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A B S T R A C T   

Osteoarthritis causes progressive joint deterioration, severe morbidity, and reduced mobility in both humans and 
horses. Currently, osteoarthritis is diagnosed at late stages through clinical examination and radiographic im
aging, hence it is challenging to address and provide timely therapeutic interventions to slow disease progression 
or ameliorate symptoms. Extracellular vesicles are cell-derived vesicles that play a key role in cell-to-cell 
communication and are potential sources for specific composite biomarker panel discovery. We here used a 
multi-omics strategy combining proteomics and phospholipidomics in an integral approach to identify composite 
biomarkers associated to purified extracellular vesicles from synovial fluid of healthy, mildly and severely 
osteoarthritic equine joints. Although the number of extracellular vesicles was unaffected by osteoarthritis, 
proteome profiling of extracellular vesicles by mass spectrometry identified 40 differentially expressed proteins 
(non-adjusted p < 0.05) in osteoarthritic joints associated with 7 significant canonical pathways in osteoarthritis. 
Moreover, pathway analysis unveiled changes in disease and molecular functions during osteoarthritis devel
opment. Phospholipidome profiling by mass spectrometry showed a relative increase in sphingomyelin and a 
decrease in phosphatidylcholine, phosphatidylinositol, and phosphatidylserine in extracellular vesicles derived 
from osteoarthritic joints compared to healthy joints. Unsupervised data integration revealed positive correla
tions between the proteome and the phospholipidome. Comprehensive analysis showed that some phospholipids 
and their related proteins increased as the severity of osteoarthritis progressed, while others decreased or 
remained stable. Altogether our data show interrelationships between synovial fluid extracellular vesicle- 
associated phospholipids and proteins responding to osteoarthritis pathology and which could be explored as 
potential composite diagnostic biomarkers of disease.   

1. Introduction 

Osteoarthritis (OA) is the most prevalent arthritic phenotype and is 

one of the most important causes of perception of pain and loss of quality 
of life in the older population [1]. OA has often been classified as a 
chronic degenerative joint disease resulting from a process of wear and 
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tear. However, OA has an important inflammatory component, the 
mediators of which trigger an aberrant remodelling of joint structures 
inside the afflicted articulation [2]. These may include synovial mem
brane dysfunction, abnormal bone proliferation, and subchondral bone 
sclerosis [3]. Age, gender, obesity, genetics, inactivity, joint loading, 
aberrant morphology and alignment, previous injuries, and muscle 
weakness are the most prevalent risk factors for OA [4]. OA in horses is a 
major cause of lameness, with over 60 % of lameness cases associated 
with a clinical diagnosis of OA [5]. This results in impaired mobility, 
pain, poor performance, and early retirement, making equine OA a 
serious welfare issue that also leads to significant economic losses for the 
equine industry [6]. 

Previously, it has been shown that human and equine osteoarthritic 
pathogenesis follows a similar route from initial injury to disease pro
gression and outcome, and as such, the horse is widely regarded as a 
clinically relevant model for musculoskeletal disease in humans [7]. In 
addition, the horse’s articular cartilage biology is anatomically compa
rable to that of humans with respect to both composition and thickness 
[8]. The horse as a model for disease offers numerous further benefits, 
including the applicability of advanced diagnostic methodologies, such 
as magnetic resonance imaging (MRI) and arthroscopy, as well as serial 
sampling of biological material for analysis making it possible to 
monitor disease development, disease progression and response to 
intervention in great detail [7]. 

Presently, OA pathophysiology is not fully understood. The diagnosis 
is commonly based on clinical examination and radiographic imaging 
and, due to the insidious character of the disorder is often made at late 
stages when cartilage damage is already substantial and far exceeds the 
tissue’s capacity for intrinsic repair [9]. Therefore, it is paramount to 
identify biomarkers of disease that can be used to develop diagnostic 
tests that are both sensitive and specific for early OA, which could ul
timately enable a timelier management of therapeutic interventions and 
decelerate disease progression. 

In recent years, the concept of composite biomarkers has become 
popular; by definition, they are a non-linear combination of multiple 
measurements used to diagnose disease or predict outcomes [10]. Thus 
far, they have been used in neurological diseases such as Alzheimer’s 
disease and bipolar disorder [11], often using neuronal networks, arti
ficial intelligence or machine learning algorithms. As such, extracellular 
vesicles (EVs) can be considered a biological source for composite 
biomarker discovery. 

EVs are nanoscale-sized vesicles with a phospholipid bilayer mem
brane secreted by cells and specialised in restoring homeostasis or 
facilitating intercellular communication [12]. Furthermore, EVs trans
port bioactive molecules that can elicit a response in recipient cells, 
resulting in physiological and phenotypic changes [13,14]. They are 
present in tissues and body fluids, such as blood, urine and synovial fluid 
(SF) [15–17]. It has been proposed that EVs may play a vital role in 
cartilage homeostasis and in the propagation of OA by promoting 
inflammation and regulating extracellular matrix (ECM) turnover 
[18–21]. EVs are found in abundance in SF due to its close proximity to 
EV-secreting sources, such as native cells found within the joint space 
and periarticular tissues, including but not limited to chondrocytes and 
synoviocytes [22]. For joint disorders such as OA, SF is thus the most 
appropriate source of biochemical information [20,21,23]. 

The translation of EV biomarkers to the clinic has been pioneered in 
the fields of cancer and neurodegenerative diseases [24,25]. Nowadays, 
EVs are increasingly seen as a source for biomarker discovery for various 
disorders, including joint disease [18,20,26]. A comprehensive under
standing of the molecular composition of EVs and their role in disease 
requires the interpretation of molecular intricacy by accounting for 
multiple biological levels, such as the proteome and phospholipidome 
[27,28]. Such a comprehensive experimental and data analysis 
approach provides a more thorough understanding of the complete 
spectrum of molecular changes contributing to cellular response, disease 
development and pathogenesis and is helpful for the identification of 

naturally occurring composite biomarkers. Recent studies in ovarian 
cancer [29] and Alzheimer’s disease [30] have identified a relationship 
between the proteome and phospholipidome of EVs. 

The hypothesis of our exploratory study was that the proteome and 
phospolipidomic cargo changed with OA severity. To investigate this we 
exploited omics-based technologies to analyse the proteome and phos
pholipidome of SF-derived EVs (SF-EVs) to 1) enable comprehensive 
profiling of a healthy state versus clinically diagnosed mild and severe 
OA in horses and 2) identify candidate composite diagnostic biomarkers 
of OA. 

2. Materials and methods 

An extended description of the methodologies used in this study can 
be found as supplementary information. 

2.1. Ethical considerations 

Equine SF was collected from horses presenting at the EQI VET 
SERWIS clinic in Buk, Poland, with various disorders of the locomotor 
system before the intra-articular application of a local analgesic as a 
standard part of the clinical lameness examination. Sample collection 
was approved by the University of Liverpool’s Veterinary Research 
Ethics Committee (VREC1180). Ethical approval was not required in 
Poland, as the procedures were considered non-experimental clinical 
veterinary practices, in accordance with Polish and EU law (Dz. U. 2015 
poz. 266 and 2010-63-EU directive). 

