
1. Introduction
Groundwater discharge is a major contributor to streamflow in most rivers, especially in dry periods, which can 
potentially trigger drought conditions. The latter can be exacerbated by climate change, which manifests within 
the hydrological cycle with increasing frequencies and intensities of extreme events (Pörtner et al., 2022). This has 
raised the question about the capabilities of the groundwater reservoirs to mitigate the increasing (sub-)seasonal 
fluctuations and their impacts on ecosystems (Carlier et al., 2018). Hence, the overall characterization of aquifer 
systems with respect to their ability in sustaining river flow (baseflow) during prolonged drought periods becomes 
an increasingly relevant question even in moderate climates (Biswal & Marani, 2014; Fowler et al., 2022; Sutanto 
& Van Lanen, 2022). However, quantitative information on subsurface flow is generally sparse at regional scale 
(Gleeson et al., 2011, 2014). We can measure pressure head only at a few scattered observational wells and data 
on aquifer properties are limited to pumping test locations (Houben et al., 2022).

This paper presents a stochastic approach for modeling groundwater-fed baseflow. Using generally available 
rainfall data and river discharge data, baseflow characteristics are determined using stochastic tools to incorpo-
rate spatial heterogeneity and the associated uncertainty. This goes beyond the classical approach in hydrology, 
where baseflow response is interpreted by means of the hydraulic theory (e.g., Brutsaert,  1994; Brutsaert & 
Nieber, 1977; Troch et al., 2013) which typically neglects the heterogeneity of the aquifer properties within the 
catchment.

Input to the stochastic model is the groundwater recharge r, which is derived from rainfall data P, typically using 
a water balance approach (e.g., Healy, 2010). The statistical representation of the groundwater recharge time 
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series is achieved by modeling it as a stochastic process (e.g., Russian et al., 2013; Schuite et al., 2019). The latter 
is quantified by introducing a characteristic time scale λ, which, besides the inherent variability of the rainfall, 
is also impacted by the thickness of the unsaturated zone. If no other detailed information is available about the 
rainfall spatial distribution, groundwater recharge is assumed to be spatially homogeneous within each of the 
sub-catchments considered. Saturated flow is represented within each sub-catchment by a linear reservoir which 
is fed with time varying groundwater recharge derived from the water balance calculation and which, based on 
its effective properties, yields the recession or baseflow feeding the respective river reach. Approaches involving 
multiple linear reservoirs were already used by Moore (1997), who showed that parallel and serial linear reser-
voirs are able to model quite well a small catchment. Later, Clark et al. (2009) showed that a model composed 
of several linear reservoirs in parallel provided a consistent interpretation of experimental data in a mountain 
research watershed. Harman et al.  (2009) developed a stochastic model on the basis of the conceptual model 
of Clark et al. (2009). They showed that non-linearity at the catchment scale can originate from heterogeneity 
in catchment characteristics. Later, Chen and Krajewski  (2015) extended the work of Clark et al.  (2009) and 
Harman et al. (2009) to large catchments and late-time recessions. Their results show that the recession parame-
ters become less and less variable by increasing the catchment area.

In this paper we further explore the multiple linear reservoirs approach to baseflow, addressing several important 
issues like discussion of model conceptualization, the derivation of the statistical moments (mean and variance) 
as related to recharge and sub-catchments variability, and definition of an upscaled unique reservoir to model the 
system. Thus the two main objectives are: (a) to study the dynamics of baseflow, in particular how heterogene-
ously distributed reservoir timescales interplay with the temporal recharge variability to describe the temporal 
variance of the total baseflow and (b) to hypothesize an upscaling rule and the definition of equivalent parame-
ters. To achieve these goals, the variance of the total baseflow is compared to the variance of a single (upscaled) 
linear reservoir to determine an equivalent parameter, which characterizes the catchment behavior. In our study, 
we apply the tools of stochastic analysis, which are well established in subsurface hydrology, to investigate the 
properties of heterogeneous hydrological catchments.

The conceptual model and the mathematical framework are detailed in the following sections, after which results 
are discussed and conclusions are drawn.

2. Theory
2.1. Catchment as a Natural Damper

A catchment responds to meteorological inputs by integrating several hydrological processes which act at various 
temporal and spatial scales. Among these hydrological processes, we focus here on the river baseflow Q, that is, 
the component generated from the shallow aquifers connected to the riverbed. The saturated groundwater reacts 
much slower to perturbations than surface or shallow unsaturated soil. As a consequence, the groundwater system 
buffers the temporal fluctuations of the recharge coming from the unsaturated zone, thereby acting as a natural 
damper. Hence, the temporal variance of baseflow 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 is always smaller than the temporal variance of recharge 𝐴𝐴 𝐴𝐴2

𝑟𝑟  
(see, e.g., Gelhar, 1974; Zhang & Schilling, 2004).

Such a dampening effect depends on the hydrogeological characteristics of the catchment. By using the tools 
of stochastic analysis, we seek to derive an analytical solution for the dampening of recharge fluctuations by a 
heterogeneous catchment. Applying such an analytical solution, we could infer the upscaled properties of the 
groundwater system if we know the baseflow and the recharge series, or the ratio of their temporal variances at 
least. The starting point is the conceptualization of the groundwater system within a river catchment, which is 
discussed in the following.

