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Abstract. In transductive active learning, the goal is to determine the
correct labels for an unlabeled, known dataset. Therefore, we can either
ask an oracle to provide the right label at some cost or use the prediction
of a classifier which we train on the labels acquired so far. In contrast,
the commonly used (inductive) active learning aims to select instances
for labeling out of the unlabeled set to create a generalized classifier,
which will be deployed on unknown data. This article formally defines
the transductive setting and shows that it requires new solutions. Addi-
tionally, we formalize the theoretically cost-optimal stopping point for
the transductive scenario. Building upon the probabilistic active learn-
ing framework, we propose a new transductive selection strategy that
includes a stopping criterion and show its superiority.
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1 Introduction

In classification, the goal is to create a classifier that predicts the true labels for
unlabeled instances. Therefore, the classifier needs a set of instance-label pairs
(i. e., the training set) which is often not directly available. Fortunately, unlabeled
data is usually available at a low cost. However, labeling data is often expensive.
Thus, active learning may reduce the annotation cost by selecting instances for
labeling that help the classifier in its training progress the most [24].

In this article, we propose to distinguish inductive and transductive active
learning. To visualize the difference between both scenarios, we give the follow-
ing examples: (1) We aim to train a general model to identify protected animals
on high-resolution satellite images to surveil their population. In this induc-
tive learning example, we aim to build a general classifier as we want to use
it periodically and not only on the images of the initial set (i. e., the test data
is unknown). (2) After a natural disaster destroyed some buildings, we search
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for survivors. Hence, we take satellite images to find collapsed buildings across
the affected regions. In that transductive context, it is important to classify the
collected images correctly as their evaluation decides between life and death. In
such a transductive scenario, the performance on the collected data is important.
Hence, it might be beneficial to use the classifier mainly for simple cases and
annotate difficult cases manually even if they do not improve the classifier’s per-
formance much. Mixed inductive-transductive scenarios are also possible, where
the generalization of the performance beyond the collected data might be rele-
vant. However, to highlight the characteristics and consequences of each scenario,
and due to space limitations, this paper will focus on disjoint scenarios.

Up until now, almost all literature refers to inductive active learning and
only a few works exist that mention the transductive scenario. Tong [26, p. 15]
even argued that the transductive scenario is a special case of inductive active
learning and, therefore, solving the inductive case is sufficient. Recently, some
articles [16,23] consider transductive active learning but they did not mention
its distinct difference to the standard inductive setting in detail.

When deploying classifiers that have been trained with active learning, it
is crucial to decide when to stop acquiring more labels [11]. Therefore, cost-
sensitive stopping criteria balance misclassification and annotation costs [6,19].
In the inductive scenario, it is difficult to reliably estimate the misclassifications
cost because the number of instances to be classified after deployment is often
unknown. As we already know the instances to be classified in the transductive
scenario, it is straightforward to define and evaluate stopping criteria.

Within this article, our contributions are:

1. We formally define and describe transductive active learning and show that
it is beneficial to develop transductive selection strategies (Hypothesis A).

2. We propose a new transductive selection strategy and show its superiority
(Hypothesis B). Therefore, we additionally introduce the minimum aggre-
gated cost score, which is a new transductive, cost-based evaluation measure
that considers annotation and misclassification costs.

3. We propose a new cost-based stopping criterion for transductive active learn-
ing which outperforms its competitors (Hypothesis C).

Next, we discuss the related work, followed by the problem definition, the
probabilistic active learning framework, the extension to the transductive case,
and our new stopping criterion. Our evaluation is based on three hypotheses.

