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A novel method for holographic transport
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We introduce a novel and effective method to compute transport coefficients in strongly interacting
plasma states in holographic QFTs. Our method is based on relating the IR limit of fluctuations on
a gravitational background to its variations providing a previously overlooked connection between
boundary and near horizon data. We use this method to derive analytic formulas for the viscosities
of an ansiotropic plasma state in the presence of an external magnetic field or another isotropy
breaking external source. We then apply our findings to holographic QCD.

INTRODUCTION

Gauge-gravity duality [IH3] has emerged as an essen-
tial tool in characterizing transport in strongly interact-
ing many-body systems such as the quark-gluon plasma
and dense quark matter produced in heavy ion collisions
and neutron star mergers, as well as condensed matter
such as high-T,. superconductors and resonantly inter-
acting ultra-cold atoms. The celebrated holographic pre-
diction for the shear viscosity-entropy ratio n/s = 1/4n
[4H6] provides a very good estimate for the quark-gluon
plasma — see for example [THI0]. Among other success-
ful predictions of the holographic approach are the bulk
viscosity of the quark-gluon plasma [TTHIT], electric and
thermal conductivities [I§], chiral anomalous transport
[19, 20] and Hall viscosity of magnetized plasmas [21].

Standard holographic computation of a transport co-
efficient involves determining response of plasma to per-
turbation by solving for the fluctuation created by this
perturbation on the boundary and falling in the horizon
of the dual blackhole. In fact, this relation between trans-
port and blackhole horizons predates the gauge-gravity
duality. The membrane paradigm [22], 23] proposed to
reformulate Einstein’s equations near horizon in terms
of hydrodynamics of a putative fluid characterized by
transport coefficients. This idea was later reified in the
context of holography using different approaches [24H29].
However, only in special “universal” cases e.g. shear vis-
cosity and electric conductivity of an isotropic fluid—
which are dual to massless helicity-2 and helicity-1 fluc-
tuations — transport coefficients can be expressed solely
in terms of horizon data. This is because response is read
off from the subleading term near the boundary which
can be mapped to horizon data only for such massless
fluctuations [30]. The situation is further complicated by
isotropy breaking external fields, e.g. a magnetic field,

that are present in all the aforementioned examples.

In this paper we introduce a novel means to study
holographic transport which allows for reading off both
universal and non-universal coefficients directly from the
horizon. The fact that transport coefficients are obtained
from the IR limit of bulk fluctuations suggest that they
are intimately related to variations in the background ge-
ometry. We flesh this idea out and utilize it to provide a
novel and effective method to compute these quantities.

THE METHOD

Our basic idea is to relate w = 0 limit of bulk fluctua-
tions — the standard holographic prescription to com-
pute transport coefficients — to variations of parameters
of the holographic background such as temperature and
charge. Below is a demonstration in the case of bulk vis-
cosity, (, in an isotropic background. The minimal holo-
graphic set-up [31] 32] that is dual to a non-conformal
theory with non-trivial ¢ is a black-brane
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coupled to scalar field ¢ and a gauge field A with field
strength F' = dA with an action,
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where the potential V' is chosen such that the metric
is asymptotically Anti-de-Sitter near the boundary and
we keep the gauge field Lagrangian L[F, ¢] unspecified.
Thermodynamics and transport of the dual thermal field
theory has been studied in detail in [33] [34] and [35]. We
first review the standard holographic computation [I5]
35] of bulk viscosity. This follows from fluctuating the



metric [30] as Gap — Gap + Hap, with
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Corresponding fluctuation equations, that are obtained
from (2), turn out to have a nested structure [I5]
which determines the solution completely in terms of
h(r,t). Assuming time dependence of the form h(r,t) =
h(r) exp(—iwt) etc. and imposing infalling boundary con-
ditions at the horizon, one obtains in the w — 0 limit
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where s is the entropy density, subscript H denotes hori-
zon value, and hpg is the horizon value of the fluctuation
in the w — 0 limit obtained by numerically solving the
fluctuation equation with the boundary conditions
limh=1, }1_1{(1) O(r)=-1 . (5)

r—0

These boundary conditions follows from the fact that the
Kubo formula connects bulk viscosity to the correlator of
the energy momentum tensor with spatial indices.