2.2. Catchment as Aggregated Linear Reservoirs

We consider a catchment feeding a river baseflow; such catchment can be divided in N sub-catchments, as 
conceptually displayed in Figure 1. Each sub-catchment i(i = 1, …, N) has an area Ai and contributes with the 
baseflow qi to the river system of the catchment. The groundwater component of each sub-catchment is modeled 
as a linear reservoir governed by the linear ordinary differential equation

𝐾𝐾𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑡𝑡
= −𝑑𝑑𝑖𝑖(𝑡𝑡) + 𝑟𝑟(𝑡𝑡), (1)
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where r(t) is the groundwater recharge which is assumed homogeneous throughout the catchment, for the sake of 
simplicity. Ki is the characteristic response time of sub-catchment i which lumps the impact of the sub-catchment's 
geological and spatial properties on the temporal response. For instance, in the case of rectangular  sub-catchments 
K  =  nL 2/(3T), with n the effective porosity, L the length of the sub-catchment and T its transmissivity 
(Gelhar, 1974). We remind that the linear reservoir is an approximate model for groundwater flow, derived from 
a linearized Boussinesq approximation of the flow equations (e.g., Fenicia et al., 2006; Haitjema, 1995; Vogel & 
Kroll, 1992). The solution of Equation 1 is given for the initial condition qi(t = 0) = q0,i  by

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑞𝑞0,𝑖𝑖 exp

(

−
𝑡𝑡

𝐾𝐾𝑖𝑖

)

+ ∫
𝑡𝑡

0

𝑟𝑟(𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏;𝐾𝐾𝑖𝑖)𝑑𝑑𝜏𝜏 (2)

where u(t; Ki) = exp(−t/Ki)/Ki is the transfer function for a linear reservoir model.

We define the total discharge Q as the sum of the N baseflow components qi weighted by their fractional area 
pi = Ai/Atot, where 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 =

∑𝑁𝑁

𝑖𝑖=1
𝐴𝐴𝑖𝑖 is the total catchment area. Assuming that the travel time of water along the river 

network is small compared to the characteristic response times Ki of the individual groundwater sub-catchments 
(Zarlenga et al., 2022), the solution for Q(t) then follows from the sum of the individual components given by 
Equation 2

𝑄𝑄(𝑡𝑡) =

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖 =

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖

(

𝑞𝑞0,𝑖𝑖 exp

(

−
𝑡𝑡

𝐾𝐾𝑖𝑖

)

+ ∫
𝑡𝑡

0

𝑟𝑟(𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏;𝐾𝐾𝑖𝑖)𝑑𝑑𝜏𝜏

)

 (3)

Assuming stationary conditions, that is, t ≫ Ki, we can neglect the impact of the initial conditions and the total 
baseflow results from

𝑄𝑄(𝑡𝑡 𝑡 𝑡𝑡𝑖𝑖) =

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖 ∫
𝑡𝑡

0

𝑟𝑟(𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏;𝑡𝑡𝑖𝑖)𝑑𝑑𝜏𝜏 =

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖 ∫
𝑡𝑡

0

𝑟𝑟(𝜏𝜏)

𝑡𝑡𝑖𝑖

exp

(

−
𝑡𝑡 − 𝜏𝜏

𝑡𝑡𝑖𝑖

)

𝑑𝑑𝜏𝜏 (4)

The variables determining the total baseflow Q are the temporal variable recharge r(t), that is, an external forcing 
assumed here to be spatially homogeneous, and the sub-catchments' characteristic response times Ki, which vary 
among sub-catchments.

Figure 1. (a) Sketch of a catchment composed of N = 10 sub-catchments of areas A1, …, A10. (b) Sub-catchments as linear 
reservoirs contributing the specific discharge qi to the catchment specific discharge Q. Ki denotes the sub-catchment response time.
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2.3. The Stochastic Approach

2.3.1. Variability in External Forcing and System Properties

We apply a stochastic approach by modeling the recharge r(t) as a random function and Ki as random variables 
which quantify the spatial variability of the system. In this manner, we merge the two approaches typically 
adopted in surface and subsurface hydrology. Specifically, surface hydrology focuses primarily on the variability 
of the external forcing (r(t)) while the catchment is considered almost homogeneous and acting as a filter. In 
contrast, hydrogeology prioritizes variability of hydraulic properties while external forcing is considered effec-
tively constant. Our approach is a generalization where variability in both sub-systems, external forcing and 
hydraulic characteristics, are accounted for.

The variability in the external forcing is encapsulated in a temporally variable (but spatially constant) recharge 
r(t). It is a time series which we model as a Random Time Function (RTF) fully characterized by its mean 𝐴𝐴 𝑟𝑟 , its 
variance 𝐴𝐴 𝐴𝐴2

𝑟𝑟  , both constant, and the following autocorrelation function 𝐴𝐴 𝐴𝐴𝑟𝑟(𝜏𝜏) =
(

𝑟𝑟(𝑡𝑡 + 𝜏𝜏) − 𝑟𝑟
)(

𝑟𝑟(𝑡𝑡) − 𝑟𝑟
)

∕𝜎𝜎2
𝑟𝑟  . Here-

after the overbar 𝐴𝐴 (. . . ) indicates the ensemble average with respect to time.

