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Determinants of epidemic size and the
impacts of lulls in seasonal influenza virus
circulation

Simon P. J. de Jong 1, Zandra C. Felix Garza1, Joseph C. Gibson1,
Sarah van Leeuwen1, Robert P. de Vries2, Geert-Jan Boons2,3,4,5,
Marliek van Hoesel1, Karen de Haan1, Laura E. van Groeningen1, Katina D. Hulme1,
Hugo D. G. vanWilligen 1, ElkeWynberg1,6, Godelieve J. de Bree7, AmyMatser6,
Margreet Bakker1, Lia van der Hoek 1, Maria Prins6,7, Neeltje A. Kootstra 8,
Dirk Eggink1,9, Brooke E. Nichols 1,10, Alvin X. Han 1,11, Menno D. de Jong1,11 &
Colin A. Russell 1,10,11

During the COVID-19 pandemic, levels of seasonal influenza virus circulation
were unprecedentedly low, leading to concerns that a lack of exposure to
influenza viruses, combined with waning antibody titres, could result in larger
and/or more severe post-pandemic seasonal influenza epidemics. However, in
most countries thefirst post-pandemic influenza seasonwas not unusually large
and/or severe. Here, based on an analysis of historical influenza virus epidemic
patterns from 2002 to 2019, we show that historic lulls in influenza virus cir-
culation had relatively minor impacts on subsequent epidemic size and that
epidemic size was more substantially impacted by season-specific effects
unrelated to themagnitude of circulation in prior seasons. Frommeasurements
of antibody levels from serum samples collected each year from 2017 to 2021,
we show that the rate of waning of antibody titres against influenza virus during
the pandemic was smaller than assumed in predictive models. Taken together,
these results partially explain why the re-emergence of seasonal influenza virus
epidemics was less dramatic than anticipated and suggest that influenza virus
epidemic dynamics are not currently amenable to multi-season prediction.

Seasonal influenza viruses typically cause annual epidemics worldwide,
infecting up to 35% of the human population1,2. However, the incidence
of seasonal influenza was unusually low during the first two years of the
COVID-19 pandemic3–10, likely due to non-pharmaceutical interventions

(NPIs) aimed at reducing transmission and spreadof SARS-CoV-2, which
were also effective in limiting exposure to seasonal influenza viruses4–12.
This global lull in influenza virus circulation and consequent lack of
exposure to influenza viruses led towidespread concerns, supportedby
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modelling studies, that increased susceptibility to seasonal influenza
viruses due to waning immunity could result in larger and more severe
epidemics in subsequent seasons7,10,12–15.

While a comparison to pre-pandemic epidemic sizes is difficult
because testing behaviour in many countries has changed due to the
COVID-19 pandemic, there is little evidence to suggest that the first
post-pandemic influenza season was unusually large or severe. For
example, the level of influenza virus circulation in the 2022 Australia
influenza season was described as moderate, with low clinical
severity16. Preliminary estimates of the 2022/2023 influenza burden in
the United States suggest that the winter epidemic was not unusually
severe, falling well within the range of influenza epidemics in the US
prior to the COVID-19 pandemic: in 5 of 10 seasons in the previous
decade, the estimated upper bound of the number of influenza hos-
pitalisations was higher than in the 2022/2023 season, and in 6 of
10 seasons in the previous decade the lower bound was higher17,18. In
the United Kingdom, too, rates of influenza-like illness (ILI) and
influenza-attributable mortality fell well within the range observed in
the decade preceding the COVID-19 pandemic19.

The lack of a clear post-pandemic increase in season size and/or
severity suggests that our current understanding of the determinants
of an epidemic’s size and severity, reflected in predictive models, does
not captureoneormore aspects of influenza virus epidemiology.Here,
we sought to explain the apparent conflict betweenmodel predictions
and observed epidemiological dynamics. First, we analysed two dec-
ades of epidemiological data from 47 countries to investigate the
relationship between the magnitude of incidence in prior seasons and
subsequent epidemic size. Second, we analysed serum samples col-
lected longitudinally before and during the COVID-19 pandemic from
adults living in the Netherlands to investigate the extent to which
measured influenza antibody waning rates agree with those assumed
in predictive models. Together, our analyses provide explanations for
the disparity between the predicted and observed post-pandemic
epidemiological dynamics of seasonal influenza.

Results
The effects of past (sub)type lulls on subsequent (sub)type
epidemic size
First, we investigated towhat extent the predicted relationship between
the magnitude of influenza virus circulation in prior years and the size
and severity of subsequent epidemics holds, where little activity in prior
seasons should translate to a bigger subsequent epidemic. Prior to the
COVID-19 pandemic, seasonal influenza virus circulation was highly
heterogeneous, with individual influenza epidemics in any given coun-
try typically being dominated by one or two influenza virus (sub)types.
Hence, there were frequent lull periods lasting 1–3 years where other
seasonal influenza virus (sub)types barely circulated. Due to the lack of
immunological cross-reactivity between (sub)types, these lulls are
potentially analogous to the scenario observed during the COVID-19
pandemic for individual (sub)types. We leveraged these historical lulls
to gain insight into how influenza virus circulation lulls affected sub-
sequent influenza epidemic sizes in the past.

To identify and estimate the frequency of (sub)type lulls, we ana-
lysed virological surveillance data for 47 countries in the Northern and
SouthernHemispheres for theperiod from2002until 2019,deposited in
the WHO FluNet database20 (Supplementary Table 1). (Sub)type lull
periods were identified if a particular (sub)type did not exhibit sub-
stantial levels of circulation over consecutive seasons in a given country.
Wedefined substantial (sub)type circulation for a season if the (sub)type
accounted for ≥20% of detections in the country during said season. In
45%, 45%, and 77% of country-season pairs for A/H3N2, A/H1N1pdm09,
and B viruses, respectively, (sub)type lulls lasted for at least one season,
with some lull periods lasting as long as two seasons (Fig. 1a). Hence,
extended periods of relative absence of individual influenza (sub)types
are a regular feature of influenza epidemic dynamics.

