the initial
learning rates, network depths, and recurrent steps, as shown in
Table 3. Figure 15e–15h shows the smoothed velocity used for ini-
tializing the i-RIMs and the outputs of three corresponding i-UNets,
respectively.

DISCUSSION

Throughout this study, we focus on benchmarking the use of the
i-RIM network for seismic image-domain deblurring against more
“conventional” DL convolutional architectures such as the i-UNet
— with the architectures being used in a supervised learning fash-
ion. RIMs are designed to impose the known forward operator as a
constraint within the training process, by building on the structure
of recurrent neural networks to mimic the role of gradient-based
optimization schemes, routinely applied to linear and nonlinear in-
verse problems. As such, our choice of focusing on comparing i-
RIM versus i-UNet is aimed at understanding the importance of
the forward operator in DL-based inference in the context of the
image-domain seismic inversion problem. In supervised learning,
the choice of training data, architecture, and training-optimization
parameters implicitly dictate the priors that are constructed by train-
ing. Once a DL network is trained, these implicit priors are set
within the final network parameters and weights that have been es-
timated by training optimization. Thus, when the trained network is
applied to a new data set, inference is performed based on the
implicit priors built onto the network through training. In our case,
we provide the i-RIM and i-UNet networks with the same training
data, which we purposefully choose to be “limited” — in terms of
subsurface models and acquisition geometries/parameters — with

Table 1. Summary for all training and testing scenarios.

Testing data sets

SEAM left model SEAM left
model (noise)

SEAM left
model (blend)

Volve field
data (noise)

Wavelet Ricker wavelet Ricker wavelet Ricker wavelet Field wavelet

Training data set SEAM right
model

Ricker wavelet Case 1 Case 2 Case 3

Field wavelet Case 4

For the training, adding noises or blending shots also is included, depending on the testing.

Figure 6. For the Volve data set: (a–d) the PSDM-migrated image, the smooth velocity
model (included within the data set) used for initializing the i-RIM, the smooth velocity
background used for generating the PSFs, and the PSFs, respectively. The black box in-
dicates the target area. The red triangles indicate the sources and receivers. The clipping
factors are 20%, 100%, 100%, and 40%, respectively.
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the intention of testing the inference capabilities of each network
when presented with cases beyond those seen in training. In our origi-
nal hypothesis, this is where the i-RIM network would in principle
present an advantage over the i-UNet network: given the same train-
ing data, the i-RIM network is in fact supplied with two additional
priors: (1) the generalizing knowledge of the forward operator, i.e., the
physics of the inverse problem, and (2) the smoothed velocity model.
Following this thought process, in this work, the i-RIM and

the i-UNet networks have been trained using a data set composed
of a single, simple geologic model, mostly composed of mildly
dipping fine layers. Deblurring of seismic images into their corre-

sponding acoustic impedance perturbation models has been
performed on four cases of increasing complexity. The main differ-
ence between the i-RIM and i-UNet approaches entails the
input of the network; in the former case, we concatenate three
different inputs, namely the migrated image, the PSF for the
forward operator (i.e., a spatial convolution), and the corresponding
smooth velocity model (e.g., a tomography- or full-waveform
inversion [FWI]-inferred macromodel). Conversely, the i-UNet only
takes a migrated image as the input.
In our experiments, we observe that when applying the trained

networks to clean data of the synthetic model SEAM left, i-RIM

Figure 8. Case 1: magnified plots of seismic image deblurring for the areas indicated by the colored boxes shown in Figure 5d. The migrated
image, the ground truth impedance perturbation, and the outputs of i-RIM and i-UNet, respectively, for the areas indicated by (a–d) the blue
box, (e–h) the red box, and (i–l) the purple box. Here, we use black arrows to highlight some areas where the differences are clear. The solid red
line indicates the location of the 1D profile. The clipping factor used here is 20%.