This model is a reasonable approximation of groundwater recharge and takes into account the buffering effect 
of the unsaturated zone which reduces and possibly eliminates the intermittent character of the precipitations. 
Assuming that recharge is a continuous process not affected by intermittency is supported by field measurements 
(see, e.g., Majone et al., 2013; Russo et al., 2006).

The variability of the sub-catchment properties is modeled by regarding the response times K of the sub-catchments 
as random variables distributed according to the probability density function fK(K). As a first approximation we 
consider only the variability at scales larger than the characteristic dimension of the sub-catchments, that is, a 
constant K is assumed for each sub-catchment (see, e.g., Szilagyi et al., 1998). For the sake of simplicity, we 
assume that Ki are uncorrelated. Such a hypothesis is supported by observing that the characteristic dimension 
of the sub-catchments is typically of the order of kilometers while the integral scale of the transmissivity, which 
determines K, is generally smaller (see, e.g., Rubin, 2003, Table 2.1). In addition, we assume that r and K are 
also uncorrelated.

Given the above assumptions, the water flux Q at the control section of the catchment outlet, described by Equa-
tion 4, is a random time-dependent function whose statistical properties can be derived from those of K and r.

2.3.2. Variances of the Total Baseflow

A quantification of the base flow Q is provided by its first two moments, the mean and the variance. The moments 
with respect to the recharge describe the variability of Q induced by the temporal variability and uncertainty 
characterizing the external forcing simulated as an RTF, while the effect of the spatial variability of the hydraulic 
properties of sub-catchments can be quantified by averaging with respect to the random K. Notice that here we 
indicate the ensemble average with respect to time with an overbar 𝐴𝐴 (. . . ) and the ensemble average with respect 
to space with brackets 〈(…)〉. In such a way, we aim to unify both the effects of spatial variability and the uncer-
tainty affecting its characterization (see e.g., Dagan, 1989; Gelhar, 1993; Rubin, 2003).

We emphasize that the aggregated reservoirs model can in principle produce any type of residence time distri-
bution, from unimodal to multimodal, in each single realization of the K field for the large N ≫ 1 assumed here. 
In other words, multimodal distributions are also possible within realizations; an important basis for assuming 
alternative distributions is the variance of Q computed in this work.

The mean of Q is obtained by averaging with respect to both r and K in Equation 4, for t ≫ Ki, i = 1, …, N

⟨𝑄𝑄⟩ = ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑 𝑑𝑑𝑄𝑄(𝑡𝑡)𝑓𝑓𝑑𝑑𝑟𝑑𝑑 (𝑑𝑑𝑟 𝑑𝑑) = ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑 𝑑𝑑𝑄𝑄(𝑡𝑡)𝑓𝑓𝑑𝑑(𝑑𝑑)𝑓𝑓𝑑𝑑 (𝑑𝑑) = 𝑑𝑑𝑟 (5)

where the assumption that r and K are independent allowed to write the joint pdf fr,K(r, K) of the two random func-
tions as the product of their marginal pdfs: fr,K(r, K) = fr(r) fK(K). Hereafter our interest is in the system dynamics 
for sufficiently large times to eliminate the influence of the initial condition. Consequently, the conditional mean 
of Q with respect to r is 𝐴𝐴 𝑄𝑄 = ∫ 𝑑𝑑 𝑑𝑑𝑄𝑄(𝑡𝑡) 𝑓𝑓𝑑𝑑(𝑑𝑑) = 𝑑𝑑 and the averaged discharge is independent of the distribution of 
K, whereby the ensemble mean with respect to K is immaterial. The fact that the mean base flow is equal to that 
of the recharge for a sufficiently large time reflects the mass conservation prevailing in the system.
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It is convenient to differentiate the symbols for the variance with respect to time, due to the dependence on r, and 
the variance with respect to space, stemming from the dependence on K, in the same way as previously done for 
the mean. Hereinafter we indicate with 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 and 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 the variance of the total discharge with respect to time and to 

space, respectively. The “total variance,” that is, with respect to both time and space, is indicated with Var[Q]. 
The variance of the streamflow signal is therefore given by

Var[𝑄𝑄] = ∫ 𝑑𝑑 𝑑𝑑∫ 𝑑𝑑 𝑑𝑑
(

𝑄𝑄(𝑡𝑡) − 𝑑𝑑
)2

𝑓𝑓𝑑𝑑(𝑑𝑑) 𝑓𝑓𝑑𝑑 (𝑑𝑑), (6)

where the relationship 𝐴𝐴 ⟨𝑄𝑄⟩ = 𝑟𝑟 , valid for t ≫ Ki, i = 1, …, N, was implemented. The variability of 𝐴𝐴 𝑄𝑄(𝑡𝑡) through 
independent realizations of K, characteristic of the early times behavior, vanishes at late time when the system 
reaches stationarity.