While virological surveillance data demonstrates the frequency of
(sub)type lulls, it does not reveal how (sub)type lulls affect epidemic
size as viral sampling rates may vary from year to year. Hence, we
required a metric that more accurately represents the size of a (sub)
type’s epidemic in a particular season, rather than solely the propor-
tion of a season’s total activity attributable to the (sub)type. To that
end, we estimated (sub)type-specific relative epidemic sizes by inte-
grating virological surveillance data with influenza-like illness (ILI) data
from the WHO FluID21 database for 20 countries in Europe and the
Middle East where, in addition to the virological surveillance data
described above, high-resolution ILI data was available (Supplemen-
tary Table 1). Because high-resolution ILI data is sparse for most sea-
sons preceding the 2009 A/H1N1pdm09 pandemic, we restricted this
analysis to the seasons from 2010/2011 until 2019/2020. In our esti-
mates, a relative size of one corresponds to the mean number of
influenza virus infections in a single season for a given country, irre-
spective of (sub)type. Very small or absent (sub)type-specific epi-
demics (defined as relative epidemic sizes <0.1)were observed for 28%,
23%, and 37% of country-seasons for A/H3N2, A/H1N1pdm09 and
influenza B viruses, respectively (Fig. 1b).

To investigate the effect influenza virus (sub)type lulls had on
epidemic composition and size, we correlated our computed (sub)
type-specific relative sizes with the number of seasons elapsed since
the (sub)type’s previous substantial circulation. Additionally, we cor-
related relative size against previous season relative size and the sum
of the two previous seasons’ relative size. We found that both the
probability of a (sub)type’s substantial circulation and the mean epi-
demic sizes for each influenza virus (sub)type increased with time
since substantial circulation (Fig. 1c, d). Nevertheless, epidemic sizes
varied substantially for each value of seasons since substantial circu-
lation (Fig. 1d). This suggests that there is an effect of absence or
presence of circulation in previous seasons on epidemic size, but also
that there is substantial background variation in epidemic size, inde-
pendent of absence or presence of circulation in preceding seasons.
Similarly, while there is a negative relationship between the relative
epidemic size of each (sub)type and its relative size in the preceding
season and the relative summed size over the last two seasons, there is
wide variation in epidemic size: seasons with very low and very high
relative sizes both occurred frequently following seasons of low-to-
mid incidence (Fig. 1e). Notably, in 9of the 20countries included inour
dataset, the first season after the 2009 A/H1N1pdm09 pandemic that
saw substantial circulation of the A/H3N2 subtype (2011/2012) was not
one of the three largest A/H3N2 epidemics in the influenza seasons
from 2010/2011 until 2019/2020, despite three years of near-absent
circulation.

Importantly, for each number of seasons since substantial circu-
lation, we observed a striking degree of clustering of relative epidemic
sizes across countries by season, suggesting the existence of season-
specific effects on epidemic size, shared among countries in a single
season (Fig. 1d). For example, the A/H3N2 epidemic size in 2016/2017
appeared consistently greater than in 2013/2014 despite, in many
countries, equal time since previous substantial A/H3N2 circulation.
We thus hypothesised that the size of (sub)type-specific epidemics
could be jointly explained by a combination of season-specific effects,
shared among countries, and effects related to the presence or
absence of that virus (sub)type in the seasons preceding an epidemic.
We used a Bayesian hierarchical model to estimate the likely effects of
(i) seasons since substantial circulation, (ii) size in the previous season
and (iii) the sum of previous two seasons’ sizes. (Fig. 2). We also esti-
mated the respective season-specific effects, which correspond to the
predicted ‘base size’ of a (sub)type’s epidemic given that (i) the pre-
vious substantial circulation of that (sub)type was in the previous
season, (ii) there was no circulation of that (sub)type in the previous
season, or (iii) there was no circulation in the previous two seasons.
These season effects are modulated by the effects of prior circulation
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to yield an epidemic’s predicted size. Each of the three predictors
individually had non-trivial effects on epidemic size in models with
season effects and estimated effects were substantially smaller than in
models that did not include season effects (Fig. 2).

Crucially, models that included season effects exhibited much
better predictive performance than models without season effects
(Supplementary Fig. 1), showing that season effects are a crucial
determinant of epidemic size. Across all model formulations, the
estimated season effects, shared among countries, differed sub-
stantially between seasons. Furthermore, between-season differences
in season effects were consistently substantially greater in magnitude
than any of the predictors related to prior incidence. For example, in
the model that includes previous season size as predictor for A/H3N2
epidemic size, the estimated season effects (‘base sizes’) ranged from
0.17 (95% CI 0.04–0.31) in 2015/2016 to 0.83 (95% CI 0.75–0.92) in
2016/2017: a difference of 0.66. Conversely, assuming the size of the
previous season was the mean A/H3N2 season relative size (across all
included countries and seasons), the effect of previous season size
wouldonly reducepredicted size by0.06 (95%CI0.01–0.12) compared
to if there were no circulation in the previous season. Together, these
results suggest that an effect of the magnitude of influenza virus

circulation in the preceding season(s) on subsequent epidemic size is
present but limited and that epidemic size is dominated by season-
specific factors, unrelated to the magnitude of prior circulation.

Effects of past (sub)type lulls on subsequent influenza season
severity
In addition to season size, we investigated how influenza circulation
lulls affected season severity. Here,we used excessmortality as a proxy
for severity, leveraging Europe-wide estimates of excess mortality as
calculated by the EuroMOMO network22,23. By comparing these esti-
mates to our computed lull durations, we qualitatively investigated if a
clear relationship exists between prior incidence and season severity.
Rates of pooled Europe-wide influenza-attribute excess mortality as
calculated by the EuroMOMO network varied substantially between
seasons, ranging from 0.31 (95% CI 0.24–0.38) per 100,000 in 2013/
2014 to 28.58 (95% CI: 28.22–28.95) per 100,000 in 2014/2015. Hence,
in the decade prior to the COVID-19 pandemic, epidemics could differ
by up to two orders of magnitude in their severity22,23. In the 2011/
2012 season, whichwas A/H3N2-dominant Europe-wide and followed a
three-year A/H3N2 lull in almost all countries, Europe-wide total excess
mortality in the winter period amounted to 6.73 (95%CI 5.26–8.21) per