2.2. Sample collection 

SF was collected via aseptic arthrocentesis from one meta
carpophalangeal joint of each biological donor into a plain Eppendorf 
tube. Samples were spun at 2540×g at 4 ◦C for 5 min. The supernatant 
was then transferred to a new Eppendorf tube, snap-frozen in liquid 
nitrogen and stored at − 80 ◦C. A description of diagnostic criteria and 
classification methods can be found in the supplementary information. 

The horses with no lesions in the joints (which featured locomotor 
abnormalities caused by disorders of other, unrelated structures) were 
classified as horses with healthy joints. Three biological replicates were 
pooled per sample resulting in 5 mL of SF. Pooled samples came from 
horses with healthy joints or with the same disease severity. Donors for 
the pooled samples were randomised with respect to age and sex. A total 
of 42 donors were used, resulting in 14 pooled samples (Healthy joints n 
= 7, mild OA n = 4, and severe OA n = 3). 

2.3. Extracellular vesicle isolation and quantification 

EVs from SF were isolated using a published and validated method 
[16]. Samples of pooled cell-free synovial fluid (5 mL) were incubated 
with Hyase (5 mg/mL; Sigma-Aldrich, St. Louis, MO, USA), followed by 
centrifugation to remove protein aggregates and debris. Subsequently, 
the supernatants were processed through ultracentrifugation to isolate 
extracellular vesicle (EV) pellets, which were then resuspended in 300 
μL of PBS with 0.1 % Bovine Serum Albumin (BSA) depleted of EVs prior 
to use (EV-depleted BSA). Next, sucrose density gradient centrifugation 
was employed. Additional details of the EV isolation and EV-depleted 
BSA are provided in the supplementary information section. The 
EV-containing fractions, validated previously in Refs. [16,21], were 
pooled based on densities (1.10–1.16 g/mL) for further lipidomics and 
proteomics analyses. Relevant data regarding the experimental details 
for EV isolation and characterisation have been submitted to the 
EV-TRACK knowledgebase (EV-TRACK ID: EV230607) [31]. 

EVs were labelled with PKH67, as previously described [21,32], 
involving resuspension in PBS+0.1 % EV-depleted BSA, the addition of 
PKH67 dye, and subsequent density gradient ultracentrifugation. A 
procedural control sample was analysed by high-resolution flow 
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cytometry to determine the background. A BD Influx jet-in-air flow cy
tometer optimized for single EV analysis was used for single particle 
analysis [32,33]. The EV concentration was calculated based on fluo
rescent events in EV-enriched sucrose fractions F7–F10 (densities 1.10 
g/mL–1.16 g/mL), using BD FACS Software for data collection and 
FlowJo software for analysis. A comprehensive description is available 
in the supplementary section. The MIFlowCyt author checklist can be 
found as Suppl. Table 2 and the MIFlowCyt-EV framework as Suppl. 
Table 3 [34]. 

2.4. Lipidomic analysis 

2.4.1. Lipid isolation 
Lipids were extracted following the Bligh & Dyer method [35] with 

slight modifications, as described previously [21]. Isolated EV samples 
were mixed with methanol and chloroform for the separation of hy
drophilic and hydrophobic phases. The extracted lipids were dried and 
stored in a nitrogen atmosphere. A more extensive description is 
accessible in the supplementary section. During the lipid extraction, one 
sample (composed of n = 3 individual horses) from healthy joints was 
lost. Therefore, n = 6 SF-EV samples of the group with healthy joints 
were used for all lipidomics analyses and subsequent omics integration. 

2.4.2. Mass spectrometry lipidomics 
Lipid pellets obtained from dried samples were resuspended in 

chloroform/methanol and analysed using hydrophilic interaction liquid 
chromatography (HILIC) coupled with a Fusion Orbitrap mass spec
trometer as described previously [21,36]. A quality control sample, 
along with a lipid standard, was included for quantification and verifi
cation of the mass spectrometry run quality. Thorough details are found 
in the supplementary materials. 

2.4.3. Lipid annotation 
RAW data was converted to mzML format, and LC/MS peak-picking 

and retention time correction were done using XCMS in R to annotate 
identified peaks based on retention time and exact m/z-ratio. Annota
tion criteria included presence in at least 3 out of 13 pooled samples, 
utilizing an in-silico phospholipid database, and adjusting for isotope 
overlap, with a focus on major adducts to prevent under-quantification 
of less prominent lipid species. Detailed information can be found in the 
supplementary section. The RAW and mzML converted mass spec
trometry data is deposited in the YODA repository of Utrecht University 
[37]. 

2.5. Proteomic analysis 

2.5.1. Protein extraction 
EV pellets were resuspended in 200 μL of urea lysis buffer (6 M Urea 

(Sigma-Aldrich, Dorset, UK), 1 M ammonium bicarbonate (Fluka 
Chemicals Ltd., Gillingham, UK), and 0.5 % sodium deoxycholate 
(Sigma-Aldrich, Dorset, UK). Samples were sonicated at 5 μm for 3 × 10 
s per sample, with 1 min rest on ice between each sonication round as 
previously described [23]. 

2.5.2. SDS PAGE & silver stain 
Proteins from EV protein extracts were separated using sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The 
procedure involved adding Novex™ Tris-Glycine SDS Sample Buffer to 
the sample, denaturing proteins through heating, electrophoresis using a 
NuPAGE™ gel, and visualization using silver stain according to the 
manufacturer’s guidelines as previously done [23]. Additional details 
are provided in the supplementary information section. 

2.5.3. On bead digestion 
Hydrophilic and hydrophobic magnetic beads were employed to 

digest EV proteins, facilitating the removal of the incompatible urea lysis 

buffer. Following the treatment of lysed equine synovial fluid-derived 
EVs with reducing and alkylating agents, the EV proteins were extrac
ted using magnetic carboxylate SpeedBeads, subjected to trypsin 
digestion, and subsequently prepared for mass spectrometry analysis 
through desalting and normalisation steps [23]. A comprehensive 
explanation is available in the supplementary section. 

2.5.4. Data-dependent acquisition for the generation of an equine SF EV 
spectral library 

Equine SF was pooled using samples from the metacarpophalangeal 
joint from our equine musculoskeletal biobank (VREC561) and samples 
collected in previous studies from the carpal and metacarpal joint of 
healthy horses as well as those with OA, resulting in a total of 11 ml 
pooled SF (n = 1) for library generation. These samples were analysed as 
previously described in order to generate the necessary reference library 
[38]. 

2.5.5. Data-independent acquisition proteomics (SWATH) 
Data-independent acquisition proteomics (SWATH) was employed 

using a Triple TOF 6600, with a 2-h gradient (as the library fractions 
[23]) and a comprehensive precursor m/z range of 400–1500. Retention 
time alignment and quantification were conducted through 
Data-Independent Acquisition by Neural Networks (DIA-NN), ensuring a 
precursor false discovery rate (FDR) of 1 %. The mass spectrometry 
proteomics data were deposited to the ProteomeXchange Consortium 
via PRIDE proteome exchange [23] (identifier PXD042765). Both pro
teomics and lipidomics datasets have been submitted to vesiclepedia 
[39]. 