After replacing Equation 4 into Equation 6 the following expression of the global variance is obtained

Var[𝑄𝑄] = ⟨𝜎𝜎2

𝑄𝑄
⟩ + 𝑟𝑟

2

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝2𝑖𝑖 ∫
𝑡𝑡

0
∫

𝑡𝑡

0

(⟨

𝑢𝑢
(

𝜏𝜏 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝜏𝜏 ′′;𝐾𝐾𝑖𝑖

)

⟩ − ⟨𝑢𝑢
(

𝜏𝜏 ′;𝐾𝐾𝑖𝑖

)

⟩⟨𝑢𝑢
(

𝜏𝜏 ′′;𝐾𝐾𝑖𝑖

)⟩)

𝑑𝑑 𝜏𝜏 ′ 𝑑𝑑 𝜏𝜏 ′′ (7)

where 〈u(τ′; K)〉 = ∫dK u(τ′; K) fK(K) and 〈u(τ′; K) u(τ″; K)〉 = ∫dK u(τ′; K) u(τ″; K) fK(K) and

⟨𝜎𝜎2

𝑄𝑄
⟩ = 𝜎𝜎2

𝑟𝑟

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗 ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′ ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′′𝜌𝜌
(

|𝑑𝑑 ′ − 𝑑𝑑 ′′|
)

⟨𝑢𝑢
(

𝑑𝑑 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝑑𝑑 ′′;𝐾𝐾𝑗𝑗

)

⟩ (8)

is the ensemble average, with respect to the random K, of the variance conditional on r

𝜎𝜎2

𝑄𝑄
= 𝜎𝜎2

𝑟𝑟

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗 ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′ ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′′𝜌𝜌
(

|𝑑𝑑 ′ − 𝑑𝑑 ′′|
)

𝑢𝑢
(

𝑑𝑑 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝑑𝑑 ′′;𝐾𝐾𝑗𝑗

)

 (9)

The second term of Equation 7 tends to zero as t ≫ max(Ki). Under these conditions

Var[𝑄𝑄] = ⟨𝜎𝜎2

𝑄𝑄
⟩ (10)

The details of the derivation of Equation 7 are provided in Appendix A. From a physical point of view Equa-
tion 10 applies because mass conservation imposes that 𝐴𝐴 𝑄𝑄 = 𝑟𝑟 irrespective of the spatial distribution of K which is 
independent of r. Both are reasonable assumptions of the system behavior, with the requirement that the statistics 
are evaluated for t ≫ K when the effect of the initial condition diminishes.

The pdf fK(K) encapsulates the effects on baseflow of both the spatial variability of K and its uncertainty, with 
the latter vanishing as N → ∞. When the number of sub-catchments N increases, the system becomes ergodic, a 
condition manifested by the condition 𝐴𝐴 𝐴𝐴2

𝑄𝑄
→ ⟨𝐴𝐴2

𝑄𝑄
⟩ . This is depicted in Figure 2, which summarizes graphically 

the information provided by the variances of Equation 8 (indicated with the gray vertical line) and Equation 9 
(indicated with the black vertical line), respectively. Ergodicity is achieved when the characteristic dimension of 
the catchment is much larger than the correlation length of the hydraulic properties controlling groundwater flow. 
Thus, there is a hierarchy of scales: the scale of the sub-catchments, which is assumed to be sufficiently large 
relative to the transmissivity integral scale such as to warrant a constant K for each sub-catchment, and the scale 
of the catchment, which for N ≫ 1 is much larger than the one prevailing for the various sub-catchments within 
the system.

Furthermore, it should be remarked that the sub-catchments characteristic size cannot be chosen arbitrarily, for 
example, according to a priori defined N value, but it should be of the order of the spatial correlation length of 
the hydraulic properties. This is the natural consequence of the hypothesis that variability at smaller scales does 
not influence the storage capacity of the sub-catchment and thereby K can be safely assumed constant within it.

Figure 2 sketches the impact of the number of sub-catchments N on the discharge variances. Under pre-ergodic 
conditions, N is too small to sample the space of possible K-values. Consequently, the total discharge differs 
between realizations of the catchment and each realization has a different temporal variance 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 (i.e., the vari-

ance conditional on r, only). This manifests in the rugged graph depicting the aggregated Q in Figure 2a. As N 
increases, the collection of sub-catchments covers a wider range of K-values and, although local K-values are 
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random, the aggregated Q of catchment realizations becomes close as manifested in the smoother graph of the 
aggregated Q of Figure 2b. As the difference between 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 and 𝐴𝐴 ⟨𝜎𝜎2

𝑄𝑄
⟩ decreases, the mean discharge becomes deter-

ministic. Thus 𝐴𝐴 Var[𝑄𝑄] → 𝜎𝜎2

𝑄𝑄
 under ergodic conditions. The analysis of discharge variance reveals some similarity 

to that of dispersion for a contaminant traveling through a heterogeneous porous medium. Thus, the trajectory 
of the center of mass of a small plume relative to the velocity integral scale, is affected by large uncertainty as 
reflected by its time dependent variance. In contrast, for a large plume the center of mass moves with the mean 
velocity while the trajectories variance quantifies the rate of spreading of the actual plume around its center. 
Several authors for example, Kitanidis (1988), Dagan (1990, 1991), Andričević and Cvetković (1998), Attinger 
et al. (1999), and Dentz et al. (2000) published an extensive body of work on this topic in subsurface hydrology.

2.4. Effective Linear Reservoir and Equivalent Response Time

For upscaling, we seek to define a single reservoir model which displays the same behavior as the aggregated 
catchment model. We found that it is not possible to find an effective linear reservoir which has identical average 
behavior as the aggregated model, that is, sharing the same first two moments (mean, variance), as detailed in 
Appendix B. A system property is considered effective when it depends only on the statistics defining its spatial 
variability, as encapsulated by K, and not on the flow variability stemming from the recharge r. This is not 
applicable in our case because as shown in Appendix B it is possible to identify a single reservoir with the same 
variance 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 of the catchment, but its value depends on the recharge statistics and, although in a weaker manner, 

on the number N of sub-catchments.