a d

e

b

c

Fig. 1 | The effects of influenza epidemic dynamics in preceding seasons on
subsequent epidemic composition and size. a The distribution of lull period
durations, in number of seasons, by (sub)type, across all countries and seasons. A
lull duration of zero corresponds to the same (sub)type’s substantial circulation in
the previous season and the current season. b The distribution of relative epidemic
sizes by virus (sub)type, across all countries and seasons. c The relationship
between the number of seasons since previous substantial circulation of a (sub)
type and the probability of the (sub)type’s substantial circulation. Error bars cor-
respond to 95% confidence interval from an exact two-tailed binomial test for
proportions. Points correspond to point estimates of the probability. The prob-
abilities were computed from all countries and seasons (n = 642, 460 and 624
country-season pairs for A/H3N2, A/H1N1pdm09, B, respectively). d Relationship
between the relative size of a (sub)type-specific epidemic and the number of

seasons since previous substantial circulation of that (sub)type. Each point corre-
sponds to a specific country, in a specific season (n = 188, 198 and 186 country-
seasonpairs for A/H3N2,A/H1N1pdm09andB, respectively). Points are colouredby
the season. Boxplots show the median and first and third quantiles. Whiskers cor-
respond to the minimum of the maximum value and the third quartile + 1.5 × the
interquartile range for the upper whisker, and themaximumof theminimum value
and the first quartile − 1.5 × the interquartile range for the lower whisker.
eRelationship between the relative size of a (sub)type’s epidemic and (1) the size of
that (sub)type’s epidemic in the previous season (left); and (2) the sum of the two
previous seasons’ sizes of that (sub)type (right). For eachof the twosubpanels, each
point corresponds to a specific country, in a specific season (n = 180country-season
pairs for each (sub)type for previous season size, n = 160 for each (sub)type for
previous two seasons size sum). Points are coloured by the season.
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100,000. In turn, in the 2014/2015 and 2016/2017 seasons, which were
also A/H3N2-dominant Europe-wide and saw substantial A/H3N2 cir-
culation one or two seasons prior in almost all countries, respectively,
influenza-specific excess mortality amounted to 28.58 (95% CI:
28.22–28.95) and 25.65 (95% CI: 25.26–26.05) per 100,000, respec-
tively. Hence, in these seasons, influenza-specific excess mortality was
four to five-fold higher than total winter period excess mortality in
2011/2012, despite substantially shorter lull durations. While this
coarse analysis could only be performed for seasons dominated by a
single (sub)type, these results suggest that there is no clear relation-
ship between the magnitude of circulation in the preceding seasons
and the severity of subsequent seasons.

Antibody responses to seasonal influenza virus during the
COVID-19 pandemic
Waning of pre-existing immunity due to lack of immune stimulation
has been posited to lead to larger post-lull epidemics, but evidence is
lacking onprecisely howantibody immunity against seasonal influenza
viruses changes due to near-absence of seasonal influenza circulation,
such as seen during the COVID-19 pandemic. To quantify the effects of
lack of influenza virus circulation on antibody titres against seasonal
influenza viruses,we analysed influenza virus antibody dynamics in the
pre- and intra-COVID-19 pandemic periods in the Netherlands. We
quantified the baseline antibody titres of an adult population in the
Netherlands for the seasonspreceding theCOVID-19pandemicand the
extent of their decrease during the pandemic. Influenza A/H3N2, A/
H1N1pdm09 and B/Yamagata viruses had caused epidemics in the
three influenza seasons prior to the onset of the COVID-19 pandemic
(Fig. 3a) and epidemic activity during this period was consistent with
patterns from 2010–2019 (Supplementary Fig. 2). Since antibody
responses to the haemagglutinin protein of influenza viruses are
known to be correlates of protection24–26, we measured antibody titres
with haemagglutination inhibition (HI) assay against representative
strains of each (sub)type of seasonal influenza in 130 serum samples
from a longitudinal cohort of 31 female and 34 male adult COVID-19
patients that were not vaccinated for seasonal influenza in 2020 (the
Viro-immunological, clinical and psychosocial correlates of disease
severity and long-term outcomes of infection in SARS-CoV-2 – a pro-
spective cohort study (RECoVERED))27 (Supplementary Figs. 3 and 4a).

Additionally, we measured antibody titres against longitudinal sam-
ples collected in the summers from 2017 to 2020 from 100 healthy
male adultswithin theAmsterdamCohort Studies onHIV infection and
AIDS28 (ACS) (Supplementary Figs. 3 and 4b). This cohort only consists
ofmen, and influenza vaccination statuswas not known, but it crucially
allows for comparison of intra-pandemic against pre-pandemic influ-
enza antibody dynamics, and hence provides important additional
data. Hence, our data consisted of a total of 630 serum samples across
both cohorts. Importantly, all participants were healthy, and specifi-
cally all ACS individuals were HIV-seronegative.

From2019 to 2021,meanHI titres remained largely unchanged for
all influenza virus (sub)types, including during theCOVID-19 pandemic
period, for both the ACS and RECoVERED cohorts (Fig. 3b and Sup-
plementary Fig. 5b). For all seasonal influenza virus (sub)types, mean
HI titres increased after the 2017/2018 influenza epidemic but returned
to pre-2017/2018 levels by summer 2019 in the ACS cohort (Fig. 3b,
Supplementary Fig. 5b). Due to experimental variation resulting from
differences in the receptor-destroying enzyme used, the ACS indivi-
duals were split into two separate groups of 70 and 30 individuals.
Results from the larger group are presented in the main text while the
smaller group of 30 is referred to the Supplementary Material (Sup-
plementary Fig. 5). Differentiating the year-on-year individual HI titre
distributions by titre rises that are indicative of recent influenza virus
infection (≥4-fold increase, ≥2 log2 units), showed that influenza A and
B virus infections weremost common in individuals with low antibody
titres in the year prior to infection (Fig. 3c and Supplementary Fig. 5c);
consistent with lower antibody titres being associatedwith greater risk
of infection. Overall, the HI titre distributions of the cohort remained
largely unchanged over the study period, including during thefirst two
years of the COVID-19 pandemic.

