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Abstract—We consider the problem of planning the motion
of a drone equipped with a robotic arm, tasked with bringing
its end-effector up to many (150+) targets in a fruit tree; to
inspect every piece of fruit, for example. The task is complicated
by the intersection of a version of Neighborhood TSP (to find
an optimal order and a pose to visit every target), and a robotic
motion-planning problem through a planning space that features
numerous cavities and narrow passages that confuse common
techniques. In this contribution, we present a framework that
decomposes the problem into two stages: planning approach
paths for every target, and quickly planning between the start
points of those approach paths. Then, we compare our approach
by simulation to a more straightforward method based on multi-
query planning, showing that our approach outperforms it in
both time and solution cost.

Index Terms—motion planning, multi-goal, drone, robotics,
task-sequencing

I. INTRODUCTION

The potential of robotics in agriculture to reduce labor
costs and enable new, currently prohibitively expensive tasks
is great, despite the numerous remaining challenges. In fact,
autonomous robots are already being adopted for use in
various tasks across the industry; drones (multirotor UAVs)
form an important subset of these robots, which tend to focus
on a variety of tasks, such as monitoring and inspection [5]. In
fruit tree farming, for instance, we might wish to perform an
up-close inspection of a large number of targets (e.g. pieces
of fruit or blossoms) using a drone. Such a task would require
a drone equipped with an arm to bring a sensor or a tool of
some sort up-close to every target, while avoiding the tree’s
numerous branches (see Figure 1).

It is a complex problem for various reasons. First, there are
the common combinatorial reasons: what is the optimal order
(out of n! possibilities for n targets) to visit every target and
from which pose to do so? This is a Traveling Salesperson
Problem with Neighborhoods (TSPN) [12, 24], a generaliza-
tion of the Traveling Salesperson Problem, the canonical ex-
ample of an NP-Hard problem: good approximating techniques
exist [6, 1, 21], but an efficient, optimal solution remains
elusive despite extensive study. Unfortunately, for n targets,
existing TSP(N) solvers expect the cost of moving between all

This research was partially funded by Interreg Europe as part of the CIMAT
agricultural robotics project.

Fig. 1. Rendering of our planning scene: the drone must bring its end-effector
to every apple (red) in the apple tree. Due to the large number of branches
and complex structure of the tree, navigation between apples is difficult. Note
that, while leaves are ignored as collision objects, the (many) twigs that leaves
are attached to do count.
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Fig. 2. Schematic, 2D representation of a planning scene illustrating the
difficulty in estimating the cost of moving between two targets within the
branches of a fruit tree: note how, in this scene for instance, targets 1 and
2 are at a similar distance to target 3 as-the-crow-flies, yet the distance that
must be traveled between targets 2 and 3 (dotted blue line) is far greater than
between 1 and 3 in reality. Of course, this diagram does not capture the extra
complexity from working in 3D.

Opn2q pairs of targets to be known a priori; this requirement is
hard to meet, as three- or higher-dimensional planning spaces
often lack the structural properties that facilitate the efficient
computation of optimal shortest paths [2, 4].

Second, the complex branch structure of the tree, full of
cavities and potential narrow passages, presents significant
practical complications to planning paths through the tree even
when start- and end-points are known. Distance heuristics
that ignore obstacles, such as the Euclidean distance between
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targets or some distance metric between robot configurations,
are difficult to apply as fruit may appear close together while
actually being positioned on opposite sides of a tree branch,
while other fruit may be far apart while growing within the
same cavity within the tree, making movement between them
unexpectedly easy. See Figure 2 for an illustration.

We study the intersections of these problems in this paper.
The planning environment that we consider in this paper
consists of a 3D model of a fruit tree; examples are shown
in Figures 1 and 5. To focus on the combinatorial challenges,
we assume that such a model and a set of target regions is
available at the time of planning and that this model does not
change during the operational phase of the drone.