2.6. Statistical analysis 

2.6.1. EV characterisation 
Comparison in EV concentration (fluorescent events/mL) between 

the mean of two groups, healthy and OA, was done by using a Student’s 
t-test. 

2.6.2. Proteomics 
Statistical analysis of proteomics data was carried out using the R 

statistical programming environment or Metaboanalyst [40]. The data 
were quality controlled; proteins with complete observations were 
normalised using probabilistic quotient normalisation (PQN) and 
log-transformed (base 10) for downstream analysis, where a normal 
distribution of the data is a prerequisite for functional enrichment 
analysis using the Ingenuity Pathway Analysis (IPA) software. Unsu
pervised multivariate analysis in the form of principal component 
analysis (PCA) was performed, along with heat map analysis using 
analysis of variance (ANOVA) and Pearson distance. One-way ANOVA 
with Tukey’s post hoc test was attributed to statistical significant pro
teins in their respective group comparison. Following ANOVA, a fold 
change analysis was conducted. 

2.6.3. Lipidomics and omics data integration 
For lipidomics analysis, the data were normalised based on the sum 

of total lipids per pool sample – i.e. each lipid value in a pooled sample 
was divided by the total sum of lipids in the same pool sample and 
multiplied by 0.01; thus, the relative abundances sum up to 100. A 
minimum of three biological-pool replicates were used for statistical 
analyses. 

Data analysis was run with R version 4.1.2 [41]. Pareto scaling was 
performed for the PCA, thus dividing each variable by the square root of 
its standard deviation. Heatmap and cluster analysis was performed on 
Spearman correlations with a set speed of two – among the 50 most 
abundant lipid species in all sample groups – using the R-package 
ComplexHeatmap v1.12.0 [42]. 

Data integration was performed with the R package mixOmics 
v6.12.2 [43]. on lipidomic and proteomics data normalised by the sum 
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(as described for lipidomics analysis) followed by R scaling and centring, 
which determines the vector’s mean and standard deviation, deducts the 
mean from the vector and divides it by the standard deviation. An un
supervised sparse Partial Least Squares (a linear, multivariate regression 
method for data reduction to assess the relationship between indepen
dent and dependent variables) was used to integrate the datasets. The 
relevance network plot was set with a correlation cut off of 0.7 to allow 
readability of the displayed proteins and phospholipids. Differences 
between the proposed proteins and phospholipid percentages for the 
composite biomarker were analysed with the rank-based non-para
metric Kruskal-Wallis test (since the data remained in this scenario 
skewed and thus non-parametric), followed by the multiple pairwise 
comparisons with Dunn’s test. Significance was set at α = 0.05. Statis
tical tests were done with GraphPad Prism 9. 

2.7. Functional enrichment analysis 

Functional enrichment analysis was performed on proteomic data 
using Ingenuity Pathway Analysis (IPA; Qiagen, Hilden, The 
Netherlands). In order to provide functional analyses, networks, ca
nonical pathways, and related molecular and pathological functions the 
protein p-values obtained through One-way ANOVA with Tukey’s post 
hoc test, and associated log2 fold change, were used. UniProt_Horse 
accession codes were used as protein identifiers, and the Qiagen In
genuity Knowledge Base was used as a reference for exploratory 
pathway analysis. For network generation, default settings were used to 
identify molecules whose expression was significantly differentially 
regulated. These molecules were overlaid onto a global molecular 
network contained in the Ingenuity Knowledge Base. Networks of 
‘network-eligible molecules’ were then algorithmically generated based 
on their connectivity. The functional analysis identified the biological 
functions and diseases that were most significant to the data set. A right- 
tailed Fisher’s exact test was used to calculate p-values. Canonical 
pathway analysis identified the pathways from the IPA library that were 
most significant to the data set. Analysis was performed on all prote
omics data, comparing healthy, mild OA and severe OA groups, and 
those proteins correlated to phospholipids. 

3. Results 

3.1. EV characterisation 

3.1.1. Synovial fluid-derived extracellular vesicle numbers do not 
significantly differ between osteoarthritic and healthy phenotypes 

Recently we found that an inflammatory insult in the joint, such as 
LPS, can strongly affect the quantity of SF-EVs [21]. Therefore, we 
investigated, using the same technology, if the quantity of SF-EVs was 
altered as a result of OA using samples from equine patients with 
radiographically diagnosed OA and comparing these with samples from 
healthy joints. The quantity of EVs was assessed by single-EV fluo
rescence-based flow cytometric analysis of PKH-labelled EVs [21,33] on 
3 representative samples of the group with healthy joints, 2 samples of 
the mild OA group and 1 of the severe OA group. The PKH + events were 
measured in individual sucrose fractions ranging from 1.08 to 1.18 
g/mL. The peak of fluorescent events was identified in the densities from 
1.10 to 1.16 g/mL (Fig. 1A); those were considered the EV-enriched 
fractions and were used for calculating EV numbers (Fig. 1B). We did 
not observe statistically significant differences with a p = 0.47 between 
the numbers of SF-EV from the healthy joints group (where each sample 
consisted of SF-derived from 3 different horses) (3.1 × 108 per mL SF ±
6.6 × 107; mean ± SD) and the OA group (i.e. mild OA n = 2 and severe 
OA n = 1, each consisting of SF-derived from 3 different OA-diagnosed 
horses with the respective severity degree of OA) (4.0 × 108 per mL ±
9.4 × 107; mean ± SD). 

3.2. Lipidomic analysis 

3.2.1. Synovial fluid-derived extracellular vesicle phospholipid profiles 
change during the development of osteoarthritis 

Previously we had observed a drastic change in the phospholipidome 
following an inflammatory stimulus [21]; here we analysed whether the 
phospholipid profile of the SF-EVs was modified as a result of OA. The 
phospholipidome profile of the SF-EV from healthy joints (n = 6), mild 
OA (n = 4), and severe OA (n = 3) equine patients was determined 
through a bioinformatics analysis that uncovered 280 lipid species after 
lipid annotation (and background adjustment), isotope and adduct 
correction and normalisation by the cumulative sum to unity (Supple
mentary Fig. 1). A PCA, an unsupervised dimensionality reduction 

Fig. 1. Quantitative flow cytometric analysis of EVs isolated from equine joints with a healthy or osteoarthritic phenotype. A) Single EV-based high-res
olution FCM of representative healthy SF-EVs (n = 3) and OA SF-EVs (n = 2) from the mild OA group and n = 1 from the severe OA group. Sucrose density gradient 
fractions containing EVs labelled with the lipophilic dye PKH67 were measured for 30 s. The majority of EVs floated at densities of 1.16-1.10 g/mL. FL – Events: 
Fluorescent Events. B) EV concentration in SF was calculated as the sum of single fluorescent events measurements (PKH67+ events) in EV-containing sucrose 
gradient densities (1.16–1.10 g/mL). Mean ± SD. p = 0.47. ns: non-significance by Student’s t-test. The uppermost point in the OA group reflects the severe 
OA phenotype. 
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method, revealed a combined explained variance of 69 % with the first 
and second principal components (Fig. 2A). 