Figure 7. Results of seismic image deblurring for
case 1: training on the SEAM right model and test-
ing on the SEAM left model. For the area indi-
cated by the cyan box in Figure 5d: (a–d) the
migrated image, the ground truth impedance per-
turbation, and the outputs of i-RIM and i-UNet,
respectively. The red and blue boxes correspond
to those in Figure 5d. The clipping factor used here
is 20%.
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outperforms i-UNet in terms of amplitude preservation and structure
fidelity. Pushing the limits of inference further, in the presence of
noise and source-blended data, the i-RIM is consistently more ro-
bust; in comparison, the output of i-UNet clearly deteriorates in
terms of layer continuity, and structural artifacts start to arise. When
comparing these results using the Pearson correlation coefficient as
our metric (as it does not depend on the absolute scaling), we can
see that the values of i-RIM are consistently higher than those of the
i-UNet. For cases 1–3, we observe that the advantage of using i-
RIM over the i-UNet increases with (a) increasing layer dips and
(b) locations that are closer to the edge of the acquisition aperture
(comparing areas indicated by the blue, red, and purple boxes). In
view of the quasi-1.5D feature of the single training data set, these
two observations demonstrate the superior generalization capability
of i-RIM over i-UNet, as shown in Table 2. In particular, observa-
tion (b) further implies the importance of providing the knowledge
captured into PSFs to the network because this captures the aperture
effect of the imaging system.

One thing to notice when examining the training and validation
losses is that the networks appear to be overfitting, i.e., the valida-
tion loss is constantly noticeably lower than that of the training loss
(in which lower is bad given that we use the SSIMmetric as our loss
function). We believe that this behavior can be partly explained by
the difference between the feature of the training and the validation
data sets, with the former mostly composed of near-flat thin layers
and the latter comprised of much stronger lateral variations and
varying layer thickness. Future work will be devoted to further
understanding the reasons behind this overfitting phenomenon;
for example, we will test if such a gap in the training and validation
losses persists when adding additional training data sets that share
similar features of the validation data set. In comparison, we also
notice that none of the previously published RIM papers shows any
training/validation losses (Morningstar et al., 2018, 2019; Lønning
et al., 2019; Putzky et al., 2019; Kuijpers et al., 2020; Sabidussi
et al., 2021). However, all of our purposely designed synthetic case
studies still show that the training and validation losses of i-RIM are

Figure 10. (a–c) The 1D profile plots of the i-RIM
and i-UNet for cases 1–3, respectively. The loca-
tion of the 1D line is indicated by the red line
shown in Figures 8i, 12i, and 14i, respectively.
Here, the red, blue, black, and green lines corre-
spond to the ground truth impedance perturbation,
the i-RIM, i-UNet, and the migrated image, respec-
tively.

Figure 9. The absolute value of average training
(red) and validation (blue) loss per patch of the
i-RIM and the i-UNet, respectively, for (a and b)
case 1, (c and d) case 2, and (e and f) case 3. Note
that for the SSIM metric, higher values indicate
better results.
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consistently higher than those of its counterpart, suggesting its
higher data assimilation capacity.
The contrast between the i-RIM and the i-UNet is even more clear

when they are applied to the Volve data set that, by virtue of being a
field data set, is characterized by subsurface and noise conditions
that lie outside those in the training data. In this case, we compare
the inference outputs of different i-RIMs and i-UNets trained with
three sets of parameters; this allows us to gauge the robustness of
each network to hyperparameters given that we do not have access
to the ground truth to compare the different outcomes. The results of
different i-RIMs appear to be much smoother, cleaner, and consis-
tent, with major image features almost identical, indicating a high

degree of robustness to training parameters — which in turn sup-
ports the credibility of the i-RIM results. In contrast, the i-UNet
output images vary with respect to layer continuity and thickness
when different trained networks are used. Although our field data
application yields promising results in terms of robustness, band-
width reconstruction, and structural interpretability, further research
is needed toward retrieving quantitatively reliable amplitudes. For
example, we believe that by adding attenuation and/or elastic-am-
plitude effects to the training data set, the quantitative reliability of
amplitudes could be further improved. The application of iRIM to
the Volve field data set demonstrates that by leveraging the con-
straint of the forward operator, broader inference capabilities can

Figure 12. Case 2: magnified plots of seismic image deblurring for the areas indicated by the colored boxes shown in Figure 5d. The migrated
image, the ground truth impedance perturbation, and the outputs of i-RIM and i-UNet, respectively, for the areas indicated by (a–d) the blue
box, (e–h) the red box, and (i–l) the purple box. Here, we use black arrows to highlight some areas where the differences are clear. The solid red
line indicates the location of the 1D profile. The clipping factor used here is 20%.