We applied a mathematical model on the HI titres of participants
in 2020 and 2021 to estimate pandemic-period antibody titre waning
rates. For theACS individuals,weestimated that antibody titres against
A/H3N2 viruses waned at −0.06 log2 units per year, 95% credible
interval (CI) (−0.18, 0.05); A/H1N1pdm09 viruses at −0.01, 95% CI
(−0.14, 0.13); B/Yamagata viruses at 0.10, 95% CI (−0.02, 0.22); and B/
Victoria viruses at 0.10, 95% CI (−0.04, 0.24) (Fig. 3d, Supplementary
Fig. 5d). For the RECoVERED cohort, we estimated mean waning rates
towards A/H3N2, A/H1N1pdm09, B/Yamagata, and B/Victoria to be
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−0.15, 95% CI (−0.32, 0.02), −0.06, 95% CI (−0.28, 0.17), −0.08, 95% CI
(−0.21, 0.05) and −0.11, 95% CI (−0.24, 0.02) log2 units per year
respectively, in agreement with those derived from the ACS cohort
(Fig. 3d). Combiningdata fromboth cohorts for the 2020–2021period,
the estimated mean waning rates remained similar to previous esti-
mates (Fig. 3d). We also estimated mean waning rates using HI titres
from the sameACS individuals for the entire 2017–2021 period (Fig. 3d,
Supplementary Fig. 5d). For this period,waning estimates are generally
lower with narrower credible intervals as they were estimated from
longitudinal data spanning five years, but no substantial waning of HI
titres against any of the viruses was observed either, and estimates
were similar to estimates for the 2020–2021 period, for both the ACS
and the RECoVERED cohorts (A/H3N2: −0.20, 95% CI (−0.25, −0.15), A/
H1N1pdm09: −0.09, 95% CI (−0.15, −0.04), B/Yamagata: −0.13, 95% CI
(−0.17, −0.08), B/Victoria: −0.14, 95% CI (−0.19, −0.09)). For the ACS
cohort, we included only individuals who experienced no ≥2 log2 unit
increases in HI titre for the entire study period and hence were likely
not infected in the 2017–2021 period in our waning model (A/H3N2:
n = 59, A/H1N1pdm09: n = 54, B/Yamagata: n = 53, B/Victoria: n = 58).

To investigate potential age or sex-specific patterns in antibody
dynamics in our two cohorts, we stratified baseline antibody titres by
age and sex, for each (sub)type. However, we found no consistent age-
or sex-related effects on baseline titres (Fig. 4a, Supplementary Fig. 6a).

Similarly, we investigated if there were age or sex-specific effects on
estimated individual-level waning rates, but we found no consistent age
or sex-related differences (Fig. 4b, Supplementary Fig. 6b). The esti-
mated standard deviation of the measured titre value around the
model-estimated individual-level titre amounted to 0.31 log2 units (95%
CI0.29–0.33) for theACS cohort for the full 2017–2021 dataset and0.05
(95% CI 0.03–0.08) for the RECoVERED cohort, suggesting that the
model used to estimate the waning rates fits the data well.

Discussion
Our analysis of two decades of epidemiological data from 47 countries
demonstrates that low country-level prevalence of influenza (sub)
types over one or more years was not unique to the COVID-19 pan-
demic but occurred frequently in the past. Additionally, while our
analysis shows that periods or low or near-absent circulation of parti-
cular (sub)types on average led to increased epidemic sizes of that
(sub)type, both very large and very small epidemics occurred follow-
ing sustainedperiods of low tonear-absent circulation.Consistentwith
this, Bayesian statisticalmodelling shows that themagnitude of a (sub)
type’s circulation in preceding seasons had only limited effect on
subsequent size. Instead, the strong clustering of different countries’
epidemic size within individual seasons, supported by statistical
modelling, suggests that epidemic size is more strongly influenced by
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Fig. 3 | Antibody dynamics to seasonal influenza virus before and during the
COVID-19 pandemic. a Seasonal influenza virus epidemic activity 2017–2021 in the
Netherlands, computed as the number of reported cases of influenza-like illness per
100,000, stratified by (sub)type as estimated from virological surveillance data.
b Individual antibody titres against seasonal influenza viruses based on hae-
magglutination inhibition (HI) assay from 2017–2021 among 70 healthy male adult
participants of the Amsterdam Cohort Studies on HIV infection and AIDS (ACS)
cohort for each influenza virus (sub)type as well as 34 male and 31 female partici-
pants of the RECoVERED cohort for years 2020-21 (dashed). Mean antibody titre
changes across all individuals are drawn in bold lines with error bars indicating the
mean standard error. The viruses used are A/Netherlands/04189/2017 (A/H3N2), A/
Netherlands/10218/2018 (A/H1N1pdm09), B/Netherlands/04136/2017 (B/

Yamagata), and B/Netherlands/00302/2018 (B/Victoria). c HI titre distributions in
the two cohorts following each winter epidemic period coloured by influenza virus
(sub)type. HI titre distributions of individuals who experienced a ≥ 2 log2 units
increase in HI titre (≥4-fold increase in HI titre) in the next winter epidemic period,
indicating likely infection, are shown in grey bars. dMean HI antibody titre waning
rates by influenza virus (sub)type in adults estimated from HI titres from the indi-
viduals among the 70 ACS individuals that did not see a ≥ 2 log2 units increase in
titre in consecutive years in the study period and 65 RECoVEREDparticipants. Error
bars correspond to the 50% and 95% credible intervals and horizontal grey lines
correspond to themedian of the posterior distribution of themean.Waning rate of
−1.0 corresponds to 1 2-fold decrease in antibody titre in 1 year.
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season-specific effects that are unrelated to the absence or presenceof
circulation in the prior season(s). Similarly, the severity of influenza
seasons appears to be largely independent of the magnitude of influ-
enza virus circulation in the preceding seasons.

Given our finding that prior incidence only had a subdominant
effect on subsequent epidemic sizes historically, the lack of excep-
tionally large or severe post-pandemic influenza seasons is not unex-
pected. Our results suggest that the relationship between
accumulation of susceptibility and epidemic size is decidedly more
complex: even if there were substantial accumulation of susceptibility
during the COVID-19 pandemic, it is more likely that epidemic size and
severity would be dominated by season-to-season variation due to the
combined effect of other known or unknown factors unrelated to the
absence or presence of substantial circulation in preceding years.
Nevertheless, it is possible that periods of absent circulation much
longer than seen during the COVID-19 pandemic will have substantial
effects on epidemic dynamics. While the precise mechanisms are
unknown and likely multifactorial, the prolonged absence of influenza
virus circulation may have contributed to historical observations of
severe outbreaks in remote areas, and it is possible that such instances
may yield insights into the effects of longer lulls29,30.