A Spearman correlation heatmap showed that the EV populations of 
the three different clinical groups differed in the distribution of their 
phospholipid composition (Fig. 2B). The heatmap was split into three 
sections (slices and clusters) based on Partitioning Around Medoids 
(PAM) clustering. For the first slice, the predominant lipid classes were 
phosphatidylserine (PS), ester-linked phosphatidylcholine (PC), ester- 
linked phosphatidylethanolamine (PE) and ether-linked phosphatidyl
ethanolamine (PE-O), which account for half of the lipid distribution of 
EVs in the healthy joints but for less in both OA groups. The second slice 

included other members of the PS and PC classes, and the phosphatidic 
acid (PA), lysophosphatidylcholine (LysoPC), and phosphatidylinositol 
(PI) lipid classes. There were no clearly identified clusters in this slice. 
The third slice consisted solely of sphingomyelin (SM), and the distri
bution was one-third per group; thus, the OA-derived EVs had a higher 
presence than the EVs from healthy joints. These results showed a subtle 
variance among SF-EVs from the healthy and the mild and severe OA 
phenotypes. 

Fig. 2. Lipidomic profile of equine synovial fluid-derived EVs from healthy joints or from mild OA or severe OA patients. Healthy samples (n = 6), mild OA 
(n = 4), severe OA (n = 3). Each sample is comprised of a pool of three different animals. Lipids were extracted from EVs isolated by differential centrifugation up to 
100,000 g, followed by purification with sucrose density gradients. A) Principal component analysis of lipids isolated from the three different clinical groups. The 
principal components (PC)-1 and − 2 explain 49 % and 20 % of the variance, respectively. Healthy samples (green circle), mild OA (orange circle), and severe OA (red 
circle). B) Lipid species correlation of SF-EVs. Combined heatmap (cluster dendrogram) of Lipid-Lipid Spearman correlations between the 50 most abundant lipid 
species in all EV sample groups. Lipid order was based on Partitioning Around Medoids, also known as K-Medoids, a centroid-based clustering algorithm. On top of 
the figure is the cluster dendrogram. Below is the group distribution, the relative lipid intensity of each species, and the heatmap. Under the heatmap, the degree of 
saturation, the lipid class of each lipid, and the respective annotation of each lipid species are indicated. C) Changes in EV lipid classes during OA development. 
Vertical slices plot of SF-EVs showing the relative molar abundances for individual lipid classes. Abbreviations: LysoPC, (lysophosphatidylcholine); LysoPG, (lyso
phosphatidylglycerol); LysoPI, (lysophosphatidylinositol); LysoPS, (lysophosphatidylserine); PC, (ester-linked phosphatidylcholine); PC O-, (ether-linked phospha
tidylcholine); PE, (ester-linked phosphatidylethanolamine); PE O-, (ether-linked phosphatidylethanolamine); PI, (phosphatidylinositol); PS, (phosphatidylserine); 
SM, (sphingomyelin). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.2.2. Differences in lipid class composition of synovial fluid extracellular 
vesicles are related to osteoarthritis progression 

Having established a difference between the SF-EVs from healthy 
joints (n = 6) compared to mild OA (n = 4) and severe OA SF-EVs (n =
3), we proceeded to analyse in more detail how the lipid classes were 
distributed in the respective groups (Fig. 2C, Suppl. Fig. 2). The most 
abundant phospholipid classes in all three clinical groups were SM 
(20–40 %), PC (25–40 %), PS (12–16 %), PE O- (8–12 %) and PE (5–10 
%) (Fig. 2C). However, a relative increase of SM was observed in the OA 
groups (healthy 19.9 %, mild OA 35.5 % and severe OA 37.5 %), while 
the amounts of PC, PI and PS relatively decreased in OA groups which 
was most pronounced in the severe OA group (healthy: PC 38.3 %, PI 
1.73 % and PS 16.0 %; mild OA: PC 31.8 %, PI 1.27 % and PS 13.35 %; 
severe OA group: PC 26.3 %, PI 0.59 % and PS 11.8 %). Additionally, 
compared to healthy SF-EVs, ether-linked phosphatidylcholine (PC O-) 
and PA classes demonstrated a relative rise in mild OA SF-EVs (healthy: 
PC O- 1.71 % and PA 1.02 % mild OA: PC O- 1.90 % and PA 1.34 %). 
However, the levels declined in severe OA-derived SF-EVs even more 
than the baseline levels in healthy joint derived EVs (severe OA: PC O- 
1.19 % and PA 0.55 %). Inversely, both PE types (ester-linked and ether- 
linked) showed a reduction in the mild OA-derived EVs compared to the 
healthy joint derived EVs (healthy: PE 8.06 % and PE O-11.8 %; mild 
OA: PE 5.72 % and PE O- 8.17 %), while there was an increment in EVs 
isolated from the severe OA group (Severe OA: PE 10.2 % and PE O- 
10.2 %) with the ester-linked PE class level even higher than in EVs 
derived from healthy joints. 

Despite variations in the total lipid classes with respect to the whole 
phospholipidome, the individual lipid species contributing to the lipid 
classes were similarly distributed throughout the clinical groups 
following normalisation within each class (Suppl. Fig. 2). Thus, the 
observed shifts in lipid classes cannot be directly attributed to changes in 
individual lipid species. Overall, these findings demonstrate that the 
phospholipidome is gradually transformed as OA develops. 

3.3. Proteomic analysis 

3.3.1. Principal component analysis of proteomics demonstrates variable 
protein distribution according to osteoarthritic phenotype 

Unsupervised multivariate analysis using PCA was conducted on the 
proteome of all samples exploring the variability between SF-EVs 
derived from healthy joints (n = 7), mild OA (n = 4) and severe OA 
(n = 3). A total of 5774 unique peptides were identified, translating to 
290 proteins with no missing values. Missing values as such were 
imputed (using impute 2,1,1) using the following method: For the 7 
healthy samples, up to 2 missing values were imputed by inserting the 
mean of the healthy values for that particular protein. Similarly, for the 
4 mild OA and 3 severe OA samples, up to 1 missing value was imputed 
by inserting the mean of the mild OA or severe OA values for that 
particular protein, resulting in a total of 598 proteins identified and 
quantified across all samples and used for statistical analysis (Supple
mentary Fig. 1). The first two components (Fig. 3A) reduce the total 
variation of all the individual data points by 36.4 %. 