2 Background and Related Work

In the early 1970 s, Vapnik introduced the concept of transductive inference,
which he discussed in more detail in his later publications, e. g. [29, pp. 339ff.].
Both concepts mainly differ in the availability of an evaluation set. In inductive
inference, the evaluation set is unknown, whereas it is known for transductive
inference. The concept of transduction became especially relevant in the area of
semi-supervised learning [4, pp. 453ff.]. Here, labels are only partially available,
and the assumption is that incorporating the unlabeled instances can improve
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the classifier’s performance. One approach is to successively label the most cer-
tain unlabeled instances based on the current classification results. Thereby, the
approaches incorporate the structure of the data to build more realistic classifi-
cation hypotheses [25,27]. In this paper, we extend this idea to active learning.

The main idea of active learning is to actively ask for information that helps
best to improve the classifier’s predictions [24]. In general, the active learning
cycle starts with an initially unlabeled set of instances. A selection strategy
successively selects some of these instances and then, an oracle provides the
corresponding class labels for these instances. After updating the classifier, the
cycle restarts. The main focus of active learning research is on finding an appro-
priate selection strategy. The most commonly used is uncertainty sampling [14],
which selects instances where the classifier is most uncertain. These uncertainty
scores are mainly based on probabilistic predictions. Query-by-committee [15]
builds a classifier ensemble and selects instances where its members disagree
the most. Expected error reduction [22] optimizes the generalization error by
simulating potential label acquisitions and thereby provides a decision-theoretic
score. Chapelle [3] observed that the used probabilities can be unreliable for
only a few labels. Hence, he introduced a prior on the classes for regularization.
Value of information [9] differs from expected error reduction in the way that it
evaluates the generalization error only on the unlabeled instances and assumes
that an unlabeled instance is correct after labeling. In probabilistic active learn-
ing [12], the generalization error for both, the current and the simulated (with
the additional label) classifier, is evaluated on the same probability distribution.

The term transduction also appears in different contexts in active learn-
ing literature. Varying from our definition of transductive active learning, the
authors of [7,20] use the term transduction as a technique of propagating labels
to the remaining unlabeled data by using the predictions of the classifier. This
self-labeling approach is used to create a more robust classifier as it is known
from semi-supervised learning. Yu et al. [31] propose a transductive experimen-
tal design. Instead of using discrete classes as in classification tasks, they train a
model for noisy, continuous targets. Balasubramanian et al. [1] present a selec-
tion strategy in the online-based setting. New instances are labeled if the current
estimated performance of the classifier is insufficient. As they know this new
instance when evaluating it, they use the term transductive learning.

Ishibashi and Hino [8] recently summarized existing stopping criteria for
active learning. They divide them into three categories: (1) Accuracy-based
approaches (e. g., [13]) evaluate the predictive error of the classifier on unlabeled
data or already queried data. (2) Confidence-based approaches (e. g., [30]) use
the uncertainty of the model on the remaining unlabeled data to determine the
stopping point. (3) Stability-based approaches (e. g., [2]) consider the changes in
the model parameters and stop if the model does not change much anymore.

In their survey, Pullar-Strecker et al. [19] compare different stopping criteria
and define a cost measure based on the combined cost from annotation and mis-
classification. Their results indicate that previously proposed stopping criteria
based on the accuracy per label tend to stop learning early, while stopping crite-
ria based on classification changes tend to stop late. They conclude that criteria
should consider the trade-off between annotation and misclassification costs.
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Dimitrakakis et al. [6] introduce a cost-sensitive scenario with a parameter
balancing the annotation and misclassification cost. They propose two stopping
criteria that compare the expected performance gain and the annotation cost
caused by querying an instance. The first one uses convergence properties to
estimate the performance gain, while the second one builds on a probabilistic
classifier serving this purpose. This idea uses the generalization error of expected
error reduction [22] which has been extended in [9,10]. The stopping criterion
proposed in [8] compares the performance gain of a parameterized model with
the acquisition cost of new labels. As shown in [19], the balancing parameter
used by [6,8] is not directly applicable in real-world applications. This is because
both articles consider an inductive setting where the size of the evaluation set
is implicitly included in their parameters. However, even parameterizing the
evaluation set size directly, as proposed by [19], may not solve the problem as
it is hard to be estimated. In transduction, the evaluation set is given, which
allows us to define a more intuitive and general cost function. To our knowledge,
the transductive setting has not been investigated in a cost-sensitive scenario.