A. Related work

Motion planning is a well-known and highly studied prob-
lem domain. Famous algorithms like Dijkstra’s [8] and A* [13]
efficiently give exact, optimal solutions in discrete planning
spaces, while methods based on roadmaps and cell decom-
position do the same in some continuous planning spaces,
though often at a cost exponential in the degrees of freedom
[18]. In these spaces, sampling-based methods such as the
Probabilistic Roadmap (PRM) [16] and the Rapidly-Exploring
Random Tree (RRT) [17] certainly proved their worth. Many
such methods are probabilistically complete: given enough
time and memory, the probability of finding a path (if it
exists) converges to 1. Variants of these methods such as RRT*

[15] and PRM* [15] are asymptotically optimal: they give a
further guarantee that the length of the path they find will
asymptotically converge to the optimal.

In multi-goal settings, Vicencio et al. [24] and Faigl et
al. and [9] approximately solve the TSPN through genetic
algorithms and various heuristics, but they do not consider
obstacles. A pair of publications by Janoš, Vonásek and
Pěnička [14, 25] grow RRT-like trees from a set of individual
goal configurations in 2D, connecting them into a roadmap
when they touch.

For robotic arms, Wurll et al. [26] show how to pro-
gressively build a cost matrix between pairs of individual
goals configurations, RoboTSP[22] presents a method based
on task-space distance heuristics for redundant arms (and
thus multiple configurations per goal) for an industrial hole-
drilling application on uncluttered planar surfaces, and Edan
et al. consider the TSP for a mobile fruit-picking robot in an
obstacle-free setting.

B. Our contribution

In this paper, our contributions include:

‚ A decomposition of the motion planning problem into
local approach planning steps and fast global planning
steps, reminiscent of retraction-based methods [19, 20].

‚ A method to solve the approach-planning step, in a way
that injects limited collision information into the global
path-planning step.

‚ A method for near-instant motion planning in the global
stage and how to apply it to formulate a cost matrix for
a TSP solver.

‚ A comparison by simulation of our approach with a
more straightforward algorithm based on the multi-query
capabilities of PRM* [15].

In the remainder of this paper, we shall formalize our
problem in Section II, and then explain our problem decom-
position in Section III. For comparison, we present a more
straightforward alternative in Section IV, which we compare
by simulation to our method in Section V. Finally, we conclude
our paper in Section VI.

II. PROBLEM FORMULATION

First, we formally define some concepts and notation in
order to formulate our problem in an abstract, formal manner.
In Section II-B, we then describe how the fruit tree inspection
problem is defined in these terms.

A. Abstract formulation and definitions

A configuration c P C (where C is the configuration space)
determines all degrees of freedom of a robot, fully defining
the pose and joint angles. A configuration c P C is free if the
robot does not collide with any obstacle in the pose defined by
c; we denote the free configuration space, the set of all free
configurations, as Cfree. For a given configuration space, we
assume a distance metric d : C2 Ñ R` Y t0u exists between
pairs of configurations.

A path is a continuous curve through the configuration
space, formally defined as a mapping with type r0, 1s Ñ C. A
path Π is collision-free if for all t P r0, 1s, Πptq P Cfree.

The length of a path Π is defined as

|Π| “ sup
kPN,0“t0ăt1ă¨¨¨ătk“1

k´1
ÿ

i“0

d pΠptiq,Πpti`1qq ,

based on the definition from [15], though generalized from
Euclidean vectors to arbitrary C. Intuitively, this is analogous
to an integral of the form

ş1

0
|∇Πptq|dt if Π were differentiable

in t.
Finally, we define a goal region Gi P G as a given set of

free configurations (Gi Ď Cfree) of which one must be visited,
where G is the set of given goal regions. A goal (region) Gi is
reachable from a given initial configuration c0 P Cfree if there
exists a collision-free path Π where Πp0q “ c0 and Πp1q P Gi.
A path Π is said to visit a goal (region) Gi if there exists a
t P r0, 1s such that Πptq P Gi. Furthermore, we assume that a
procedure GoalSamplepGiq exists that returns a configuration
uniformly at random from Gi.