3.3.2. Differentially expressed proteins identified across osteoarthritic 
phenotypes 

Using ANOVA, 40 proteins were identified as being significantly 
differentially expressed (p < 0.05) prior to false discovery rate (FDR) 
adjustment across all experimental groups (SF-EVs from healthy joints 
(n = 7), mild OA (n = 4) and severe OA (n = 3)). Uncorrected values 
were used due to this being an exploratory study, whereby multiple 
testing correction methods can fail to identify statistically significant 
values due to stringent thresholds [44]. Following Tukey’s post hoc 
analysis, a remaining 37 were significant (p < 0.05). Table 1 demon
strates the top 25 differentially expressed proteins and their respective 
fold change expression, as well as the specific comparison found to be 
significant following Tukey’s post hoc tests. It was revealed that 
microtubule-associated protein (ANOVA p = 0.006, Tukey test: severe 
OA compared to mild OA p = 0.006, and mild OA compared to healthy p 
= 0.03) was present at higher levels in mild OA compared to the severe 

Fig. 3. Proteomic profile of equine SF-EVs derived from healthy joints and from joints with mild and severe OA A) Unsupervised multivariate analysis using 
principal component analysis. The first two principal components were plotted, accounting for ~36.4 % of the variance. SF-EV samples were plotted based on 
acquired SWATH-MS data, after PQN normalisation and log transformation. Each plotted point represents a pooled SF-EV sample comprised of three biological 
replicates, which are colour-coded by OA severity, with severe OA in red (n = 3), mild OA in orange (n = 4), and healthy in green (n = 7). B) Heatmap demonstrating 
average protein intensities between SF-EV healthy (green (n = 7)), mild OA (orange (n = 4)) and severe OA (red (n = 3)) phenotypes. Protein intensities were 
transformed and are displayed as colours ranging from red to blue. Both rows and columns are clustered using the Ward method, and distance was calculated using 
Pearson Distance. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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form of the disease. Further proteins with an increased expression in 
severe OA compared with the group with healthy joints and mild OA 
were fibroblast activation protein alpha (ANOVA p = 0.03, Tukey test: 
severe OA compared to healthy p = 0.03) and Interleukin 1 receptor 
accessory protein (ANOVA p = 0.02, Tukey test: severe OA compared to 
healthy p = 0.02). Conversely, platelet-activating factor acetylhydrolase 
IB subunit alpha (ANOVA p = 0.004, Tukey test: severe OA compared to 
mild OA p = 0.003) exhibited increased expression in mild OA but was 
decreased in severe OA, as shown in Table 1. Other significant (p < 0.05) 
proteins attributed to EVs that were identified in our dataset included 
RAB GTPases, such as RAB GDP dissociation inhibitor (ANOVA p = 0.03, 
Tukey test: severe OA compared to healthy p = 0.02) and RAB8 (ANOVA 
p = 0.004, Tukey test: severe OA compared to mild OA p = 0.005, and 
mild OA compared to healthy p = 0.04). Overall, a change in the pro
teome was observed in response to an altered OA phenotype, with sig
nificant proteins attributed to pathways known for propagating OA 
disease development within the joint. 

3.3.3. A stepwise change in protein expression correlates to osteoarthritis 
severity 

Heatmap analysis was performed on SF-EV samples from healthy 
joints and mild and severe OA using the Ward clustering method and 
Pearson distance [40], with selected proteins identified following 

ANOVA, visualising the top 25 most differential proteins. A stepwise 
expression change of 10 proteins was observed as OA severity increased, 
i.e., RAB8B (p = 0.0039), moesin (p = 0.02), fibroblast activation pro
tein alpha (p = 0.03), cytochrome b-245 beta chain (p = 0.016), family 
with sequence similarity 171 (p = 0.008), solute carrier family 29 
member 1 (p = 0.02), STEAP4 metalloreductase (p = 0.02), protein 
tyrosine phosphatase 1 (p = 0.01), and ectonucleotide pyrophosphatase 
(p = 0.02) (Fig. 3B and Table 1). It was found that four EV-associated 
proteins exhibited a decrease in expression with the increase in OA 
severity (i.e., microtubule-associated protein (p = 0.006), coagulation 
factor V (p = 0.01), platelet-activating factor (p = 0.004) and c4a ana
phylatoxin (p = 0.01) (Fig. 3B and Table 1). 

3.4. Functional enrichment analysis of the synovial fluid-derived 
extracellular vesicles proteome using IPA highlights dysregulation in 
pathways associated with cartilage homeostasis and an inflammatory 
phenotype 

Functional enrichment analysis was performed in order to provide 
biological meaning to the identified and quantified proteome. In both 
mild OA and severe OA groups, the top canonical pathways were iden
tified using the Ingenuity Knowledge Base Library and accounting for 
protein p-value following Tukey’s post hoc analysis and log2 fold 

Table 1 
Top 25 differentially expressed (p < 0.05) proteins across SF-EV samples derived from healthy joints and joints with mild OA and severe OA following analysis of 
variance (ANOVA) and Tukey’s post hoc test analysis, identifying significant experimental group comparisons and heatmap analysis.  

Accession Protein ANOVA P 
value (p <
0.05) 

FDR P 
value 

Experimental group comparisons 

Severe OA Vs Healthy Severe OA Vs mild OA Mild OA Vs Healthy 

Log 2 fold 
change 

Post hoc 
Tukey test p 
value 

Log 2 fold 
change 

Post hoc 
Tukey test p 
value 

Log 2 fold 
change 

Post hoc 
Tukey test p 
value 

F6R528 Collagen type III alpha 1 chain 0.00239 0.599 − 1.00 0.00183 − 0.841 0.0175 − 0.164 Ns 
F7D3K4 Platelet-activating factor acetyl 

hydrolase IB subunit alpha 
0.00389 0.599 − 0.475 Ns − 0.800 0.00295 0.326 Ns 

A0A5F5PPM3 RAB8B, member RAS oncogene 
family 

0.00393 0.599 0.428 0.00486 0.140 Ns 0.288 0.0380 

A0A3Q2H4M1 ATP-citrate synthase 0.00488 0.599 − 0.244 Ns 0.106 Ns − 0.350 0.00538 
A0A3Q2HW06 Microtubule-associated protein 0.00626 0.599 − 0.186 Ns − 0.458 0.00621 0.272 0.0289 
A0A5F5PGY6 Complement component C6 0.00761 0.599 0.0146 Ns − 0.148 0.0373 0.163 0.00725 
A0A5F5PQS3 Complement C8 alpha chain 0.00789 0.599 − 0.255 Ns 0.0660 Ns − 0.321 0.0104 
A0A3Q2I4N2 Family with sequence similarity 