Figure 11. Results of seismic image deblurring
for case 2: training on the SEAM right model with
noises and testing on the SEAM left model with
noises. For the area indicated by the cyan box
in Figure 5d: (a–d) the migrated image, the ground
truth impedance perturbation, and the outputs of
i-RIM and i-UNet, respectively. The red and
blue boxes correspond to those in Figure 5d.
The clipping factor used here is 20%.
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be reached. This is achieved via limited training information, such
as the synthetic SEAM right model, instead of requiring unreason-
ably complex or large training data, which is usually either inacces-
sible or intractable.
Here, we have chosen to deblur migrated images parameterized

in terms of impedance perturbation, instead of reflectivity as used in
previous studies. We stress here that this choice lays the ground-
work for quantitative reservoir impedance inversion in future stud-
ies. However, in practice, during i-RIM training and inference, the
use of the impedance parameterization implies a free parameter re-
garding the degree of smoothness of the background impedance
model — used by the i-RIM for an initial model. In our study,

this parameter is selected in training by examining the structural
and bandwidth similarity between the reconstructed imaged IH

and the migrated image I because we observe that IH significantly
diverges from I , when the impedance is overly smoothed to define
the perturbation. This is because in such cases, the impedance per-
turbation has strong low-frequency components, which leak into
IH and are missing in I .
From a more pragmatic perspective, we notice that initializing

with a smooth velocity model generally helps to improve the output
of i-RIM. In our SEAM left model tests, we use a model that we
believe mimics what would have been a reasonable output of FWI
for the background model. In the case of the Volve field data set,

Figure 14. Case 3: magnified plots of seismic image deblurring for the areas indicated by the colored boxes shown in Figure 5d. The migrated
image, the ground truth impedance perturbation, and the outputs of i-RIM and i-UNet, respectively, for the areas indicated by (a–d) the blue
box, (e–h) the red box, and (i–l) the purple box. Here, we use black arrows to highlight some areas where the differences are clear. The solid red
line indicates the location of the 1D profile. The clipping factor used is 20%.

Figure 13. Results of seismic image deblurring
for case 3: training on the SEAM right model with
blended shots and testing on the SEAM left model
with blended shots. For the area indicated by the
cyan box in Figure 5d: (a–d) the migrated image,
the ground truth impedance perturbation, and the
outputs of i-RIM and i-UNet, respectively. The red
and blue boxes correspond to those in Figure 5d.
The clipping factor used here is 20%.
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much-smoothed velocity models are used, resulting from tomo-
graphic velocity analysis of the original data. In our experience, this
careful consideration in supplying an initial background model is
only necessary because of the choice of the impedance perturbation
parameterization. According to our previous studies (Vasconcelos
et al., 2022), deblurring a migrated image parameterized as reflec-
tivity instead only requires initializing the i-RIM with the input
migrated image itself. We believe that this could be a result of
the characteristic image-feature differences between impedance
perturbation and reflectivity models because the former contains
high-frequency and low-frequency components (i.e., outside the
seismic bandwidth), whereas the latter mainly contains the high-
frequency part (i.e., within the seismic bandwidth). Initializing
the i-RIM with a smooth velocity model compensates for the miss-
ing low-frequency component, thus enhancing the results for the
mapping of the impedance perturbation. When opting for reflectiv-
ity models (Vasconcelos et al., 2022), we observe a clear phase shift
between the reconstructed PSF and the migrated image patches.
However, this issue can be dealt with by including extra filtering
operators into the i-RIM forward operator.
In this study, we have conducted seismic image deblurring in two

dimensions. However, we foresee that our approach should in prin-
ciple extend to three dimensions as well, owing to the fact that the
convolutional relation between PSFs and local images holds as a
straightforward extension of the two dimensions. This convolu-

tional relation has been previously used in, e.g., 3D seismic image
deblurring (Cavalca et al., 2020; Liu and Fu, 2021) and 3D micro-
scopy deblurring (Bruce and Butte, 2013) — these being examples
of deterministic PSF deblurring by optimization. In the context of
DL-based 3D deblurring, Li et al. (2022b) propose a PSF-based
DL approach that is specifically designed for 3D microscopy image
deconvolution — but overall 3D DL-based deblurring, and in par-
ticular the use of RIMs in 3D image-processing, remains the subject
of future research. For our seismic imaging problem, on the one
hand, we can take advantage of fast 3D PSDM algorithms, or that
PSFs can be constructed analytically in many cases, to further speed
up the process of producing PSFs for training. However, with in-
creasing structural complexity included in training data, 3D migra-
tion costs could become an issue in training; this will perhaps
be another argument in favor of i-RIMs over architectures with
no forward-operator constraints, whereas the RIM may be impor-
tant to extend the benefits of limited training data in the context of
3D imaging. On the other hand, the memory cost of the networks