We will now show that Eq. 7 can be rewritten in
terms of variations of background fields. We consider the
charge neutral case for simplicity, the generalization to
the charged case being straightforward. We first relate
fluctuations to variations of the background, which leads
to
A'(r)
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In Eq. @ we used diffeomorphism symmetry to set the
fluctuation of the dilaton to zero to remain consistent
with the standard computation outlined above. Now,
as with the equivalence of active and passive transfor-
mations in classical mechanics, we can create the same
situation as fluctuation added on a fixed background in-
stead by varying the background so as to subtract this
fluctuation. This requires finding the right symmetry
transformations to produce new backgrounds from the
given one in order to obtain the desired boundary values
for the fluctuations. Symmetries of a generic background

are [33], [37]:
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where €71,€5,€3 parametrize independent infinitesimal
transformations. Now, inverting @, adding the symme-
try transformations @ with €; and ey judiciously chosen
to reproduce , and expanding near the horizon, one
finds
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with x is an arbitrary constant which could be set to
zero by choosing e3 appropriately and which cancels be-
low. One finally obtains for the total variation of the
background functions
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where we used érg = —0f(ru)/f and (8) to determine
the variation of horizon. Note that here d¢y and 0Agy
denote the variations of the boundary values of the fields,
whereas 0¢(rg), 0f(rg), and 0A(ry) are the variations
of the functions evaluated at the horizon. Finally, to
express in terms of physical quantities, we note that
s ~ exp(3Ag). Therefore, we can write
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Employing Eq. we finally obtain

_ S 0du 2

This result coincides with the formula initially derived in
[16], using positivity of entropy production near horizon,
which was numerically shown to be equivalent to Eq.
in Ref. [I7]. Our derivation does not use entropy argu-
ments, and relates (/s directly to horizon data d¢p /0 Ag.

ANISOTROPIC TRANSPORT

To apply our method to the more complex and unex-
plored case of transport in anisotropic fluids, we consider
an external (non-dynamical) magnetic field [38] which
decomposes the leading order dissipative correction to
stress tensor as [39, [40]
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where we define the projectors
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Our goal is to compute the anisotropic transport co-
efficients that appear in using holography. Mag-
netic field is holographically realized by choosing the bulk

gauge field in as
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Accordingly, we should introduce an anisotropy function

W in the metric ansatz as
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The shear viscosities 1, and 7 were computed in
Ref. [41] and it was found that
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See [42H44] for some recent holographic studies of trans-
port in anisotropic thermal states.

Anisotropic bulk viscosities from fluctuations

Aiming at generalizing Eq. to the anisotropic case we
consider metric fluctuations
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We see that we now have two spatial scalar fluctuations
h (r) and hy(r), which do not have a decoupled fluctua-
tion equations, unlike was the case for the isotropic h(r).
We apply the approach based on conserved graviton flux
between the boundary and the horizon, introduced in
[15] and generalized to multiple fluctuations in [45]. We
only sketch the most relevant points below, see [46] for
details. We first construct linear combination of fluctu-
ations which decouple from each other near the horizon.
These are
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Assuming harmonic time dependence so that &7(r,t) —
exp(—iwt)&r(r), we find
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where K}Z) are coeflicients that depend on the back-
ground fields and are subleading near the horizon. We
now have two fluctuations near horizon that are coupled
near the boundary. We can label the linearly indepen-
dent boundary conditions also by index I which leads
to a 2x2 matrix whose solution near the horizon and in
the w — 0 limit we denote by & H{; this is analogous to
hy in the previous section. Following [I5], [45] we ob-
tain the retarded Green’s functions in terms of the flux
of gravitons Fr; at the horizon as
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where the expressions for A; reflect the form of K;l)

in (19). One finds from Eq. (12), see [39], that
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Anisotropic bulk viscosities from variations