171 member B 
0.00813 0.599 0.162 0.0123 0.0432 Ns 0.119 0.00813 

A0A3Q2H905 Protein-tyrosine-phosphatase.1 0.0101 0.599 0.278 0.0369 − 0.00857 Ns 0.287 0.0186 
F6U187 ATP synthase subunit beta 0.0112 0.599 0.129 Ns − 0.0755 Ns 0.205 0.0103 
F7DZ01 Coagulation factor V 0.0116 0.599 − 0.174 Ns − 0.267 0.00912 0.0930 Ns 
A0A3Q2HG96 ADAM metallopeptidase 

domain 17 
0.0140 0.599 − 0.545 0.0109 − 0.389 Ns − 0.155 Ns 

F6XSF7 C4a anaphylatoxin 0.0151 0.599 − 0.106 Ns − 0.199 0.0119 0.0927 Ns 
A0A3Q2HRQ8 Solute carrier family 29 

member 1 
0.0151 0.599 0.185 0.0359 0.0164 Ns 0.168 0.0364 

A0A3Q2ICY6 Cytochrome b-245 beta chain 0.0159 0.599 0.334 0.0209 0.0978 Ns 0.236 Ns 
F6XH19 Nidogen 1 0.0161 0.599 − 0.585 0.0167 − 0.572 0.0332 − 0.0126 Ns 
A0A3Q2GUV8 ATP binding cassette subfamily 

A member 9 
0.0192 0.599 0.208 Ns − 0.233 Ns 0.441 0.0152 

F7ALR7 Ectonucleotide 
pyrophosphatase/ 
phosphodiesterase 1 

0.0202 0.599 0.266 Ns − 0.0277 Ns 0.294 0.0300 

A0A3Q2LMX0 Erythrocyte membrane protein 
band 4.1 like 2 

0.0207 0.599 0.272 0.0166 0.163 Ns 0.109 Ns 

F7AWQ9 Interleukin 1 receptor accessory 
protein 

0.0215 0.599 0.236 0.0193 0.208 Ns 0.0276 Ns 

A0A3Q2KSS6 Moesin 0.0219 0.599 0.159 0.0301 0.0444 Ns 0.114 Ns 
A0A5F5PZW1 Myosin regulatory light 

polypeptide 9 
0.0223 0.599 − 0.176 0.0182 − 0.109 Ns − 0.0677 Ns 

F7A3D1 STEAP4 metalloreductase 0.0236 0.599 0.498 0.0474 0.0570 Ns 0.441 Ns 
A0A3Q2HB83 Low affinity immunoglobulin 

gamma Fc region receptor III-B 
0.0247 0.599 0.173 0.0392 0.0373 Ns 0.136 Ns 

A0A3Q2HB68 Fibroblast activation protein 
alpha 

0.0250 0.599 0.404 0.0255 0.161 Ns 0.243 Ns 

Log2 fold change is provided in order to inform direction of expression for each comparison. 
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change. It was found that signalling by Rho family GTPases (p =
0.0000244), liver x receptor/retinoid x receptor (LXR/RXR) activation 
(p = 0.0353), complement system activation (p = 0.0107–0.000239), 
clathrin-mediated endocytosis (p = 0.000329), and macrophage alter
native action signalling (p = 0.00604) were all significant to OA pa
thology when considering EV cargo, as shown in Fig. 4A, B, and C. 
Additionally, significant diseases and functions in both severe and mild 
OA included inflammation of an organ (p = 0.04). Molecular functions 
found to be significant in severe OA compared to mild included injury of 
joint (p = 0.00552), complement activation (p = 0.0171) and accumu
lation of macrophages (p = 0.000414). Disease and molecular functions 
identified in a severe OA compared to healthy included: fibrosis (p =
0.0189), systemic inflammation (p = 0.0211), acute inflammation of 
tissue (p = 0.0289) and osteoarthritis (p = 0.0316). Finally, mild OA 
compared to healthy identified significant functions including: com
plement activation (p = 0.000609), development of articular cartilage 
(p = 0.00374), injury of joint (p = 0.0118), inflammation of joint (p =
0.0169), osteoarthritis (p = 0.0280) and chronic inflammation (p =
0.0338). A complete list of significant diseases and function can be 
found in Suppl. Table 4. 

3.5. Multi-omic integration 

3.5.1. Proteomics and lipidomics data integration demonstrates a high 
correlation between proteins and phospholipids in synovial fluid 
extracellular vesicles 

Integration of the proteome and phospholipidome datasets was 
performed to determine if biologically feasible correlates could be 
established; and thus, identify candidate composite protein-lipid bio
markers. An unsupervised approach was selected to integrate the data
set, consisting of a PCA assessment followed by sparse Partial Least 
Squares (sPLS2) regression which was tuned by cross-validation. 

The initial exploratory analysis employing PCA was undertaken to 

recognise how the individual proteomic and lipidomic datasets behaved 
under the same normalisation conditions and to determine the optimal 
data integration model (Suppl. Figs. 3A and 3B). The omics datasets 
were normalised by the summed intensity of the sample, followed by 
centring and scaling of the data, thus subtracting the mean and dividing 
by the standard deviation. It was observed that clustering of the samples 
was comparable to the previous PCA (Figs. 2A and 3A). 

Subsequently, to integrate the omics data sets, the unsupervised 
sPLS2 model was constructed separately for the proteomics and lip
idomics data (Suppl. Figs. 3C and 3D). As an unsupervised analysis, the 
information about the groups (healthy joints (n = 6), mild OA (n = 4) 
and severe OA (n = 3)) was not taken into consideration; however, the 
samples were labelled to understand how they clustered. In Suppl. 
Figs. 3C and 3D, both sPLS2s project the respective data similarly, with 
the superior subspace primarily composed of SF-EV samples from 
healthy joints, the inferior one of mild OA and severe OA SF-EV samples 
and the top left subsection of overlapping samples from all groups. Af
terwards, both sPLS2s were averaged (Fig. 5A). The integrated averaged 
sPLS2 had a similar structure in components as the individual sPLS2. 
Fig. 5B assesses the degree of agreement between the proteomic and 
lipidomic datasets by plotting the position of each sample from both 
sPLS2s in the same space and connecting them with an arrow that in
dicates at its base the location in the proteomics data set and at the tip 
the location in the lipidomic data set. Most samples were located rela
tively close to each other indicating a correlation between the phos
pholipidome and proteome of SF-EVs. 

This correlation was further explored with a Cluster Image Map 
(CIM) (Fig. 5C) to examine the connection between the features and 
components in a broad range, drawing attention to the relevant vari
ables that collectively accounted for the covariance between the two 
datasets. According to the CIM, the phospholipid variables were divided 
into three slices that were either positively or negatively related to two 
main protein clusters. The left slice corresponded to 4 SMs (SM 36:0; 2, 