Formally, we define our problem as follows: “For a given
set of goal regions G and an initial configuration c0 P Cfree,
find a short collision-free path Π, with Πp0q “ c0, that visits
all reachable goal regions Gi P G .”
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B. Specifics of our planning scene

To make the above definitions more concrete, we define how
they apply to our planning scene depicted in Figure 1.

The robot in question consists of a flying (floating) base,
assumed to always fly upright, fitted with a 3-link robotic arm
connected with revolute joints. Hence, the configuration space
C is defined as the set of all tuples of the form p⃗t, r, θ0, θ1, θ2q,
where t⃗ P R3 is the translation of the flying base, r P H1 with
|r| “ 1 is the rotation of the flying base (assumed to always
be upright), and θ0, θ1, θ2 P r´π, πs are the rotation angles of
every arm joint in radians. Moreover, let epcq be the position
of the end effector for some c P C.

The n goal regions are defined by target points (e.g.
corresponding to fruit) in the tree: for a given point ti P R3

(i P t0 . . . n ´ 1u), the goal region Gi P G is the set of all
c P Cfree where the Euclidean distance |epcq, ti| is less than a
given threshold ϵ ě 0. To implement GoalSample, we simply
generate a configuration c P C uniformly at random, then apply
a translation such that |epcq, t| ď ϵ, then reject samples where
c R Cfree

The distance dpci, cjq for any given ci “

p⃗ti, ri, θ0,i, θ1,i, θ2,iq P C and cj “ p⃗tj , rj , θ0,j , θ1,j , θ2,jq P C
is defined as

dpci, cjq “ |⃗ti ´ t⃗j | ` arccos |ri ¨ rj | `
ÿ

kPt0,1,2u

|θk,i ´ θk,j |,

which corresponds to the standard definition used in MoveIt
[7] with all joints given equal weight.

Collision checking is used to check whether a configuration
c P C is in free space Cfree: c P Cfree if and only if no part of
the robot collides with a wooden part of the tree (brown in
Figure 1) or with the xy-plane (the ground, with z being the
vertical axis). As a general rule of thumb, collision checking
is the most expensive part of a motion planning algorithm and
should therefore be minimized when possible. We assume that
leaves are pushed aside when collided with, and thus ignore
collisions with them for simplicity.

III. SHELL/APPROACH DECOMPOSITION

In this section, we describe our main contribution: the
decomposition of our robotic TSPN problem into a local
approach planning stage and a fast global planning stage. We
first present our approach in an abstract manner, where we
convey our main intuition and prerequisites, and then show
how it can be implemented for our fruit tree scene.

A. Abstract approach

The intuition behind our approach is to designate a set of
shell configurations Cshell Ď C that form a boundary around
some cluttered portion of C, structured such that finding a short
collision-free path through Cshell (a shell path) between two
configurations ci, cj P Cshell is easy enough to do Opn2q times
(for n goal regions) and then planning approach paths between
Cshell and configurations outside this subspace. An analogy can

1H is the set of all quaternions

t2
'

t2
t1

S

t1
'

c1
c2

A1
A2

Fig. 3. Schematized 2D illustration of a goal-to-goal path between two targets
t1, t2 P T , created by composition of two approach paths and a path along
a spherical shell S around the obstacles. The robot first retreats from t1 via
A1, then travels along S (path through Cshell), then approaches t2 via A2.
Note how c1, c2 are not at the projections of t1

1, t
1
2, respectively; a planner

may pick any configuration in Cshell as the start of the approach path, which
effectively injects some limited collision-related information into the global
planning stage.

be made to retraction-based methods [19, 20], although in
our case retraction takes place onto a two-dimensional surface
rather than a one-dimensional network of arcs.