It is possible to define a linear reservoir whose discharge variance 𝐴𝐴 𝐴𝐴2

𝐿𝐿𝐿𝐿
 is identical to the temporal variance of 

the ensemble discharge 𝐴𝐴 ⟨𝜎𝜎2

𝑄𝑄
⟩ . We define it as the equivalent reservoir and its characteristic timescale, the equiva-

lent characteristic timescale, Keq. Again, note that the equivalent linear reservoir does not completely reproduce 
the statistical behavior of the aggregated model (i.e., higher order moments), but only its temporal fluctuations 
around the ensemble discharge as quantified by the variance.

3. Illustrative Example
3.1. The Temporal Variance of the Total Baseflow

We present in the following section the results for the global variance (which coincides with the ensemble tempo-
ral variance), the temporal variance of the ensemble baseflow and the difference between these two variances, 
which vanishes under ergodic conditions.

To obtain numerical results, we assume the expression for the recharge autocovariance ρr, the timescale param-
eter distribution fK(K) and the fractional area pi. Thus, the recharge autocovariance is selected as an exponential 
correlation function

Figure 2. Sketching the impact of catchment size N on variability in average discharge Q: (a) under pre-ergodic and (b) 
quasi-ergodic conditions. The colors of sub-catchments reflect the value of K (blue—high, red—low) which is extracted 
form a skewed distribution fK(K). The dashed horizontal line indicates the mean recharge 𝐴𝐴 𝑟𝑟  . The solid black line is the 
aggregated discharge Q and the shaded gray area is ensemble of all possible realizations. Vertical lines depict the amplitude 
of oscillation, namely the temporal variance. The black vertical line is the variance of the single realization 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 , while the gray 

vertical line is the variance of the ensemble, 𝐴𝐴 ⟨𝜎𝜎2

𝑄𝑄
⟩ .
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𝜌𝜌𝑟𝑟(𝜏𝜏; 𝜆𝜆) = exp(−𝜏𝜏∕𝜆𝜆) (11)

where λ is the recharge correlation time. The response times Ki are assumed to follow a log-normal distribution. 
We write Ki as Ki = Kg exp(yi) where Kg is the geometric mean and yi is a normally distributed variable with 
zero mean and variance 𝐴𝐴 𝐴𝐴2𝑦𝑦 , that is, 𝐴𝐴 𝐴𝐴𝑖𝑖 ∶  [

0, 𝑠𝑠2𝐴𝐴
]

 where 𝐴𝐴  (𝑦𝑦) denotes a normal distribution of y. Notice that we 
maintain the notation for the recharge variance σ 2 and the timescale variance s 2 because the former and the latter 
indicate variance with respect to time and space, respectively. For simplicity, we assume that the fractional area 
is the same for each reservoir, that is, pi = 1/N, such that the sum of the pi is one and the sum of 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 is given by

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝2𝑖𝑖 =
1

𝑁𝑁
 (12)

which vanishes for large N.

By substituting these expressions for ρ, K, and pi into Equation 8, the following expression is obtained for the 
stream flow variance

⟨�2
�⟩ =

�2
�

� ∫ �2
��

(

�′; �
)

 (�) �� +
�2
� (� − 1)

� ∬
exp(��)�2

��(�
′; ��) + exp(��)�2

��(�
′; ��)

exp(��) + exp(��)
 (��) (��) ��� ���

 (13)

where λ′ = λ/Kg and

𝜎𝜎2

𝐿𝐿𝐿𝐿

(

𝜆𝜆′; 𝑦𝑦
)

=
𝜆𝜆′

exp(𝑦𝑦) + 𝜆𝜆′
 (14)

is the baseflow temporal variance associated with a single linear reservoir with characteristic timescale equal 
to Kg exp(y) and unitary recharge variance (Gelhar, 1993, Chapter 3). The calculations of the variance for this 
specific case is detailed in Appendix C under transient conditions.

It is interesting to highlight the behavior of the total variance for the two extreme cases of N = 1 and N ≫ 1. For 
N = 1, the temporal variance of the baseflow becomes:

⟨𝜎𝜎2

𝑄𝑄
⟩ = 𝜎𝜎2

𝑟𝑟 ∫ 𝜎𝜎2

𝐿𝐿𝐿𝐿

(

𝜆𝜆′; 𝑦𝑦
) (𝑦𝑦) 𝑑𝑑𝑦𝑦𝑑 for𝑁𝑁 = 1 (15)

which implies that for a catchment consisting of a single linear reservoir with uncertain timescale parameter, the 
expected temporal variance is the ensemble of the temporal variance of a single linear reservoir.