The precise determinants of these season effects are likely mani-
fold, combining factors such as the flux of viral seeding, hetero-
subtypic competition, vaccine effectiveness, antigenic novelty,
immune imprinting, andpossibly other unknown factors31–39.While our
analysis showed that an effect of prior incidence on epidemic size
exists, it also shows that it is only one of likely many determinants.
Crucially, our lack of understanding of many of these determinants
currently limits our capacity to generate meaningful multi-year

forecasts of epidemic sizes. Predictive models that incorporate the
uncertainty arising from the unpredictability of season effects will
necessarily yield outputs that have wide confidence intervals, limiting
their utility for public health purposes. Simultaneously, not incorpor-
ating this uncertainty will likely result in substantial prediction error. It
is likely that a better understanding of the different immunological,
evolutionary, ecological and epidemiological factors that determine
epidemic size, beyond waning immunity, is required to perform
accurate and precise multi-year prediction of epidemic size.

We also showed that HI-measured immune protection against
recent seasonal influenza viruses remained largely unchanged in adults
during the COVID-19 pandemic. Our analysis suggests that waning of
antibody titres against seasonal influenza viruses occurs at timescales
substantially longer than the lull in seasonal influenza virus circulation
during the COVID-19 pandemic10. We showed that waning rates fol-
lowing periods of absent circulation were largely in agreement with
waning rates previously reported for adults during regular periods of
influenza virus circulation40. This lower waning rate is also more con-
sistent with individual-level estimates of the duration of protection
against infectionby circulating strains41, and is lower thanwasassumed
in models used to project post-COVID-19 pandemic epidemic
sizes12,13,15. In modelling studies, one of the reasons for the assumption
of a high rate of waning is to yield annually recurring epidemics in SIR-
type models15. In reality, epidemics recur annually with a much lower
waning rate. While much is unknown about the mechanisms behind
the annual recurrence of influenza epidemics, network effects might
form a plausible explanation for the annual recurrence of influenza
epidemics despite a limited rate of waning of protection. However,
such dynamics cannot be incorporated in SIR-type compartmental
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Fig. 4 | The effects ofage and sexonbaseline antibody titre andwaning rate. aA
cross section of antibody titres in 2021 for 70 ACS individuals and 65 RECoVERED
individuals, broken down by (sub)type, age and sex. The smoothing line corre-
sponds to a LOESS fit with span = 0.75, for each sex individually. The confidence
band corresponds to a 95% confidence interval. b Individual-level fitted waning
rates with 50% (thick lines) and 95% (narrow lines) CIs for the 2017-21 period for the

individuals among the 70 ACS individuals that did not see a ≥ 4-fold increase in titre
in consecutive years and the 65 RECoVERED individuals for 2020-21, broken down
by (sub)type, age and sex. Points correspond to median individual-level fitted
waning rates. The smoothing line corresponds to a LOESS fit with span = 0.75, for
each sex individually. The confidence band corresponds to a 95% confidence
interval.
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models.Hence, the inherent shortcomings of oft-used epidemiological
models in modelling a relatively complex pathogen lead to the use of
unrealistic parameter values, potentially leading to unreliable infer-
ences.The complexity of influenza epidemiology and its contravention
of SIR-predicteddynamics is also reflected in the empirical observation
that novel antigenic variants do not necessarily lead to larger epidemic
sizes31.

Our studyhas some limitations. First, weused influenza-like illness
data from the WHO FluID database and virologically confirmed data
from the WHO FluNet database in our epidemiological analyses. Bias
might affect both data sources. In particular, the FluID ILI data is not
influenza-specific and might be affected by year-to-year variation in
sentinel sites, and FluNet data might be biased due to the presence of
convenience samples and overrepresentation of outpatient surveil-
lance. However, the observed consistency in the estimated (sub)type-
specific epidemic sizes across the 20 countries included in the analysis
for any given season suggests that these data sources broadly capture
influenza epidemiological dynamics. Therefore, our results are unli-
kely to be substantially affected by potential year-on-year differences
in reporting behaviour or unrepresentative sampling. Second, the
applicability of our analysis to the post-COVID-19 pandemic-like
situation is predicated on the absence of heterosubtypic immunity.
Importantly, heterosubtypic protection has previously been estimated
to be exceedingly short-lived, with duration on the order of a single
day41. Third, we could only perform our severity analysis based on
Europe-wide excess mortality data. Nonetheless, the clustering of
epidemic sizes across different European countries within a particular
season as observed in our epidemiological analysis suggests that, for
any given season, Europe-wide severity data is likely representative at
the individual country level.

Fourth, the serum samples were collected in two independent
cohorts, with substantial diversity in age and sex, accounting for the
elderly but excluding children. Due to the complex effects of immuno-
senescence, the elderly potentially exhibit differing antibody dynamics.
Whilst studies have shown that vaccine-mediated protection wanes
modestly quicker in thoseover 65 years of age42,43, there is little evidence
to support the notion that serumantibodieswane significantly faster for
this age group. Our results showed similar antibody baseline titres and
waning rates for adults below and above 65 years of age, suggesting that
serum antibodies in both subgroups wane at similar rates.

Due to the lack of children in our serological analysis, the
extent to which their waning rates changed during the COVID-19
pandemic remains uncertain. Immune dynamics in children are
known to differ from those in adults41, with potentially higher
waning rates. This could lead to increased susceptibility to infec-
tion, and the duration of protection against infection is known to be
shorter in children than in adults41,44. Furthermore, the accrual of
additional birth cohorts during prolonged periods of absence of
influenza virus circulation might affect epidemic dynamics. How-
ever, the same dynamics of waning in children and population
turnover also occurred in pre-pandemic (sub)type lulls. Although
we could not perform the serological analysis for children, the
epidemiological data we use to estimate the effects of (sub)type
lulls on subsequent epidemic size does incorporate dynamics of
waning in children and population turnover. For this reason, the
absence of child sera is unlikely to bias our conclusions.