3 Problem Definition

For this section, we use a slightly adapted version of Vapnik’s [29, p. 15] definition
of “learning from examples”. A learning task consists of: (1) a generator of
random vectors (the instances) x ∈ R

D, drawn independently from a fixed but
unknown probability distribution function p(x), (2) an oracle that returns an
output value (the label) y ∈ Y, according to a conditional distribution function
p(y|x), also fixed but unknown, and (3) a classifier f that aims to predict the
oracle’s outputs.

In pool-based active learning, we have a dataset D = {(x1, y1), ..., (xN , yN )},
where all instances xi but only a few/no labels yi are known to the learner, and
D i.i.d.∼ p(x, y) = p(y|x) · p(x). Specifically, the learner has access to1:

1. A small or empty set of initially labeled instances L0 ⊆ D.
2. A set of initially unlabeled instances U0 = {x : (x, y) ∈ D \ L0}.
3. An oracle o that returns the label y = o(x) for every (x, y) ∈ D.

In each iteration i ≥ 1, a selection strategy selects one instance from the can-
didate pool x̃ ∈ Ui−1 with the goal to improve the performance of the classifier.
The selected instance x̃ is labeled by the oracle with ỹ = o(x̃), added to the set
of labeled instances and removed from the candidate pool.

Li = Li−1 ∪ {(x̃, ỹ)} (1)
Ui = Ui−1 \ {x̃} (2)

1 We assume that the instances are unique to simplify the notation. This is not a
limitation as one can easily drop this assumption by addressing instance-label pairs
through their index.
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After each iteration, the classifier is updated on the current labeled set which we
denote by fLi . Note that Ui only contains instances, whereas D and Li consist
of instance-label pairs. For readability purposes, we write U and L without the
indices if possible.

In transductive active learning, the goal is to determine the correct labels
for all instances in D. As we assume that the oracle provided the true labels for
instances in L, we only need the classifier to predict the labels for instances in U .
To simplify the notation, we define a meta-classifier gL

f that returns the known
labels for instances in the labeled set and uses the classifier fL to predict the
unknown labels. This is necessary as we cannot be sure that fL(x) = y for all
(x, y) ∈ L.

gL
f (x) =

{
y if (x, y) ∈ L
fL(x) else

(3)

We define the transductive risk as the sum of classification losses L over D.
As stated above, it is sufficient to evaluate over U .

Rtr
D(fL) =

∑
(x,y)∈D

L(y, gL
f (x)) =

∑
x∈U

L(o(x), fL(x)) = Rtr
U (fL) (4)

Throughout this article, we use the zero-one loss that compares the true label y
with the prediction fL(x) label and returns 0 if the prediction is correct and 1
otherwise.

L(y, fL(x)) =

{
0 y = fL(x)
1 otherwise

(5)

In inductive active learning, we aim to train a classifier for every (possibly
unknown) instance x

i.i.d.∼ p(x) with the goal of generalization. Consequently, we
do not know the evaluation instances during training in the inductive setting.
The distribution p(x, y) is usually approximated with a labeled validation set.
As in [29], the (inductive) risk is defined as follows.

R(fL) = E
p(x,y)

[
L(y, fL(x))

]
= E

p(x)

[
E

p(y|x)

[
L(y, fL(x))

]]
(6)

The transductive active learning setting differs from the inductive one in two
ways: (1) One knows the data used to evaluate the model beforehand, and one
does not need to build a generalized model. (2) One can exclude data from being
predicted by the classifier by asking for the label from the oracle.