We now apply our method to express Eq. in hori-
zon data. As in @ fluctuations are expressed in terms
of background variations as [47]
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Following the same steps as in the isotropic case discussed
above we now work out the symmetry transformations of
the background to cancel the boundary sources. There is
an additional symmetry under which the new background
functions W and B transform as 6. W = €4+ (re; +€3)W’



and 0.B = (€2 + 2€;1 + 2¢4) B while transformations of A,
¢ and f remain as in @ Now, in addition to (5] we also
have the boundary values of either of &; to cancel. We
use the extra symmetry parameter €4 to cancel them. In-
verting , adding the symmetry transformations with
€, 1 = 1,---4 chosen to cancel the fluctuations on the
boundary one expresses variations of the background at
the horizon in terms & H{. We spare the reader from
these rather long formulas — see [46] for details — and
instead present the final relations between & H{ and com-
plete background variations i.e. ¢ org + dp(ry) ete.
where 07y is read off from § fy exactly as above
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Substitution of Eq. into Eq. leads to our final
expressions for the magnetically induced anisotropic bulk
viscosities
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Note that these expressions satisfy the constraints that
arise from positivity of local entropy production

>0, (=0, ¢¢=¢ . (24)

that were obtained in [39, [40]. In our accompanying pa-
per [46], we derived the same results independently using
the Raychaudhuri equation and positivity of entropy pro-
duction by extending [I6] to anisotropic horizons.

APPLICATION TO QCD

We finally apply our end result for anisotropic viscosi-
ties in a realistic holographic QCD model. In doing
so we shall also validate these expressions by numerically
comparing the results obtained via the background vari-
ation method and the standard fluctuation analysis .

4

To this end, we employ V-QCD [4§], a bottom-up effec-
tive model that incorporates a relatively extensive set of
parameters meticulously adjusted to match with experi-
mental QCD data, lattice QCD findings, and perturba-
tive QCD predictions. This widely accepted and success-
ful model serves as a valuable tool for describing both
the different phases of QCD and investigating various
phenomena at finite-temperature [49H53], finite-density
[54H63], and finite-magnetic-field [64H68]. In the case of
V-QCD, the matter Lagrangian L[F, ¢] in takes the
Dirac-Born-Infeld form [69,[70]. For detailed information
on V-QCD, we refer readers to [48] and the comprehen-
sive review of [71].

Sparing the details of the numerical computation to
our accompanying paper [46], we present our results de-
picting temperature and magnetic field dependence of
anisotropic viscosities in Fig. For completeness we
also plot 7/s which we compute using Eq. (16]). Solid
colored curves are obtained using the fluctuation analysis
whereas the dotted gray curves follow from and we
see perfect agreement. As additional consistency checks
on our numerics, we verified that the Onsager relations
[39] are satisfied, and showed that our results are consis-
tent in the limit of B — 0 with earlier literature [17} [39].

DISCUSSION

We observe in Fig. [I] that both the magnetic field and
temperature dependence of bulk viscosities are overall
very mild. This implies that these transport coeflicients
can approximately be treated as constant in numerical
hydrodynamic simulations. We find that ¢ /s > [(x/s| >
(1 /s while (/s is larger than the universal value (1/4)
of the shear viscosity-entropy ratio, whereas |(x/s| and
¢1 /s are smaller but still significant.

Analytic expressions like and are extremely
useful in deriving universal relations among transport co-
efficients. For example, one can easily prove a universal
bound 7, /n > 1 using and Einstein equations [40].
One can also compute electric conductivities o1 (o)) per-
pendicular (parallel) to B in the absence of background
charge. One then finds another intriguing universal rela-
tion [46]:

gL _ M

a N

A similar relation was already observed in [42]. One won-
ders whether these universal relations extend to the do-
main of finite 't Hooft coupling. To explore this one will
need to extend our analysis to include higher derivative
corrections to Einstein’s gravity.
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Figure 1. Anisotropic viscosities of the V-QCD model with potentials 7a [51], 55| [72]. Colored solid curves are obtained from
standard fluctuation analysis while dotted gray curves are from background variations. For completeness we also show 7 /s.
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