Finally, although participants in the RECoVERED cohort were
confirmed to be unvaccinated during the study period, vaccination
status for the ACS cohort was not known. However, in the Netherlands
individuals <60 years of age are only eligible for influenza vaccination
if they have underlying health conditions, and assuming population-
wide rates of influenza vaccine uptake in the Netherlands, only 3% of
the ACS individuals, who importantlywere all HIV-seronegative, would
be expected to be vaccinated. Combined with the similarity in anti-
body baseline titres and waning rates when comparing adults below

and above 60 years of age, it is unlikely the lack of vaccination status
for the ACS cohort biases our conclusions.

Leveraging multiple sources of data, our results show that pre-
dicted relationships between prior epidemicmagnitude, the degree of
accumulation of susceptibility, and the resultant epidemic size do not
accurately reflect the complexity of influenza epidemiology. Likely,
our lack of understanding of many aspects of influenza epidemiology
fundamentally hampersour ability to generatemeaningful forecasts of
epidemic size and severity.

Methods
Epidemic composition data
We downloaded records of virological surveillance data from the WHO
FluNet20 database for all countries in the temperate Northern and
Southern Hemisphere from 2002 until 2020, or a shorter period for a
limited subset of countries. We limited the dataset to countries in
temperate zones because the discrete seasonal nature of influenza
epidemics in temperate zones facilitates the computation of lull dura-
tions and epidemic sizes. For each country, we retained the longest
sequence of consecutive seasons in which at least 20 specimens were
influenza-positive. In each season, defined as theperiod fromtheperiod
fromweek40until week 20 for theNorthernHemisphere and the entire
year for the Southern Hemisphere, we computed the proportion of all
positive tests that was attributable to each of A/H3N2, pandemic A/
H1N1pdm09 (from the 2009 pandemic onwards), and influenza B
viruses.Wedidnot breakdown influenzaBvirusesby lineagebecause in
many countries influenza B viruses were not further characterised.

In many seasons, only a proportion of all influenza A virus positive
tests were subtyped; in those cases, we approximated the total pro-
portion of each subtype by assuming that the subtype of the non-
subtyped influenza A virus specimens were distributed according to the
relative proportions of subtyped influenza A viruses. Additionally, we
required that in each country-season at least 20positive specimenswere
characterised (thoughmost countsweremuchhigher). This resulted in a
dataset of 718 season-country records over a periodof 18 seasons, for 47
countries. We assigned a binary variable to each (sub)type in each sea-
son for substantial circulation; we defined substantial circulation as a
(sub)type accounting for at least 20% of all detections in a country in a
season. Hence, in principle, all three (sub)types considered can simul-
taneously substantially circulate in a single season. To avoid including
effects of the COVID-19 pandemic on influenza dynamics, we truncated
the 2019/2020 season at the 15th of February 2020, and to avoid
including the effect of the 2009 A/H1N1pdm09 pandemic, we truncated
the 2008/2009 influenza season at the 1st of April 2009.

Epidemic size data
To estimate epidemic sizes for each (sub)type, we extracted weekly
records of influenza-like illness from the WHO FluID21 database. We
limited this dataset to countries for which influenza-like illness (ILI)
records were available for all seasons from 2010/2011 until 2019/2020,
and for which virological surveillance data was available, as described
above. This period was chosen because the availability of ILI data was
insufficient for the years preceding 2010. We required ILI curves to
follow the expected shape of an influenza epidemic curve, i.e. peaking
in winter and only sporadic isolation outside this period, and without
periods of missing data. To facilitate the estimation of season effects,
we only considered countries located in the Northern hemisphere.
This yielded a set of 20 countries, each with 10 seasons worth of ILI
data, located in Europe and the Middle East.

To approximate the relative epidemic size of each subtype in each
country in each season, we first multiplied total ILI incidence in that
country’s season by the proportion of all detections in that country in
that season attributable to that (sub)type in the virological surveillance
data, yielding a measure of (sub)type-specific ILI. We then computed
the relative size of each (sub)type’s epidemic in eachcountry by season
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by computing the proportion of all ILI in that country in the total study
period, i.e. from the 2010/2011 until 2019/2020 seasons, that was
attributable to that (sub)type and season, andmultiplying this number
by the total number of seasons. Hence, if in a particular season in a
particular country a (sub)type’s epidemic had a relative size of 0.8, its
size corresponded to 80% of the mean influenza epidemic size (irre-
spective of (sub)type) in that country in the ten-year period. In this
way, this metric accounts for differences between seasons with regard
to epidemic size, as opposed to only composition. We accounted for
the COVID-19 pandemic as described above.

Statistical modelling
We used Bayesian hierarchical linear regression to estimate the effects
of lull periods on epidemic size. As predictors,we separately used each
of (1) seasons since previous substantial circulation, (2) previous sea-
son relative size, or (3) previous two seasons’ relative size sum.Thefirst
model has relative size as outcome and seasons since substantial cir-
culation as calculated using the virological surveillance data as pre-
dictor (n = 188, 198, 191 for A/H3N2, A/H1N1pdm09 and B):

yi ∼Normalðα +βxi,σyÞ ð1Þ

where yi is an epidemic’s relative size for a certain (sub)type in country-
season pair i, α is the model intercept for that (sub)type, β is the
coefficient for number of seasons since substantial circulation of the
(sub)type, and σy is the error standard deviation. xi represents the
number of seasons since substantial circulation of the (sub)type in
country-season pair i, such that α represents the predicted size if the
previous substantial circulation was in the previous season. We put
weakly informative priors on the main effect, the intercept and the
standard deviation.