4 From Inductive to Transductive Active Learning

We build our selection strategy for transductive active learning upon the proba-
bilistic active learning framework [12] that estimates the expected risk reduction
when a candidate instance is selected for label acquisition. In the first subsec-
tion, we summarize the existing method for the inductive scenario and derive
the equations for the transductive case in the second subsection.
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4.1 The Probabilistic Active Learning Framework

To estimate the inductive risk, we need to estimate the unknown distributions
p(x) and p(y|x) in Eq. 6. As suggested by [12,21], we approximate p(x) using
a Monte Carlo approach with an unlabeled set E i.i.d.∼ p(x). Here, we use E =
{x : (x, y) ∈ L} ∪ U . We estimate p(y|x) with p([)L]yx using the data in L [3,
12,17]. The probability is based on a kernel frequency estimate kL

x that contains
the number of samples for every class near x using the similarity/kernel K(·, ·).
By using a Bayesian approach that introduces a prior ε ∈ R

|Y|
+ , the probability

pL(y|x) is given by the y-th element of the normalized vector kL
x + ε.

pL(y|x) =
(kL

x + ε)y
||kL

x + ε||1
kL

x,y =
∑

(x′,y′)∈L
y′=y

K(x,x′) (7)

The inductive risk of a classifier is estimated as follows.

R̂E,pL(fL) =
1

|E|
∑
x∈E

∑
y∈Y

pL(y|x)L(y, fL(x)) ≈ R(fL) (8)

For a given candidate x̃ ∈ U , we calculate the probabilistic gain (xgain) as
the expectation value over all possible labeling outcomes ỹ ∈ Y of the estimated
inductive risk reduction. Therefore, we compare the inductive risks (estimated
on E and pL+

) of the current classifier fL and the simulated classifier fL+
that

includes the candidate with L+ = L ∪ (x̃, ỹ). Since we want to maximize the
gain, we consider the negative risk reduction.

xgain(x̃,L, E) = − E
pL(ỹ|x̃)

[
R̂E,pL+ (fL+

) − R̂E,pL+ (fL)
]

(9)

= −
∑
ỹ∈Y

pL(ỹ|x̃)

⎡
⎣ 1

|E|
∑
x∈E

∑
y∈Y

pL+
(y|x)

(
L

(
y, fL+

(x)
) − L

(
y, fL(x)

))⎤
⎦ (10)

= −
∑
ỹ∈Y

(kL
x̃ + β)ỹ

||kL
x̃ + β||1

· 1
|E|

∑
x∈E

∑
y∈Y

(kL+

kx
+ α)y

||kL+

kx
+ α||1

(
L(y, fL+

(x)) − L(y, fL(x))
)

(11)

The vectors α and β are the priors of the label distribution of the evaluation
sample x and the candidate x̃, respectively. They can be interpreted as the
number of pseudo-labels added to each region of the dataset. High numbers lead
to high regularization of the probabilities and vice versa. As proposed in [12],
we set α = β = (10−3, . . . , 10−3).

The selection strategy chooses the candidate instance x̃∗ that maximizes the
probabilistic gain.

x̃∗ = arg max
x̃∈ U

{xgain(x̃,L, E)} (12)
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4.2 Transductive Probabilistic Active Learning

The goal of transductive active learning is to determine the correct label for
all instances in the dataset D. As we assume that the oracle is omniscient, we
know that the labels in L are already correct. To get the label of the remaining
instances in U , we can either ask the oracle (and be certain that it is correct) or
use the classifier’s predictions fL(x). In the latter case, we run into the risk of
making mistakes.

Due to these specific characteristics of the transductive scenario, we need to
adapt the estimate in Eq. 7 such that the probability for the correct label y for
labeled instances x with (x, y) ∈ L is 1.

pL
tr(y|x) =

⎧⎪⎨
⎪⎩

1 (x, y) ∈ L
0 (x, y′) ∈ L ∧ y 	= y′

pL(y|x) otherwise
(13)

To calculate the probabilistic gain in the transductive setting, we use the
same estimation idea as before, but with the transductive risk. The first step
follows the simplification in Eq. 4.