Fig. 4. Ingenuity Pathway Analysis networks providing an overview of related molecular mechanisms. Analysis was conducted using the ingenuity 
knowledge base library and accounting for protein p-value and log2 fold following ANOVA and Tukey’s post hoc test analysis. Node colour indicates up-regulated 
genes (from light pink: low upregulation to red: high upregulation), and solid lines represent direct interactions between pathways according to the Ingenuity 
knowledge base information. A) Mild OA compared to healthy (16 significant proteins), B) Severe OA compared to healthy (20 significant proteins), C) Severe OA 
compared with mild OA (9 proteins). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Unsupervised proteomic and lipidomic data integration. Proteomic and lipidomic datasets from SF-EVs derived from healthy joints, mild OA and severe 
OA were normalised by the sum. A) Sparse Partial Least Squares-2 regression (sPLS2) of SF-EV samples projected into the area covered by the averaged components 
of both datasets. Healthy SF-EVs (green triangle (n = 6)), mild OA SF-EVs (orange cross (n = 4)), and severe OA SF-EVs (Sev. OA; red circle (n = 3)). B) Unsupervised 
multivariate sPLS2 arrow plot from the integration of proteomic and lipidomic data. The base of the arrow shows where a specific sample is in relation to the 
components of the proteomics dataset, and the tip of the arrow shows where the same sample is located concerning the components of the phospholipidomics dataset. 
Healthy SF-EVs (green circle), mild OA SF-EVs (orange circle), and severe OA SF-EVs (Sev. OA; red circle). The boxes zoom in on certain samples to better show the 
arrow direction C) Clustered Image Map from the sPLS2 data integration performed on the SF-EV omic datasets. The graphic shows the degree of similarity between 
the proteomic and lipidomic variables clustered over two dimensions and grouped using the Euclidean distance approach. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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SM 43:3; 2, SM 41:3; 2, SM 40:3,2), PC O-32:3, and PC 40:9, which had a 
positive association with the lower protein cluster. The middle slice, 
consisting of three PC species (PC 37:3, PC 28:0 and PC 31:1), had an 
inverse pattern of the cluster, with the upper group depicting the 
strongest association. Finally, the right slice, comprising the PC 34:4 and 
the two PI species (PI 32:1 and PI 38:6), had a similar association pattern 
as the middle one; however, the lower cluster exhibited a negative 
correlation, while the cluster above was positively correlated to the 
proteins. 

3.5.2. Relevance network for the selection of candidate proteins and 
phospholipids as composite OA biomarkers 

To better comprehend the correlation between the proteins and 
phospholipids, a relevance network plot was created (Fig. 6). Three 
substructures could be identified from the network. The larger cluster 
contained the same lipids as the middle slice from the CIM (Fig. 5C; PC 
28:0, PC 31:1 and PC 37:3), with all the correlations depicted being 
positive. The second substructure consisted of the right-side slice lipids 
from the CIM (Fig. 5C; PC 34:4, PI 32:1, PI 38:6), with primarily positive 
correlations to the proteins except to the anion exchange protein. This 
cluster also overlapped with some of the same proteins as PC 28:0, PC 

31:1 and PC 37:3. The third substructure was composed of the lipids 
from the left-side slice of the CIM (SM 36:0; 2, SM 43:3; 2, SM 41:3; 2, 
SM 40:3,2, PC O-32:3, PC 40:9). This cluster displayed only positive 
correlation with the depicted proteins, including the anion exchange 
protein. Moreover, the proteins that correlated to phospholipids from 
the relevance network plot (Fig. 6) were found to be associated with 
pathways such as actin cytoskeleton signalling (p = 5.71 × 10− 7) and 

Fig. 6. Network representation derived from the sPLS2 analysis of the proteomics and lipidomics integrated data. A relevance network plot with a corre
lation cutoff of 0.7 was created. Hence, only the variables with a correlation above 0.7 or below − 0.7 are shown. The networks are bipartite, and each edge connects a 
protein (rectangle) to a phospholipid (circle) node based on a similarity matrix. The colour of the connecting lines represents positive (red) or negative (green) 
correlations. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Top 5 canonical pathways identified using Ingenuity Pathway Analysis, 
following input of proteins correlated to lipids.  

Canonical Pathways P-Value Number of annotated 
molecules 

Leukocyte extravasation signalling 1.64E- 
10 

9/193 

RHOGDI signalling 5.24E- 
10 

9/220 

Fcy Receptor-mediated phagocytosis in 
macrophages and monocytes 

3.52E-8 6/94 

Signalling by Rho Family GTPases 5.89E-8 8/267 
Actin cytoskeleton signalling 5.71E-7 7/244  
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signalling by Rho family GTPases (p = 5.89 × 10− 8), as shown in 
Table 2. 

Since the sPLS2 analysis is an unsupervised approach (i.e., no in
formation regarding the groups is entered in the model), neither the CIM 
nor the network explained how the SF-EV phospholipids and the 
correlated proteins relate to the healthy joints, mild OA and severe OA. 

To determine differences between the clinical groups, all lipids and 
proteins with a correlation above 0.754 based on the network (Fig. 6) 
were assessed with a Kruskal-Wallis test (Fig. 7). A significant decrease 
in PC 34:4 and PI 38:6, and decline in PI 32:1 and the related proteins 
showed a similar trend in SF-EVs derived from severe OA compared to 
healthy joints (Fig. 7). Conversely, SM 36:0; 2, SM 41:3; 2 and PC O-32:3 

Fig. 7. Discovery of potential composite biomarkers for OA. Phospholipids and proteins were normalised by the sum of the total amount of material (i.e., lipid or 
protein). Healthy (green (n = 6)), mild OA (orange (n = 4)) and severe OA (red (n = 3)). *p < 0.05, Kruskal-Wallis with Dunn’s post hoc test A) Phospholipids and 
proteins that decreased with OA severity, B) phospholipids and proteins that increased with OA severity. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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and the correlated proteins showed a trend to increase with the severity 
of OA, with significant differences for PC O-32:3, moesin and 
vasodilator-stimulated phosphoprotein (Fig. 7). A list of potential 
candidate proteins for composite biomarkers is provided in Suppl. 
Table 5. Overall, we here show a strategy for composite biomarker 
discovery based on SF-derived EV-associated phospholipids and proteins 
and revealed potential candidates that could be explored as composite 
phospholipid-protein EV biomarkers in OA pathology. 

4. Discussion 

In this exploratory study we designed a workflow for a multi-omics 
approach based on phospholipidomic and proteomic integration to 
identify composite SF-derived EV-biomarkers for OA, based on the 
analysis of EVs isolated from SF of horses with clinically defined OA 
(mild OA and severe OA), or from healthy equine joints. Hereto we 
investigated the phospholipidome and proteome of purified SF-EVs and 
designed a strategy for multi-omics data integration and differential 
expression analysis. To identify genuine composite EV-biomarkers, we 
used differential centrifugation followed by sucrose density gradient 
centrifugation to purify EVs from SF by removing most types of the 
contaminating lipoproteins and protein aggregates [16,21]. While the 
numbers of EVs in SF were unaffected by OA, consistent with other 
studies [45,46], the proteomic and phospholipidomic profiles of SF-EVs 
were correlated to the presence of OA. 