β∼Normal 0,1ð Þ ð2Þ

α∼Normalð0:5,1Þ ð3Þ

σy ∼Half � Normalð0,1Þ ð4Þ

We also ran the same models with season effects, where we
furnished each season with its own intercept:

yi ∼Normalðαs½i� +βxi,σyÞ ð5Þ

Here, αs[i] is the season effect for that (sub)type corresponding to
that season, for a country-season pair i. Season effects are shared
between countries in a single season. We assumed that the season
effectsαs, constrained to positive values, aredistributed according to a
common mean μα and common standard deviation σα, and we put
weakly informative priors on the mean season effect and its standard
deviation:

αs ∼Normalðμα,σαÞ ð6Þ

μα ∼Normalð0:5,1Þ ð7Þ

σα ∼Half � Normal 0,1ð Þ ð8Þ

In addition to the model described above, we ran models with
relative size as outcome and relative size in the previous season as the
predictor (n = 180 for each (sub)type) or the sum of the two previous
seasons’ sizes (n= 160 for each (sub)type). We used the same model
specification and priors as for the size~seasons since substantial cir-
culation model, but we replaced the predictor with the relative size in

theprevious season, orwith the sumof relative size in the twoprevious
seasons. All the above models were run both with and without season
effects, i.e. with either a single value for the intercept, or with a sepa-
rate intercept for each season. In the models with season effects, the
season effects correspond to the predicted ‘base size’ of a (sub)type’s
epidemic in a particular season, given that either the previous sub-
stantial circulationwas in the previous season, therewas no circulation
in the previous season, or there was no circulation in the previous two
seasons, respectively, for the models with seasons since previous
substantial circulation, previous season size, and previous two sea-
sons’ size sum as predictors. We ran the models for each (sub)type
individually, and for each predictor individually. The models were fit
using MCMC in Stan v2.21.0. The models were each run for 3000
iterations, discarding the first 1000 as burn-in, with four independent
chains. Convergence was assessed by inspection of Rhat (<1.05),
effective sample size (> 200) and the trace plots.We comparedmodels
with and without season effects using leave-one-out cross-validation45.
Analyses were performed using R v4.0.3.

Severity data
We used excess deaths as a proxy for epidemic severity. We extracted
pooled Europe-wide winter-period excess mortality for the 2010/2011
and 2011/2012 seasons, and pooled-Europe wide flu-specific winter-
period excess mortality for the 2012/2013 to 2017/2018 seasons from
the EuroMOMO network, which combines data regarding excess
deaths in European countries to estimate Europe-wide excess
mortality22,23. The number of countries included in the calculation of
excess deaths ranged from 7 in 2010/2011 to 24 in 2017/2018. For
seasons that were (1) dominated by a single (sub)type in most coun-
tries; and (2) were uniform across most countries with regard to the
number of seasons since previous substantial circulation of the
dominant (sub)type, we compared the Europe-wide excess mortality
to the value for seasons since substantial circulation. Because these
criteria were only met for a small number of seasons, the comparison
was performed mostly qualitatively.

Viruses
To select the four representative strains used in this study (A/Nether-
lands/04189/2017 (A/H3N2), A/Netherlands/10218/2018 (A/H1N1pdm
09), B/Netherlands/04136/2017 (B/Yamagata), and B/Netherlands/
00302/2018 (B/Victoria)), we downloaded high-quality (<5% ambiguous
nucleotides, >95% full length) seasonal influenza virus haemagglutinin
sequences (A/H3N2, n = 1396; A/H1N1pdm09, n = 1283; B/Yamagata,
n = 1129; and B/Victoria, n = 1408) collected between 2016 and October
2021 from GISAID (www.gisaid.org) and reconstructed maximum-
likelihood phylogenetic trees for each influenza virus subtype using
the general time reversible substitution model with IQ-TREE46.These
trees were used to assess the representativeness of viruses from the
Netherlands in the early portion of the study period and the selected
viruses were all representative of viruses that caused epidemics in the
Netherlands during the 2017/2018 winter.

All four viruses were propagated in Madin-Darby Canine Kidney
(MDCK) cells in infection medium which consisted of MEM-Eagle
Medium /EBSS (Lonza, Geleen, The Netherlands) supplemented with
MEM Non-Essential Amino Acids (Gibco, ThermoFischer Scientific,
Amsterdam, The Netherlands), penicillin (100 IU/mL), streptomycin
(100mg/mL), L-Glutamine (Lonza), HEPES (Lonza), and TPCKtrypsin
(Sigma-Aldrich/Merck, Darmstadt, Germany). They were harvested
after 72 h of incubation at either 37 °C (H3N2 and H1N1) or 33 °C
(Yamagata and Victoria) and checked by Sanger sequencing.

Longitudinal serum samples
A total of 630 serum samples from 165 healthymale and female adults,
including people >70 years of age (elderly), were collected in the
Netherlands, longitudinally, before and during the COVID-19
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pandemic in two separate cohorts: 1. the Viro-immunological, clinical
and psychosocial correlates of disease severity and long-term out-
comes of infection in SARS-CoV-2 – a prospective cohort study27

(RECoVERED) and 2. Amsterdam Cohort Studies on HIV infection and
AIDS28 (ACS).

The aim of the RECoVERED cohort study is to describe the
immunological, clinical and psychosocial sequelae of a SARS-CoV-2
infection. Individuals aged 16 to 85 years with laboratory-confirmed
SARS-CoV-2 infection were enrolled from May 2020 until the end of
June 2021 in the municipal region of Amsterdam, the Netherlands. All
participants provided written informed consent. The RECoVERED
study was approved by the medical ethical review board of the
Amsterdam University Medical Centre (NL73759.018.20). From the
RECoVERED study, we selected a total of 34 male and 31 female adults
ranging from 20 to 77 years old at the time of sample collection inmid-
2020, all of which had a confirmed SARS-CoV-2 infection but were
otherwise healthy and unvaccinated for influenza in 2020. For these 65
individuals, samples were collected in the summer period of 2020 and
2021 only (two total for each participant).

The initial aim of the Amsterdam Cohort Studies was to investi-
gate the prevalence, incidence, and risk factors of HIV-1 infection. The
study population consists of men who have sex with men and live
mainly around the city of Amsterdam, theNetherlands. Participation in
ACS is voluntary and without incentive. Written informed consent of
each participant was obtained at enrolment. The Amsterdam Cohort
Studies on HIV infection and AIDS was approved by the Medical Ethics
Committee of the Amsterdam University Medical Centre of the Uni-
versity of Amsterdam, the Netherlands (MEC 07/182). Participants
from the ACS cohort included in our study were all HIV-1 seronegative
men ranging from 22 to 70 years old at the time of sample collection in
mid-2017. Briefly, five stored samples were used per participant, i.e. 1.
mid-2017, 2. mid-2018, 3. mid-2019, 4. mid-2020, 5. mid-2021.