For N ≫ 1 the system becomes ergodic, as previously discussed and the temporal variance of the aggregated 
baseflow becomes deterministic. The expression is the following:

⟨𝜎𝜎2

𝑄𝑄
⟩ = 𝜎𝜎2

𝑄𝑄
= 𝜎𝜎2

𝑟𝑟 ∬
exp(𝑦𝑦𝑖𝑖)𝜎𝜎

2

𝐿𝐿𝐿𝐿
(𝜆𝜆′; 𝑦𝑦𝑖𝑖) + exp(𝑦𝑦𝑗𝑗)𝜎𝜎

2

𝐿𝐿𝐿𝐿
(𝜆𝜆′; 𝑦𝑦𝑗𝑗)

exp(𝑦𝑦𝑖𝑖) + exp(𝑦𝑦𝑗𝑗)
 (𝑦𝑦𝑖𝑖) (𝑦𝑦𝑗𝑗) 𝑑𝑑𝑦𝑦𝑖𝑖 𝑑𝑑𝑦𝑦𝑗𝑗 , for𝑁𝑁 𝑁 1 (16)

In Equation 16 one can recognize the weighted average of the linear reservoir variance for two generic reservoirs 
i and j. Due to the non-linearity of the variance operator, the aggregated variance is dependent on N though the 
system is linear.

We can also quantify the uncertainty of variance in non-ergodic conditions as the difference between the ensem-
ble variance and the variance of a single realization, that is, 𝐴𝐴 ⟨𝜎𝜎2

𝑄𝑄
⟩ − 𝜎𝜎2

𝑄𝑄
 . Such a difference represents the amplitude 

of the shaded area in Figure 2 and decreases with the number of sub-catchments. We define this quantity as the 
structural variance 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 , which is given by:

�2� = ⟨�2
�⟩ − �2

�

=
�2
�

�

(

∫ �2
��

(

�′; �
)

 (�) �� −∬
exp(��)�2

��(�
′; ��) − exp(��)�2

��(�
′; ��)

exp(��) + exp(��)
 (��) (��) ��� ���

)

 (17)

The structural variance is indicated with the symbol s to highlight that it is a variance due to the uncertainty in 
the structural parameters K.
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Figure 3 shows the total variance 𝐴𝐴 ⟨𝜎𝜎2

𝑄𝑄
⟩ , with an inset depicting the behavior 

of the structural variance 𝐴𝐴 𝐴𝐴2
𝑄𝑄
 . It is reminded that both variables are normal-

ized by the recharge variance 𝐴𝐴 𝐴𝐴2

𝑟𝑟  and are plotted as a function of the normal-
ized correlation time of recharge λ′. The normalized global variance 𝐴𝐴 ⟨𝜎𝜎2

𝑄𝑄
⟩∕𝜎𝜎2

𝑟𝑟  
tends to zero for λ′ ≪ 1 and to one for λ′ ≫ 1. When heterogeneity is weak (as 
indicated by the blue lines), the aggregation associated with the magnitude of 
N plays a negligible effect and the solid (N = 1) and dashed lines (N = 100) 
overlap. In contrast, when the heterogeneity level is high (𝐴𝐴 𝐴𝐴2𝑦𝑦 = 1 , in green), 

𝐴𝐴 𝐴𝐴2

𝑄𝑄
 decreases with N. Therefore, a heterogeneous catchment consisting of 

several hillslopes dampens the recharge fluctuations more than a homogene-
ous catchment with the geometric mean as a parameter.

As expected, the structural variance 𝐴𝐴 𝐴𝐴2
𝑄𝑄
 increases with 𝐴𝐴 𝐴𝐴2𝑦𝑦 and decreases with 

N, thereby converging to zero for large N. This indicates that as N increases 
the uncertainty in the variance of Q vanishes and the baseflow becomes 
ergodic with respect to the heterogeneity in K. The structural variance has 

its maximum for λ = Kg (i.e., λ′ = 1), though quite small with regard to the recharge variance for the selected 
illustration, and tends to zero, independently of N or 𝐴𝐴 𝐴𝐴2𝑦𝑦 , for λ′ ≪ 1 or λ′ ≫ 1. In fact, in such extreme cases (i.e., 
when Kg is much larger or much smaller than the recharge correlation time λ) the dampening is very large or very 
small and it does not depend on the heterogeneity of the system. For the same reason, also the total baseflow 𝐴𝐴 ⟨𝜎𝜎2

𝑄𝑄
⟩ 

is independent of the number of reservoirs N and heterogeneity level 𝐴𝐴 𝐴𝐴2𝑦𝑦 when λ′ ≪ 1 or λ′ ≫ 1.

Such behavior is confirmed by analyzing the variance of the total discharge under ergodic conditions (i.e., when 
N ≫ 1), as shown by Figure 4. This variance is very much determined by λ′. For large λ′ or recharge correlation 
times λ much larger than Kg, the temporal variance of the baseflow equals the temporal variance of the recharge 
and the aquifer transmits the incoming recharge signal almost unchanged. In contrast, for small λ′ or recharge 
correlation times λ much smaller than Kg, the aquifer dampens the amplitude of the incoming recharge signal very 
efficiently and releases a baseflow signal with very small temporal fluctuations. The strength of the heterogeneity 
in K impacts the temporal variance of the total baseflow only for λ′ in the range of 0.1 < λ′ < 10. The general 
rule is that a higher degree of variability in the K makes the temporal variance of the baseflow smaller. However, 
the comparison with the variance of a single linear reservoir (shown by circles) indicates that this effect is rather 
small for variance up to 0.5.