We found that OA pathology directly impacted the phospholipidome 
at the lipid class level, showing a relative gradual changes in several 
lipid classes associated with disease severity. The relative reduction in 
PC, PS and PI in mild OA and more drastically in severe OA, could be 
explained by the relative increase in SM. Since PC and SM are primarily 
located in the outer layer of the plasma membrane, the increase in SM 
disrupts the balance and reduces the amount of PC [47]. Similarly, 
although PS and PI are predominantly found in the inner leaflet of the 
lipid bilayer, they can also be affected by an increase in SM. Further
more, we found relatively higher levels of PC compared to PC O-, while 
the PE and PE O- classes showed an opposite trend. These findings align 
with the lipidomics findings in the EV field and highlight the importance 
of ether lipids, especially PE O-, in EV biology, including membrane 
trafficking and cholesterol regulation [48]. SM, one of the main lipid 
classes detected in the SF-EVs, plays a crucial role in the plasma mem
brane composition, cellular proliferation, differentiation, growth, signal 
transduction, and apoptosis [49]. SMs are instrumental in the formation 
of lipid rafts enabling the selection of membrane proteins involved in 
signal transduction and intracellular transport [50]. The notable relative 
increase of SMs with OA severity suggests that more lipid raft-like do
mains may be present in SF-EVs as the OA pathology progresses, facil
itating and enhancing the cell-to-cell communication of SF-EVs. 

Functional enrichment analysis of the differentially expressed SF-EV 
proteins identified a range of activated canonical pathways associated 
with disease phenotype. Specifically, Rho family GTPases, including 
RAC family small GTPase1 and ezrin were identified as activated in 
severe OA compared to healthy joints. Dysregulation of Rho GTPases has 
been implicated in rheumatic disorders in humans like rheumatoid 
arthritis, OA, and psoriatic arthritis, contributing to hypertrophic 
changes and cartilaginous matrix destruction [51–53]. Rac1, a 
pro-inflammatory factor, stimulates MMP13 production and upregulates 
markers of chondrocyte hypertrophy, such as COLX and ADAMTS-5 
[52]. Dysregulated activation of Rho GTPases, particularly CDC42, 
can lead to the degradation of articular chondrocytes through 
IL-6/STAT3 signalling [54]. The presence of these proteins in SF-EVs 
from diseased groups suggests their potential role in propagating dis
ease within the joint by carrying cargo that induces phenotypic and 
metabolic changes. 

Functional enrichment analysis also revealed disease and molecular 
functions related to complement system activation and macrophage 
alternative action signalling, with proteins such as complement C6 and 

ATP citrate lyase attributed to such pathways respectively. In fact, the 
complement system activation has previously been attributed to OA 
pathology, with its activation implicated in the formation of terminal 
complement complex (TCC) on chondrocytes, resulting in cell death, or 
the initiation of the production of matrix degrading enzymes, such as 
MMP13 [55,56]. In previous studies an imbalance of macrophage sub
types (M1 and M2) has been proposed to contribute to the chronic 
low-grade inflammation associated with OA and to be implicated in OA 
pain mechanisms [57,58]. In addition, in this study, it was found that 
LXR/RXR activation was implicated in severe OA phenotypes compared 
with mild OA with proteins such as inter alpha trypsin heavy chain 4. In 
previous studies it has been shown that LXR/RXR signalling is dysre
gulated in OA tissue and associated with inflammation [59], and has 
been identified in early and late stage OA [60]. Additionally, a reduction 
in LXR signalling has been found to contribute to catabolic processes in 
OA in human articular cartilage [61]. Hence, our findings suggest that a 
significant involvement of the immune system in the later stages of OA 
pathogenesis is reflected in the SF-EV proteome. 

Overall, the observed changes in both phospholipid classes and 
proteins between SF-EVs derived from healthy joints and OA patients 
and the gradual changes associated with the severity of OA, suggest that 
these SF-EV parameters may be used as natural composite biomarkers 
for OA diagnosis and progression. Our multi-omics integration 
approach, using unsupervised sPLS2 regression and PCA, indeed 
revealed a remarkably strong similarity in the space distribution 
induced by the SF-EV phospholipidome and proteome, indicating a 
strong interrelationship, which is mainly due to a strong correlation 
between specific phospholipids with a certain set of proteins. Functional 
enrichment analysis of the proteins from this correlation network 
revealed several canonical pathways, such as signalling by Rho Family 
GTPases as previously identified and actin cytoskeleton signalling. 

Integration of data revealed potential composite biomarkers con
sisting of downregulated and upregulated phospholipids and proteins as 
OA severity progressed. Downregulated proteins and the respective 
phospholipids were comprised of phospholipids PC 34:4, PI 32:1 and PI 
38:6, and proteins such as heat shock protein 90 (HSP90AA1) and 
CD163. Interestingly, HSP90AA1 has been demonstrated to be down- 
regulated in blood and cartilage of human patients with OA, and 
levels correlated with the risk incidence of OA [62], while CD163, a 
transmembrane protein of M2 macrophages [63], was shown to decline 
as OA progressed in this study. It has been suggested that the inability of 
macrophages to transform from M1 to M2 might contribute to the onset 
and development of OA [64]. 

Among the upregulated proteins, several structural proteins were 
detected, including α-2 smooth muscle actin, erythrocyte membrane 
protein band 4.1-like 2 (EPB41L2), ezrin, and moesin. These proteins 
likely indicate changes in diseased joint tissues, which were reflected in 
the structural protein composition of SF-EVs. α-smooth muscle actin is 
known to be expressed in fibroblast-like synoviocytes (FLSs) undergoing 
a change to a myofibroblast-like phenotype in the presence of trans
forming growth factor β (TGFβ), linked to OA pathogenesis [65], as well 
as to colocalise with fibronectin, which is associated with inflammation 
in OA [66]. Ezrin, moesin, and EPB41L2 activation promote enhanced 
proliferation and formation of fibrillated OA cartilage by blocking 
cell-cell contact inhibition in chondrocytes [67]. Ezrin has also been 
connected to the RhoGTPase signalling pathway in OA synovial fluid 
[67]. Additionally, cluster of differentiation 90 (CD90) and CD109 
transmembrane proteins, upregulated as OA progresses, regulate the 
pathological response in rheumatoid arthritis (RA) fibroblast-like syn
oviocytes, driving inflammation and fibrosis [68,69]. The upregulated 
proteins were associated with phospholipids SM 36:0; 2, SM 41:3; 2, and 
PC O-32:3. The combinations of these proteins and phospholipids could 
potentially serve as candidate composite SF-EV biomarkers for OA onset 
and progression. 

The inherent constraints of this exploratory study include a relatively 
small clinical sample size and a large volume of SF required. In future 
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studies, it is important to properly identify composite biomarkers that 
can be translated to a clinical setting. Moreover, each sample was 
composed of a pool of three other horses rather than individual donors, 
which can affect the composition of the SF-EVs. Furthermore, over
coming challenges such as non-conformity in radiological and clinical 
parameters for OA severity assignment and the lag in developing 
analytical tools for comparing mass spectrometry proteomics and lip
idomics pipelines is crucial in future studies. Nonetheless, the approach 
of our exploratory study in equine OA highlights the potential for 
identifying important molecular mechanisms of OA and aims to serve as 
a framework for the discovery of SF-derived EV-based composite bio
markers having the potential to inform disease severity and enable 
targeted disease management in the future. 
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[15] E.Á. Tóth, L. Turiák, T. Visnovitz, C. Cserép, A. Mázló, B.W. Sódar, A.I. Försönits, 
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