Figure 15. Results of seismic image deblurring
for case 4: training on the SEAM right model with
the field wavelet and noises and testing on the tar-
get area of the Volve field data. (a–d) The migrated
image and the outputs from three different i-RIMs
(with parameters summarized in Table 2, respec-
tively. (e–h) The smooth velocity model used for
initializing i-RIMs and outputs from three corre-
sponding i-UNets. The clipping factor used for
(e) is 100% and for the rest 50%, respectively.
The position of the target area is indicated by
the black box shown in Figure 6.

Table 3. Summary of i-RIM and i-UNet parameters for all
training and testing scenarios.

Case 1 Case 2 Case 3 Case 4

Initial learning rate (e−4) 2 2 2 5, 2, 2

Network depth 5 4 5 4, 5, 6

i-RIM recurrent steps 5 5 5 3, 5, 6

Memory cost (Mb)

i-RIM 1.9 1 1.9 1, 1.9, 2.7

i-UNet 1.9 1 1.9 1, 1.9, 2.7

Inference time cost (ms)

i-RIM 13.4 11.0 13.4 7.2, 13.4, 18.7

i-UNet 2.5 2.0 2.5 2.0, 2.5, 3.0

Here, i-RIM and i-UNet share the same parameters, in terms of the initial learning
rate and NN depth, with recurrent steps only applied to i-RIM. In our tests, i-RIM and
i-UNet have the same memory costs because the weights are shared throughout the
recurrent steps for the former. The memory cost is estimated after one epoch of
forward and backward process, without including the input/output patches. The
inference time cost per image patch is estimated by repeatedly running the forward
operation 100 times for 100 input patches. The three parameters for case 4
correspond to Figure 15b–15h, for i-RIMs and i-UNets, respectively.

Table 2. Comparison of correlation coefficients for the
results of i-RIM and i-UNet of cases 1–3.

Target area Networks Case 1 Case 2 Case 3

Blue box i-RIM 0.831 0.800 0.759

i-UNet 0.760 0.760 0.753

Red box i-RIM 0.866 0.829 0.799

i-UNet 0.801 0.789 0.781

Purple box i-RIM 0.863 0.825 0.815

i-UNet 0.775 0.758 0.761

Cyan box i-RIM 0.829 0.835 0.814

i-UNet 0.773 0.774 0.767

Areas indicated by the blue, red, purple, and cyan boxes are shown in Figure 5d.
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themselves will likely not increase drastically, thanks to the use of
invertible layer structures. Furthermore, in three dimensions, we ex-
pect the role of the forward operator to possibly be more important
because now the feature space is expanded with more parameters,
and PSFs can still capture the prior information of the additional
dimension of the imaging system. In addition, eventual i-RIM-
based inference for 3D deblurring is likely to significantly outper-
form 3D deconvolution by optimization in terms of computational
efficiency, thus potentially enabling fast, wide-bandwidth image
deblurring of large 3D seismic volumes.
Although our study performs a benchmark of the i-RIM network

against the i-UNet network (in which no modeling operator is in-
volved in the forward pass) for the reasons mentioned previously,
it is important to consider the implications of DL-based deblurring
for practical image-domain processing. First, even in two dimensions,
it is well known that deterministic image-domain deblurring using
PSFs through conventional, optimization-based least-squares inver-
sion typically requires (1) case-dependent expert-user inputs such
as preconditioning operators, (2) additional free parameters for regu-
larization, which typically require user-based tuning, and (3) a large
number of iterations to converge. In comparison, the data-driven
i-RIM used in this study, once properly trained, is able to (1) relieve
the need for human intervention in image-domain deblurring, (2) at-
tain implicit regularization and preconditioning by learning, and
(3) perform deblurring-by-inference within only a few seconds for all
image patches. Thinking forward toward 3D applications, in which
the computational cost of least-squares inversion escalates rapidly
and the need for optimization-parameter tuning becomes a bigger
hurdle, our i-RIM could potentially provide a significant advantage
in the future for 3D image-domain impedance inversion. Of course,
further research is necessary to bridge the study presented in this
paper to a full-fledged 3D image application and benchmark against
the optimization-based least-squares inversion approach (Du et al.,
2016, 2021).