First, in the local stage, we construct a set of approach
paths A by planning a short collision-free path Ai for every
Gi P G , such that Aip0q P Cshell and Aip1q P Gi; if no path is
found, Gi is marked unreachable. Similarly, we plan a short
collision-free initial approach path I such that Ip0q “ c0 and
Ip1q P Cshell; we assume Cshell is reachable from c0.

Now, to compute a goal-to-goal path Πi,j between two goal
regions Gi,Gj P G with respective approach paths Ai, Aj P A
(such that Πi,jp0q P Gi and Πi,jp1q P Gj), we compose paths
such that the robot first backs away from Gi by following Ai

in reverse, then travels along the shell path Bi,j between Aip0q

and Ajp0q, and finally approaches Gj by following Aj ; such a
movement is illustrated in Figure 3. As moving all the way out
to Cshell then back into the cluttered region can be inefficient
for targets in close proximity, we further recommend locally
optimizing the resulting path. Formally, we thus define

Πi,j “ LOPT
`

RevpAiq ˚ Bi,j ˚ Aj

˘

where Rev reverses a path, ˚ is a path concatenation operator,
and LOPT is a standard local optimization procedure, such
as PathSimplifier in OMPL[23], which shortens a path by
repeated short-cutting and perturbations until convergence;
start and end configurations are preserved.

Then, in the global stage, to determine the order in which to
visit every approach path Ai P A (and every reachable Gi P G
by proxy), we call out to an approximate TSP solver to find
a permutation A1 of A that approximately minimizes

dshell
`

Ip1q, A1
0p0q

˘

`

i“|A1
|´2

ÿ

i“0

dshell
`

A1
ip0q, A1

i`1p0q
˘

where for any ci, cj P Cshell, dshellpci, cjq is the length of
the shell path between ci, cj . In our implementation we use
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the routing problem solver in Google OR-Tools [21]; instead
of considering all Opn!q possibilities, it works by computing
an initial guess, then progressively refining it in an anytime
fashion; we used default settings. Note how, by approximating
the length of the true shortest path between goal regions by
dshell, which is fast to compute by definition, we avoid the
problem that computing all Opn2q costs by just planning paths
is prohibitively expensive. This does come with the assumption
that the shell paths will have a mostly dominant impact on the
length of actual paths between goals.

The final path Π is then defined as

Π “ LOPTpI˚B0˚A1
0q ˚

i“|A1
|´2

˚
i“0

Πi,i`1

where B0 is the shell path between Ip1q and A1
0p0q, and ˚

concatenates a sequence of paths.

B. Implementation
In the previous section, we treated Cshell, as well as planning

paths both from and to Cshell as well as through Cshell, in an
abstract manner. In this section, we shall implement these
notions for our fruit tree planning problem.

We define Cshell first. Let S be a minimum enclosing sphere
[10] around all branches and leaves of the tree, ignoring the
trunk. For any p P R3 let ProjSppq be the projection of p
on the surface of S, and let SConfppq be the configuration
c “ p⃗t, r, θ0, θ1, θ2q P C with θ0 “ θ1 “ θ2 “ 0 (arm straight
out), r chosen such that the ray from t⃗ through epcq intersects
the vertical line through the center of S (robot facing the tree),
and t⃗ is chosen such that epcq “ ProjSppq. Finally, let Cshell
be the set of all SConfppq for every p P R3 on the surface of
S.

1) Approach paths: Given a goal region Gi Ď G we must
plan a short collision-free path Ai between Gi and Cshell.

As a starting point, let ci “ SConfptiq where ti is the target
associated with Gi; ci is thus a shell configuration close to Gi,
serving as an initial guess for Aip0q.

First, check if the straight-line motion from ci to c1
i is

a collision-free path; otherwise, we use any sampling-based
motion planner.

In our case, we use PRM* [15] to plan from ci to any
configuration in Gi. As a stopping criterion, we define time
limits tmax and tpatience with tmax ą tpatience ą 0; we stop
iterating if tmax is exceeded and no solution has been found,
or if tpatience has elapsed since the last improved solution has
been found; the intuition behind tpatience is to allow PRM*to
discover easy optimizations while avoiding diminishing returns
from longer runtimes; due to the large number of targets,
we consider it acceptable to skip a small number where
determining reachability takes excessively long.