R̂tr
D,pL

tr
(fL) = R̂tr

U,pL
tr
(fL) =

∑
x∈U

∑
y∈Y

pL
tr(y|x) · L(y, gL

f (x)) ≈ Rtr
U (fL) (14)

This estimate allows us to define the estimated risk reduction in the trans-
ductive setting as follows:

ΔR̂tr

D,pL+
tr

(fL+
, fL) = R̂tr

U,pL+
tr

(fL+
) − R̂tr

U,pL+
tr

(fL) (15)

=
∑
x∈U

∑
y∈Y

PL+

tr (y|x)
(
L(y, gL+

f (x)) − L(y, gL
f (x))

)
(16)

=
∑

x∈U\{x̃}

∑
y∈Y

PL+

tr (y|x)
(
L

(
y, fL+

(x)
) − L

(
y, fL(x)

))

−
∑
y∈Y

PL+

tr (y|x̃)
(
L

(
y, ỹ

) − L
(
y, fL(x̃)

))
(17)

=
∑

x∈U\{x̃}

∑
y∈Y

PL+

tr (y|x)
(
L

(
y, fL+

(x)
) − L

(
y, fL(x)

)) − L
(
ỹ, fL(x̃)

)
. (18)

In Eq. 17, we separate x̃ from U as the candidate serves two purposes. In the
first part of the equation, we estimate the inductive risk reduction for the remain-
ing unlabeled instances resulting from the improvement of the model with the
additional label. In the second part, we assume that the label ỹ is correct. There-
fore, we only need to consider the case y = ỹ as PL+

tr (ỹ|x̃) = 1 and PL+

tr (y|x̃) = 0
for y 	= ỹ. Hence, we simplify that term to L(ỹ, fL(x̃)).
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Analogous to Eq. 9, the transductive probabilistic gain is calculated as
follows:

xgaintr(x̃,L,D) = − E
pL
tr(ỹ|x̃)

[
ΔR̂tr

D,p([)L+](f
L+

, fL)
]

(19)

= −
∑
ỹ∈Y

(kL
x̃ + β)ỹ

||kL
x̃ + β||1

·
∑

x∈U\{x̃}

∑
y∈Y

(kL+

kx
+ α)y

||kL+

kx
+ α||1

(
L(y, fL+

(x)) − L(y, fL(x))
)

+
∑
ỹ∈Y

(kL
x̃ + β)ỹ

||kL
x̃ + β||1

· L
(
ỹ, fL(x̃)

)
(20)

The first part is equal to the inductive probabilistic gain evaluated on U \ {x̃}
multiplied by the number of instances in that set. This factor is necessary as the
transductive risk is defined as the sum over all losses whereas the inductive risk
uses the average loss. We call the second part of the equation the candidate gain
(cgain) as it results from acquiring the correct label from the candidate instance.
In summary, we can write the transductive probabilistic gain as the sum of the
inductive and the candidate gain:

xgaintr(x̃,L,U) = |U \ {x̃}| · xgain(x̃,L,U \ {x̃}) + cgain(x̃,L, {x̃}) . (21)

4.3 Illustrative Example

Figure 1 shows the inductive and the candidate gain for a synthetic 2-dimensional
dataset with two classes. The 7 already labeled instances are marked with a
gray circle. The classifier’s decision boundary is given as a black line and the

Fig. 1. Utility plots for the inductive and the candidate gain on a synthetic 2-
dimensional dataset with 7 labels. (Color figure online)
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dashed lines mark its confidence. The utilities are calculated for every unlabeled
instance and are given as green surfaces (the color refers to the utility of the
nearest instance). We see that the candidate gain (right plot) focuses on difficult
instances in regions of high Bayesian error (near the decision boundary). Hence,
it does not explore the data space but aims to ask the oracle to prevent the
classifier from making wrong predictions. In contrast, the inductive gain (left
plot) aims at improving the performance of the classifier. Therefore, it explores
regions that are not yet covered with labels (upper left and lower right) and
exploits the labels that already are available by refining the decision boundary.
Moreover, we observe that regions of higher density (lower right) are preferred
over regions with lower density (upper left) as labels have more impact on the
classifier’s performance there.