3.2. The Equivalent Response Time Keq

As mentioned in Section 2.4, we seek to define an equivalent characteristic time Keq by equating the temporal 
variance of the aggregated reservoirs and the temporal variance of a single linear reservoir. In order to obtain an 
analytical solution we assume that: (a) the catchment is under ergodic conditions, that is, N ≫ 1 and (b) hetero-
geneity of the system is weak. Under such hypotheses, Equation 13 can be further simplified by expanding in a 
power series of y and taking the expectation. The approximations at the second order is given by

⟨

𝜎𝜎2

𝑄𝑄

⟩

𝜎𝜎2
𝑟𝑟

(2)

=
𝜆𝜆′

𝜆𝜆′ + 1
+

𝜆𝜆′ (1 + 𝜆𝜆′ − 2𝑁𝑁𝜆𝜆′)

2𝑁𝑁(1 + 𝜆𝜆′)
3

𝑠𝑠2𝑦𝑦
 (18)

The ergodic limit (N ≫ 1) is therefore given by

𝜎𝜎2

𝑄𝑄

𝜎𝜎2
𝑟𝑟

(2)

(𝑁𝑁 𝑁 1) =
𝜆𝜆′

𝜆𝜆′ + 1
−

𝜆𝜆′2

(1 + 𝜆𝜆′)
3
𝑠𝑠2𝑦𝑦 (19)

We derive the equivalent characteristic time by equating Equation 19 with 
the expansion of the temporal variance for a single linear reservoir (i.e. 
Equation 14)

𝜎𝜎2

𝐿𝐿𝐿𝐿

𝜎𝜎2
𝑟𝑟

=
1

1 + 𝜅𝜅∗
 (20)

Figure 3. Total variance 𝐴𝐴 ⟨𝜎𝜎2

𝑄𝑄
⟩ with the inset showing the structural variance 

𝐴𝐴 𝐴𝐴2
𝑄𝑄
 . Both quantities are plotted as a function of λ′ = λ/Kg for several values of 

N and 𝐴𝐴 𝐴𝐴2𝑦𝑦 .

Figure 4. Total variance of baseflow in ergodic conditions (N ≫ 1) as a 
function of λ′ for several levels of heterogeneity. Black circles indicate the 
temporal variance for a single linear reservoir 𝐴𝐴

(

𝑠𝑠2𝑦𝑦 = 0
)

 .
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where κ* = Keq/λ is a function of 𝐴𝐴 𝐴𝐴2𝑦𝑦 . Therefore we can expand the equation 
with respect to 𝐴𝐴 𝐴𝐴2𝑦𝑦 up to the second order to obtain

𝜎𝜎2

𝐿𝐿𝐿𝐿

𝜎𝜎2
𝑟𝑟

(2)

=
1

1 + 𝜅𝜅∗(0)
−

1
(

1 + 𝜅𝜅∗(0)
)2
𝜅𝜅∗(1)𝑠𝑠2𝑦𝑦 (21)

where 𝐴𝐴 𝐴𝐴∗(0) = 𝐾𝐾𝑔𝑔∕𝜆𝜆 = 1∕𝜆𝜆′ and 𝐴𝐴 𝐴𝐴∗(1) = 𝜕𝜕𝐴𝐴∗∕𝜕𝜕
(

𝑠𝑠2𝑦𝑦
)

|𝑠𝑠2𝑦𝑦=0
 . By comparing Equa-

tion 19 with Equation 21, we obtain an identity for the first term, while for 
the second one we obtain:

𝜅𝜅∗(1) =
1

1 + 𝜆𝜆′
 (22)

The function κ* is therefore given by

𝜅𝜅∗ = 𝜅𝜅∗(0) + 𝜅𝜅∗(1)𝑠𝑠2𝑦𝑦 + 𝑂𝑂

[

(

𝑠𝑠2𝑦𝑦
)2
]

=
1

𝜆𝜆′
+

1

1 + 𝜆𝜆′
𝑠𝑠2𝑦𝑦 + 𝑂𝑂

[

(

𝑠𝑠2𝑦𝑦
)2
]

 (23)

By recalling that κ* = Keq/λ, Keq is given by

𝐾𝐾𝑒𝑒𝑒𝑒 = 𝐾𝐾𝑔𝑔

(

1 +
𝜆𝜆′

𝜆𝜆′ + 1
𝑠𝑠2𝑦𝑦

)

 (24)

It is clear that the upscaled characteristic time does not depend only on the catchment characteristics, that is, 
𝐴𝐴 𝐴𝐴2𝑦𝑦 , but also on the temporal characteristic of the input recharge. As a consequence, the upscaled behavior of an 

aggregated catchment can change according to a change in the correlation time of the input recharge.

Figure 5 shows the comparison between the exact variance at the ergodic limit for N ≫ 1, depicted with a contin-
uous solid line, and the variance of a single reservoir with K = Keq, as given by Equation 24. The equivalent 
characteristic response Keq gives an acceptable approximation for variances of K up to 𝐴𝐴 𝐴𝐴2𝑦𝑦 = 1 . Moreover, such an 
upscaling rule is valid when λ and Kg have the same order of magnitude, given that only when λ′ is close to unity 
heterogeneity influences the dampening of the recharge fluctuations.