Inspired by [11], we restrict our sampler by repeatedly
generating a motion m between ci and a sample g P Gi, taking
a randomly-interpolated configuration si “ Lerppci, g, uq

where u is a random value between 0 and 1, then for r ą 0
picked from a half-normal distribution around 0, we sample
a configuration s1

i such that dpsi, s
1
iq ď r. Finally, we always

apply local optimization as a post-processing step.

Fig. 4. Schematized 2D illustration of the TSP-over-PRM* algorithm: the
PRM*[15] algorithm takes random configuration samples, and attempts to
make straight-line connections between nearby samples. For every goal region,
k samples are taken and added to the graph in a similar manner, effectively
reducing our TSP(N) in the full configuration space to a finite, discrete version
of the problem. The final path is highlighted in green. Note that in reality,
the workspace is in 3D, bringing with it significant increases in complexity.

2) Shell paths: Finally, to construct the shell path Bi,j

between any given ci, cj P Cshell, let g be the geodesic
on S between epciq, epcjq, and for every t P r0, 1s, define
Bi,jptq “ SConfpptq where pt is a point interpolated along
g by parameter t P r0, 1s. A special case arises where Π
collides with the trunk of the tree. It is possible to avoid this
case by deforming g such that we have SConfpptq P Cfree for
all pt P g. In practice, however, we have found that simply
allowing the collision, then running OMPL’s [23] check-and-
repair procedure works well enough to handle this case.

IV. MONOLITHIC APPROACH: TSP(N) OVER PRM*

In this section, to compare it with our decomposition-based
approach, we define an algorithm that relies on the multi-query
capabilities of PRM* [15], which works by first building up
a probabilistic roadmap graph of the whole space that can
then be queried relatively inexpensively many times. Thus, this
algorithm treats C as a monolith, rather than distinguishing a
special subspace like Cshell.

A. Algorithm description

The TSP-over-PRM* algorithm, illustrated by Figure 4, is
based on this idea: it first lets PRM* build a roadmap graph.
Then, it takes a configurable k goal samples per goal region,
and connects these to the graph as if they were samples drawn
by the original algorithm. Finally, Opn2k2q paths are queried
between every pair of goal samples using A*, and OR-Tools
[21] is used to solve the TSP(N) within the graph.

First, we follow PRM* [15] to build a roadmap graph
R “ pV,Eq, as implemented in [23]. We do so by repeatedly
taking a sample c P C; the translation component is sampled
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uniformly from r´r, rs ˆ r´r, rs ˆ r0, rs where r ą 0 is
a parameter chosen such that enough margin is left on all
sides of the tree model to capture the connectivity of that
space; the z component is limited to z ě 0 to avoid sampling
configurations underneath the ground plane. The configuration
c is then collision-checked; if c P Cfree, a set of k1 P N
nearest neighbors to c are looked up (see [15] for how to
pick k1 to guarantee asymptotic optimality); for every ci (with
i P t0 . . . k1 ´ 1u), the motion pc, ciq is collision checked
and added to E if collision-free. Samples are taken until a
configurable time tR has passed. Then, for every Gi P G , a
configurable k P N configuration samples are taken from Gi,
and added to R using the same procedure as before. Let S
be the set of all sampled goal configurations. Finally, add the
initial configuration c0 to the graph like the other nodes.

Now that our roadmap R is available, we first compute a
shortest path in R from c0 to every ci P S using A* (as is
typical for path queries in PRM*); drop ci from S if no path
is found. If for some Gi P G , all samples are dropped from S,
Gi is marked as unreachable. Then, for every unordered pair
ci, cj P S, compute a shortest path from ci to cj in R using
A*. Every time a path Π is found with A*, store the length of
Π in a distance lookup table D : ptc0u Y Sq2 Ñ R` Y t0u,
which can then be queried to find the cost to move between
pairs of configurations from ptc0u Y Sq.