5 A Transductive Stopping Criterion

To define a stopping criterion for transductive active learning, we introduce a
performance metric using an economic rationale. Therefore, we consider the most
relevant kinds of costs involved in an active learning scenario: (1) The annotation
cost cAN ∈ R

≥0 describes the cost of acquiring one label from an oracle, and (2)
the misclassification cost cER ∈ R

≥0 describes the cost induced by one wrong
prediction of the classifier. Intuitively, the annotation cost is dependent on the
number of acquired labels, whereas the misclassification cost usually decreases
as more labels become available.

We define the aggregated cost as the sum of annotation and misclassification
costs. Consequently, the aggregated cost can be written as follows for the i-th
iteration of the active learning cycle.

aggcost(f,Li,Ui, cAN , cER) = |Li| · cAN︸ ︷︷ ︸
Annotation

Cost

+ Rtr
Ui

(fLi) · cER︸ ︷︷ ︸
Misclassification

Cost

(22)

Hence, we assume that the annotation cost is a linear function considering
fixed costs cAN for annotating a single instance. We can easily generalize this
by using some arbitrary cost function, which describes the cost of acquiring
the labeled set Li, but this is not in the scope of this article. We determine
the misclassification cost using the product of the estimated number of wrongly
classified instances Rtr

Ui
(fLi) and the cost for one error cER.

The optimal solution from an economic perspective is to achieve the minimum
aggregated cost (mac), as shown in Eq. 23. Calculating the mac is equivalent to
finding the optimal stopping point for the given costs.

mac(f, cAN , cER) = min
i

(
aggcost(f,Li,Ui, cAN , cER)

)
(23)

In this article, we assume to have a selection strategy that iteratively selects
one sample. In each iteration of the active learning cycle, we have to decide
whether to acquire the label of another instance or to stop querying new labels.
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Consequently, we stop the acquisition as soon as the annotation cost cAN exceeds
the estimated cost reduction, based on the transductive probabilistic gain:

Stop when ΔcER < cAN with ΔcER = xgaintr(x̃∗,Li,Ui) · cER . (24)

6 Experimental Evaluation

This section presents our experimental evaluation and starts by describing the
experimental setup including the used datasets, competitors, and visualizations.
Our evaluation approach is based on three hypotheses as motivated in the intro-
duction. For each contribution, we formulate one hypothesis, present the key
findings, and provide a detailed discussion with plots and/or tables.

6.1 Setup, Datasets, and Competitors

All experiments have been implemented in Python using scikit-learn and scikit-
activeml2. We conduct experiments with the following selection strategies: ran-
dom sampling (rand), least confidence uncertainty sampling (lc) [14], epistemic
uncertainty sampling (epis) [17], query by committee (qbc) [15] with the Kull-
back-Leibler divergence as a disagreement measure and bootstrapping to gener-
ate a committee of 10 classifiers, Monte Carlo expected error reduction (mc) [21]
including the extension of Chapelle with ε = 10−3 (chap) [3], and value of
information (voi) [9]. To show the benefits of the new transductive probabilistic
active learning (xpal tr), we also compare it to the inductive (standard) variant
(xpal) [12]. The expected error based strategies mc, chap (with [6]), voi, and
xpal tr implement a cost-based stopping criterion. Whereas voi already evalu-
ates only on the unlabeled instances, we use the unlabeled set as the evaluation
set for mc and chap to ensure comparability in the transductive setting.

We use a Parzen window classifier [18] with an RBF kernel as the classifier
(similar to [3,12,17]). The main advantages of this classifier are the low number
of parameters, the deterministic character, its probabilistic nature, and the fact
that it is generic in a way that all methods can be used with that classifier.
Using the same classifier for comparison is important as doing otherwise could
induce additional biases. The bandwidth parameter of the kernel is set by the
mean criterion [5].