CONCLUSION

Making explicit use of the relation between PSFs and local mi-
grated images, we apply the i-RIM network to the problem of de-
blurring of seismic images into impedance perturbation models; the
proposed approach uses 2D convolutions with precomputed PSFs
as the forward operator and is assisted with the prior information of
a smooth velocity model. With a limited training data set, we show
that i-RIM is able to consistently outperform its i-UNet counterpart
(representing a well-established convolutional NN architecture)
with respect to noise regularization and structure consistency. This
is attributed to the information of the forward operator acting as a
prior for the i-RIM, helping the trained network perform well when
used for inference on situations beyond those represented in the
training data set. We support these observations with results from
a series of tests on different synthetic models and acquisition
scenarios and a North Sea field data set.
Our work adds new elements to previous studies of DL applica-

tions to seismic image deblurring in that: (1) we formulate deblur-
ring as an inverse problem with a known forward operator
constraint, informed by depth-domain PSFs and the additional prior
information on background velocity, and (2) we map images di-
rectly into impedance perturbation models, instead of reflectivity,
aiming to provide a DL-based tool for quantitative reservoir char-
acterization and monitoring. Based on our results and other related

studies, we see the i-RIM as a powerful tool for addressing inverse
problems that are widely present in geophysics, given known and
computationally feasible forward operators — as long as these can
be treated as local problems to take advantage of current RIM
architectures.
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APPENDIX A

WAVELET COMPARISON, SMOOTHED
VELOCITY MODEL INPUT FOR I-RIM, AND PSF

DEBLURRING COMPARISON

The Ricker wavelet and the field wavelet used in this study are
given in the time domain and the frequency domain in Figure A-1a
and A-1b, respectively. Sections of the unsmoothed velocity model
and their smoothed counterparts that are used to initialize the i-RIM
are shown in Figure A-2a–A-2f, respectively.
Here, we compare the results of applying the i-RIM and the

i-UNet to deblurring PSFs directly. Figure A-3a–A-3c shows the
PSF, and outputs of i-RIM and i-UNet in the space-time (x-t) do-
main, respectively, corresponding to the red star in Figure 5e, with
Figure A-3d–A-3f showing the same results in the Kx − Kz domain.
Similarly, Figure A-3g–A-3l and A-3m–A-3r corresponds to the
blue and purple stars in Figure 5e, respectively. Note that neither
the i-RIM nor the i-UNet is provided with point-scatterer images

Figure A-1. The two wavelets used in this study: for cases 1–3,
the Ricker wavelet with a peak frequency of 20 Hz, indicated by
the solid red line, and for case 4, the field wavelet extracted from
the Volve field data set, indicated by the dashed blue line. (a and b)
Plots in the time and frequency domains, respectively.
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Figure A-2. (a–c) The unsmoothed velocity of sections corresponding to the areas indicated by the red, blue, and purple boxes in Figure 5d,
respectively, and (d–f) the corresponding smoothed sections with 50 pixels and a smoothness factor of 0.02, respectively, which resemble
typical velocity models built by FWI. We use (d–f) to initialize the i-RIM.

Figure A-3. Case 1: for the position indicated by the red star in Figure 5e, the PSF and the outputs of i-RIM and i-UNet in, respectively,
(a–c) the x-t domain and (d–f) the Kx − Kz domain. For the position indicated by the blue star in Figure 5e, the PSF and the outputs of i-RIM
and i-UNet in, respectively, (g–i) the x-t domain and (j–l) the Kx − Kz domain. For the position indicated by the purple star in Figure 5e, the
PSF and the outputs of i-RIM and i-UNet in, respectively, (n–o) the x-t domain and (p–r) the Kx − Kz domain. The PSFs are applied with a
smooth circular mask, which also is applied to the outputs of i-RIM and i-UNet. The clipping factors used are 50% for the x-t domain and 60%
for the Kx − Kz domain.
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during training; therefore, testing PSF deblurring on point scatterers
is outside the range of the original training data. This is because
point scatterers contain all dips, whereas the training images are
dip limited. In addition, the i-RIM is initialized with the PSF itself,
instead of a smooth background velocity used for image deblurring
shown previously. This initialization is different from that used
during the training stage.
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