Note the omission of an LOPT step here: for n goals, D con-
tains Opn2 ¨k2q entries; running LOPT for each would be pro-
hibitively expensive since it relies on collision checks. Quite
paradoxically, increasing tR leads to a bigger R, which in turn
increases the cost of running A*, and subsequently of building
D. This is the fundamental issue that our Shell/Approach
framework aims to solve.

Similar to what we did in Section III-A, we call upon an
existing TSP(N) solver to find a permutation S1 of a subset of
S where for every reachable Gi P G , there is a cj P S1 such
that cj P Gi, while minimizing

Dpc0, S
1
0q `

i“|S|´2
ÿ

i“0

DpS1
i, Si`1q.

We again use Google OR-Tools [21] for this purpose, as
the “disjunction” feature allows us to specify the necessary
constraints.

Finally, call upon A* again to reconstruct an initial path I
from c0 to S, and a path Πi,i`i for every consecutive pair
ci, ci`1 in S1. Finally, we define

Π “ LOPTpIq ˚
i“|A1

|´2
˚
i“0

LOPTpΠi,i`iq

as our output path.

V. COMPARISON IN SIMULATION

In this section, we experimentally compare our
decomposition-based method (see Section III) to the
TSP-over-PRM* method (see Section IV) by running them
on a simulated version of the fruit tree inspection problem
presented in the introduction.

Fig. 5. Rendering of the tree tree models used in the simulation whose results
are depicted in Figure 6. The model on the left is the same as depicted in
Figure 1.

A. Set-up

To test our algorithms, we used MoveIt [7] to model our
scene and check for collisions; we continuous collision detec-
tion to prevent tunneling through thin structures. A total of 3
fruit tree models (see Figure 5) were used, each for a different
planning scene. While more models were available, results did
not vary much. Each consists of three components: the wooden
parts (used for collision detection), leaves (ignored, as these
are soft obstacles), and fruit (the robot must visit these); the
trees contained 163, 300 and 205 pieces of fruit, respectively.
By visual observation, in the first tree, fruit is distributed in
small clusters, whereas the second and third trees have a more
uniform distribution of fruit. The relative scale of our robot to
the tree models is shown in 1.

The wooden parts had triangle meshes with varying com-
plexity (38264, 106286, and 12838 triangles) due to thin twigs
and curved tree parts. The HACD algorithm in Bullet Extras
[3] was used for convex decomposition. All simulations were
run on a Lenovo IdeaCenter 5 14ACN6 with 16 GiB RAM,
which features an AMD® Ryzen 7 5700g APU.

We generated a set of 120 planning problems as fol-
lows: 10 times for each fruit tree model, for every n P

t10, 50, 100, 150u, we pick n fruit as goals, and a random
starting configuration c0 outside the tree. For each problem,
we run the Shell/Approach-based planner and TSP-over-PRM*

planner with different parameter values. Specifically:
‚ The Shell/Approach Planner (Section III) with a spherical

shell, with tmax picked from 400ms, 500ms, and 1000ms
and tpatience set at 25 ms.

‚ The TSP-over-PRM* planner (Section IV),
with a warm-up planning time tR picked from
t1s, 2s, 5s, 10s, 15s, 20su seconds and k P t2, . . . , 10u.

In total, this makes for 57 algorithm-parameter combina-
tions, most of which are for TSP-over-PRM* since that is the
point of comparison that we wish to improve upon with any set
of parameters for the spherical Shell/Approach planner. Each
of these is run once for every planning problem (for a total
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Fig. 6. Mean path length (l̂) per visited goal, versus mean required CPU time
(t̂) in seconds to compute the path. Every row corresponds to a different tree
model, every column to a different target set size n; n “ 50 was removed to
save space, but shows identical trends. Every ‚ marker represents a different
algorithm/parameter combination; a ˆ marker is used for planners marked as
failing due to skipping excessively many targets.

of 8040 runs), with 16 runs performed in parallel (matching
the thread count of our APU); for each run, we record the
following metrics:

‚ l: Total path length divided by the number of targets
visited.