We use 10 datasets from OpenML [28]. For simplicity, we remove all samples
that contain missing values and standardize all features independently to zero
mean and a standard deviation of one. We repeatedly (25 times) split all datasets
randomly into two subsets. The first one, which contains 67% of the samples,
is used for the active learning circle and builds the initially unlabeled set U0

according to Sect. 3. This set is used for evaluating the transductive setting. The
remaining samples (33%) build the test set for the inductive setting.

2 https://github.com/dakot/stopTransAL, https://github.com/scikit-activeml.

https://github.com/dakot/stopTransAL
https://github.com/scikit-activeml
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6.2 Visualization Techniques

To visualize the results, we provide learning curves (e. g., Fig. 2) showing the
transductive (resp. inductive) risk. For each dataset and selection strategy, we
averaged the risks after every iteration over the 25 repetitions. The goal is to
achieve a low error fast.

We summarize these results in ranking tables (e. g., Fig. 3). There, we show
the rank of each strategy for every dataset with respect to the area under the
performance curve. We calculate the rank for each of the 25 repetitions indepen-
dently and average these ranks into the final score. Depending on the evaluation
goal, we define a baseline strategy that will be compared to all other competi-
tors using a paired Wilcoxon signed-rank test. We identify if the evaluation score
of the competitor is significantly higher (arrow up), significantly lower (arrow
down), or not significantly different (no sign) than the baseline strategy (p-value
.05). These are summarizes as win/tie/loss statistics.

Moreover, we evaluate the transductive scenario by plotting the aggregated
cost (e. g., Fig. 4). There, we evaluate the aggregated cost (i. e., the sum of annota-
tion and misclassification costs) for different cost ratios. Depending on the appli-
cation this ratio might differ and the practitioner can find a suitable algorithm.
In Fig. 4, we show the minimum aggregated cost as we identify the optimal stop-
ping point for every selection strategy. Hence, we can assess the quality of selec-
tion strategies without the bias of a stopping criterion. In Fig. 5 and Fig. 6 (dashed
lines), the aggregated cost is determined based on the proposed stopping point of a
stopping criterion. The black lines in the aggregated cost plots show the naive base-
lines which are determined by the minimum cost between classifying all instances
as one class without acquiring any label and acquiring all labels.

Due to the large variety of plots, we only show the most interesting results.
You can find all plots in the supplemental material on github.

6.3 Results

Hypothesis A: It is beneficial to develop specific selection strategies
for transductive active learning.

Key Findings: When comparing inductive and transductive probabilistic active
learning, we show that xpal (inductive) wins when evaluated on the inductive
risk, and xpal tr wins for the transductive risk. Hence adapting the selection
strategy is beneficial and solving the inductive case (considering generalization
capabilities) is not sufficient to solve transductive active learning.

Detailed Discussion: In Fig. 2, we exemplary selected three datasets to show the
inductive and the transductive risk for all selection strategies. We see that the
transductive risk finishes at zero risk as there are no errors when all labels are
acquired. In contrast, the inductive risk converges at the Bayesian error rate.
In Fig. 3, we show the ranking statistics based on the area under the induc-
tive/transductive risk curve as described in the previous subsection. Please note
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that epis is only valid for 2-class problems. The results show the superiority
of xpal in the inductive case (rank 2.56 vs. rank 2.95) and of xpal tr in the
transductive case (rank 1.87 vs. 2.14). The reason for that is that xpal tr specif-
ically incorporated the acquisition of difficult instances into the target function
through the candidate gain as discussed in Subsect. 4.3.

Fig. 2. Learning curves of selection strategies with respect to the inductive (upper)
and the transductive (lower) risk.

Fig. 3. Ranking statistics with respect to the area under the transductive (left) and
inductive (right) risk.
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Hypothesis B: Our selection strategy xpal tr performs best for the
transductive risk and the minimum aggregated cost.