Haemagglutination inhibition (HI) assay
All serum samples were receptor destroying enzyme (RDE)-treated, as
described elsewhere47. Briefly, for ACS individuals 1–30, 100μL of
serum was combined with 200μL of RDE (Denka Seiken, Tokyo,
Japan); for ACS individuals 31–100, 100μL of serum were combined
with 300μL or 200μL of RDE (supplied by the National Institute for
Public Health and the Environment). This difference in protocol was
per the instructions of the providers of the respective batches of RDE.
For all 65 RECoVERED subjects, the latter RDE was used, combining
100μL of serum with combined with 200μL of RDE. Because of this
protocol difference, the results of ACS participants 1–30 and 31–100
are shown separately. Differences in dilution were accounted for in
titre calculation. All samples were then incubated at 37 °C for 18–20 h.
The RDE reaction was then halted by heating the treated samples at
56 °C for 30–60min.

The haemagglutination inhibition activity of all serum samples
was tested in an HI assay as described elsewhere47 using two replicates
per sample for A/H1N1pdm09, B/Yamagata, and B/Victoria viruses, and
one single measurement for A/H3N2 viruses. Due to inefficient agglu-
tination of turkey red blood cells (tRBCs) by recent A/H3N2 viruses, we
used glycan remodelled tRBCs expressing appropriate receptors for
recent A/H3N2 viruses for the HI assays of the A/H3N2 virus stock48.
Briefly, the haemagglutination titre of each of the four viruses was
determined by performing a two-fold serial dilution of 50μL of each
virus stock and adding 50 μL of PBS and 25μL of 1% turkey red blood
cells (tRBCs) to each well, followed by 1 h incubation at 4 °C and the
reading of the haemagglutination patterns. The virus stocks were then
diluted to a concentration of four haemagglutination units (HAU). The
diluted viruseswere then incubatedwith 50μLof 2-fold serially diluted
serum, in a total volumeof 75μL for 30min at 37 °C. The initial dilution
used for the serial dilution of the serum was 1:20 of the RDE-treated
serum. After the incubation step, 25μL of 1% turkey red blood cells

were added to the serum-virus mix and incubated at 4 °C for 1 h. The
haemagglutination inhibition patternswere then readout and used for
the calculation of antibody titres.

Antibody waning model
For the RECoVERED cohort for the years 2020 and 2021, all partici-
pants were confirmed to have not received an influenza vaccination
between the two sample collections and no natural influenza infection
can be safely assumed given the near absence of influenza in the
Netherlands during this period. For the ACS data, those who experi-
enced a four or greater fold increase in titre between consecutive visits
for a particular strain had their strain-data discarded in order to
remove the obscuring effects of vaccination and infection.

True antibody titre log2 HI, eTi as opposed to that measured by HI
assay,Ti, is a continuous variablewhichweassume, for every individual
i, decays with time t as

eTi = ci � αit ð8Þ

Where ci are individual specific initial titres and αi are the individual
waning rates. Thewaning rates are assumed to be normally distributed
about a population mean, αµ, with standard deviation, ασ.

If serum dilutions could be performed in arbitrarily small incre-
ments, we assume the point at which haemagglutination would be
observed to cease, Tobs, to be distributed normally about the true
value:

Tobs ∼Nð eT,ϵÞ ð9Þ

Instead, with discrete dilutions in increments of one, the prob-
ability of measuring T ∈ {0,1,2…8} is the probability that Tobs falls
between T and T−1. Thus, the measurement probability is given by:

PðT jeT ,ϵÞ=
Φð1,eT ,ϵÞ
ΦðT ,eT ,ϵÞ �ΦðT � 1,eT ,ϵÞ
1�Φð8,eT ,ϵÞ

8

>

<

>

:

T < 1

1≤T <8

T ≥8

ð10Þ

where Φ(x, μ, σ) is the cumulative distribution function of the normal
distribution.

Our data for each individual, i, consists of a series of titre mea-
surements, T i,r = ðT 1,i,r ,T2,i,r , . . . :,Tn,i,r Þ, at corresponding timepoints
1… n, where r ∈ {1,2} indicates replicate measurements. To infer the
probability of the unknown parameters ϵ, αμ and ασ given the data, it is
necessary to augment the data by introducing individual intercepts.
For one replicate from one individual, the likelihood of unknown
parameters αμ, ασ, ϵ, and ci then becomes:

pðαμ,ασ ,ϵ,cijTi,r Þ / pðTi,r jαμ,ασ ,ϵ,ciÞΠðαμ,ασ ,ϵ,ciÞ ð11Þ

/ pðTi,r jeTiðαμ,ασ ,ϵ,ciÞÞΠðαμ,ασ ,ϵ,ciÞ ð12Þ

where eTiðαμ,ασ ,ϵ,ciÞ= ðeT 1,i,eT2,i, . . . :,eTn,iÞ are the true values of titre,
given the unknown parameters and Π is the prior joint distribution of
the parameters. The total log likelihood is thus the sum over all indi-
viduals and replicates:

Lðαμ,ασ ,ϵ,cjT Þ /
X

i

X

r

logðpðαμ,ασ ,ϵ,cijTi,r ÞÞ ð13Þ

A Markov Chain Monte Carlo (MCMC) algorithm implemented in
Stan v2.21.0 was used to explore the distribution of model parameters
(waning and measurement) and augmented data (individual inter-
cepts). This model was run on four independent chains, each
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consisting of 5000 iterations discarding the first 2500 as burn in.
Weakly informative priorswere used and convergencewas assessedby
inspection of the trace plots and Rhat. Analyses were conducted using
R v4.0.3, with code available in the GitHub repository.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw surveillance data is available fromWHOFluNet (https://www.who.
int/tools/flunet) and FluID (https://www.who.int/teams/global-
influenza-programme/surveillance-and-monitoring/fluid). Accession
codes forGISAIDdata areprovided inSupplementaryData 1. Biological
materials are available for study via the Amsterdam Cohort Studies on
HIV infection and AIDS (ACS) and the Viro-immunological, clinical and
psychosocial correlates of disease severity and long-termoutcomes of
infection in SARS-CoV-2 – a prospective cohort study (RECoVERED).
Processed data is provided in the source data file and available at the
project GitHub repository (https://github.com/AMC-LAEB/waning-
immunity-to-flu). Source data are provided with this paper.

Code availability
Custom scripts used for data analysis and modelling are available at
the project GitHub repository (https://github.com/AMC-LAEB/waning-
immunity-to-flu) and at https://doi.org/10.5281/zenodo.10276853.
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