‚ p: Proportion of total targets visited.
‚ tmax: Total time taken to run the algorithm.

B. Analysis

Once the l, p, t of reach run are recorded, runs are grouped
per scene and total number of targets and we compute the
means l̂, p̂, t̂ within each group. There is thus one tuple of
l̂, p̂, t̂ for each combination of planner and parameters, number
of apples, and tree model.

As is unavoidable with sampling-based techniques, a plan-
ner may erroneously mark a target as unreachable. Therefore,
we mark a planner as failing if p̂ ă p̂max ´ 0.05, where p̂max

is the highest p̂ for a given tree model, effectively quantifying
the difficulty of reaching targets in that scene. Only one of the
three scenes had p̂max ă 1, making two rejection thresholds
of p̂ ă 0.95, and one of p̂ ă 0.82; one scene was clearly more
difficult. Error margins in l̂, p̂, t̂ were negligible.

The resulting data is plotted in Figure 6. Observing the
plot, the Shell/Approach Planner is effectively dominant in
performance across scenarios, though margins vary; these are
notably tightest on the third tree, which also had a significantly
lower p̂max, although it should be noted that TSP-over-PRM*

failed far more frequently than ours in this case.

Together, our experiments show that our decomposition-
based approach (with spherical shell) significantly outper-
formed TSP-over-PRM* in terms of both path length per target
l̂ and running time t̂. In fact, our approach often runs in
an order of magnitude less time for lower l̂. Curiously, a
failing planner (which skips targets) does not achieve lower
path lengths, improving the success rate of TSP-over-PRM* is
therefore unlikely to improve l̂.

Indeed, the Opn2k2q-time computation of the distance
matrix formed the worst bottleneck for the TSP-over-PRM*

planner. In relative terms, tR of only a few seconds appeared
best, with an increase in k having a stronger effect on quality
- at a severe computational cost.

In terms of our approach, we were also quite surprised at the
effectiveness of simply trying the straight-line motion first; this
succeeded in about half of all cases, replacing an expensive
path-planning operation with a single motion collision check,
while improving path quality. Apparently, fruit is quite-well
reachable from the outside of the tree in our models, which
we only realized when our approach was apparently able to
take advantage of it so well. Also, while we chose S as the
minimum enclosing sphere, results barely changed when we
inflated the radius, or moved the center of S, indicating a fair
amount of robustness to the choice of S.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we contributed a general framework for the
decomposition of the multi-goal motion-planning problem by
designating a subspace Cshell Ď C, then solving two subprob-
lems: how to plan from Cshell to every goal, and how to plan
between the starting points of the approach paths within Cshell,
exploiting structural properties of Cshell to do this quickly and
efficiently. Then, in a simulation, we compared a practical
implementation of this framework to the more straightforward
approach based on the multi-query planner PRM*, with our
planner showing superior performance.

However, we believe that this kind of breakdown of the
problem shows potential beyond simply improved performance
compared to monolithic approaches. For example, the spher-
ical shell in Section III-B was chosen as a simple proof of
concept; more complex definitions based on a convex hull
or α-shape may yield significantly better performance. Also,
with the difficulty of multiple targets removed, the approach-
planning stage could be examined more; while our current
method works well, it feels somewhat ad-hoc and could be
replaced by an algorithm with better theoretical properties and
performance.

On top of improvements to the implementation, we would
like to explore the power of the problem decomposition in
lifting some of the assumptions made about the environment.
For instance, this separation should prove useful in the face
information that is discovered as the drone flies, or of more dy-
namic environments involving trees swaying in windy weather
conditions or rotor downdrafts. Also, while the algorithm is
described and tested for a drone, it should work for any robot
for which Cshell can be implemented.
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