Key Findings: We show that transductive probabilistic active learning outper-
forms the other competitors in the transductive scenario on average when eval-
uated on the transductive risk and the minimum aggregated cost, i. e., the sum
of the annotation and misclassification cost for the optimal stopping point.

Detailed Discussion: To evaluate this hypothesis, we consider the figures from
Hypothesis A to evaluate the transductive risk and Fig. 4 to evaluate the minimum
aggregated cost. The results show: (1) For the transductive risk, xpal tr is only
defeated significantly in three cases (2 times by xpal and once by epis). Whereas
epis performs mediocre on cpu (rank 5.6), the ranks of xpal tr are all between 1.1
and 3.0. Hence, xpal tr seems to be fairly robust. (2) For the minimum aggregated
cost, we see in the ranking statistics that the hardest competitors are xpal (4 wins,
4 ties, 2 losses), epis (3 wins, 2 losses), and lc (7 wins, 3 ties). All other competi-
tors are defeated significantly on all 10 datasets. Hereby, epis is a special case as it
seems to be quite competitive. Still, it is important to note that it only works on
half of the datasets as it is only applicable to 2-class problems.

Fig. 4. Minimum aggregated cost curves (left) and ranking statistics with respect to
the area under the mac curve (right).

Hypothesis C: Our new stopping criterion performs best compared to
existing methods.

Key Findings: The selection strategy xpal tr with the new stopping criterion
outperforms the existing selection strategies that implement a stopping crite-
rion (mc, chap, voi). To evaluate these stopping criteria independently from the
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selection strategy, we tested their performance together with random sampling
to ensure comparability and show the superiority of our method.

Detailed Discussion: To evaluate the stopping criteria, we show the aggregated
cost for the chosen stopping point with respect to the given cost ratios (left) and
the ranking statistics (right): In Fig. 5, we evaluated the proposed combinations
of a selection strategy and a stopping criterion. Figure 6 shows the results based
on a random selection. We use random for the comparison as it induces the
smallest bias on the selection. In this scenario, we cannot assume that the best
candidate is always selected. Hence, we average the estimated misclassification
cost reduction instead of choosing the one from the selected candidate to decide
about stopping. Our method xpal tr significantly outperforms all competitors
on all datasets for both cases with only one exception (1 tie).

Fig. 5. Aggregated cost curves for selection strategies that implement a stopping cri-
terion (left) and their ranks based on the area under these curves (right).

Fig. 6. Aggregated cost curves for different stopping criteria using rand as a selection
strategy (left) and their ranks based on the area under these curves (right).



482 D. Kottke et al.

7 Conclusion and Outlook

In this article, we introduced and formalized the transductive active learning sce-
nario. We showed that this scenario is not just a special case of the inductive one
and that it requires new methods for instance selection. To address this problem,
we proposed a novel transductive selection strategy based on the probabilistic
active learning framework and experimentally showed that it performs better
than the inductive version in the transductive setting. We introduced and moti-
vated a target function for stopping criteria for transductive active learning that
considers the misclassification and the annotation costs. Based on this target
function, we introduced the minimum aggregated cost that evaluates stopping
criteria based on how well they perform for different cost ratios. We used our
strategy to derive a novel cost-based stopping criterion. The empirical evaluation
showed that it outperforms existing criteria.

In the future, we aim to investigate how the prior influences the proposed
methods (here set to 0.001 following [3,12]). In this article, we only considered
fixed annotation and misclassification costs and omniscient oracles. However,
it is often more realistic that instances have different annotation costs (e. g.,
dependent on the annotation time, or quality) or that instances have different
misclassification costs (e. g., dependent on the instance’s importance). Moreover,
considering computational cost for the selection might be beneficial. Finally, we
want to analyze how our stopping criterion can be used also with other active
learning strategies such as uncertainty sampling.
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chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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