4. Discussion
4.1. Assumptions and Limitations

Our results are based on an aggregated reservoir concept, which has been shown consistent with field data (see, 
e.g. Chen & Krajewski, 2015; Clark et al., 2009; Harman et al., 2009). The aggregated reservoirs model assumes 
that the recharge is homogeneous, the linear reservoirs are not correlated and that the routing time along the river 
network is negligible. Homogeneous recharge is assumed for simplicity but can be easily relaxed by assuming 
spatial correlation for recharge leading to a more complex analytical result. Similarily, we assume that f(K) is 
unimodal and Ki are uncorrelated between sub-catchments. The latter assumption is geologically motivated given 
that the characteristic size of a sub-basin is typically larger than the length scale of hydraulic transmissivity, 
reported to be on the order of hundred meters (Rubin, 2003, Table 2.1). Furthermore, neglecting routing time 
along the river network implies neglecting its effect on the travel time distribution (Kirkby, 1976; Rinaldo & 
Rodriguez-Iturbe, 1996; Rinaldo et al., 1995). The effect of drainage networks has been investigated with a model 
composed of parallel hillslopes (Zarlenga et al., 2022). It was shown analytically that the lag time introduced 
by the river network is negligible or has a rather small effect on the discharge dynamics for very transmissive 
hillslopes. A similar behavior has been observed by Biswal and Marani (2010) who showed that the river network 
may have an impact only for steep catchments, which is equivalent to the assumption of large transmissivity in 
Zarlenga et al. (2022).

Despite its simplicity, the proposed framework is physically based as it relies on the linear reservoir model, which 
is equivalent to the Dupuit-Boussinesq aquifer at large times (Brutsaert & Nieber, 1977). By applying a stochastic 
framework to the aggregated reservoir model, we quantify the dampening effect by groundwater, employing only 
physically based parameters: the number of reservoirs N, the geometric mean Kg of the linear reservoir parameter 
K and its variance 𝐴𝐴 𝐴𝐴2𝑦𝑦 . The number of reservoirs coincides with the number of sub-catchments in which the river 

Figure 5. Comparison between the exact variance and the approximated 
variance. Solid lines indicate the exact solution and circles indicate the 
approximated solution for a linear reservoir with Keq as characteristic 
parameter.
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basin has been subdivided, and it depends on the resolution desired in the simulations. The mean of the reservoir 
parameters and their uncertainty can be quantified by analyzing discharge data. Brutsaert (2008) showed that the 
characteristic timescale (which can be compared to Kg in our modeling framework) stabilizes at about 1.5 months 
when increasing the catchment area, confirming ergodic behavior hypothesized in the present paper. Moreover, 
Brutsaert (2008) observed that the variability of K is relatively small, typically of the order of one or 2 weeks, 
thereby corroborating the low variability assumption that is the basis for an equivalent timescale calculation.

4.2. Implications

Recent developments in drought analysis have shown how the subsurface plays a leading role in mitigating drought 
propagation (de Matos Brandão Raposo et al., 2023). Therefore, understanding how groundwater resources can 
dampen the fluctuations of precipitation-generated recharge is key to quantifying drought development and recov-
ery throughout the phases of the water cycle. The main result of the study can be grasped by distinguishing three 
dominant flow regimes depending on the ratio λ′, as illustrated in Figure 6. In Figure 6a, the recharge time scale λ 
is much smaller than the characteristic mean residence time of the reservoir, as represented by Kg. In such a case, 
the aquifer storage affects significantly the baseflow fluctuations. The system dampens significantly the recharge 
and the baseflow variance 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 is much smaller than the recharge variance 𝐴𝐴 𝐴𝐴2

𝑟𝑟  , with their ratio tending in the limit 
toward zero. The variability of the sub-catchments response time Ki (i = 1, …, N) manifests in the presence of 
different recession curves as shown in Figure 2a, which at system scale, by superposition, leads to an effective 
Keq which is equal to the geometric mean of Ki of the sub-units. At the other extreme (Figure 6c), λ is much larger 
than Kg and recharge fluctuations dominate the baseflow behavior. As a consequence, the system baseflow vari-
ance 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 is close to the recharge variance 𝐴𝐴 𝐴𝐴2

𝑟𝑟  , with their ratio tending to one. This means that the recharge signal is 
only slightly dampened when passing through the subsurface aquifer system. The heterogeneity of the different 
aquifer sub-systems has practically no effect on the overall system recession behavior. In Figure 6b we observe a 
moderate dampening which is controlled by both, the subsurface aquifer storage properties as well as the recharge 
signal variance. This regime occurs when the recharge time scale λ is of the order of Kg and the corresponding Keq 
depends on the structural heterogeneity 𝐴𝐴 𝐴𝐴2𝑦𝑦 .

With the current status of any given catchment as a starting point, climate change will presumably lead to 
enhanced seasonality of rainfall and recharge, that is, more extensive rain periods during the winter and longer 
drought periods during summer; such a trend would lead to a shift of λ′ and correspondingly to a different damp-
ing effect that does not depend on the geohydrological structure of the catchment. The proposed framework can 
provide one set of quantitative tools for analyzing flow regime shifts throughout a series of catchments with 
different scales and properties.

5. Summary and Conclusions
The present study investigates the dependence of the temporal statistical moments of the baseline discharge Q of 
a catchment on that of the input recharge r, as affected by the sub-catchments response times Ki, (i = 1, …, N). 

Figure 6. Different regimes associated with the value of λ′: (a) Aquifer-storage-dominated regime; (b) Intermediate regime; 
and (c) Recharge-dominated regime. The gray curve represents the recharge variation with time, while the colored curves 
represent baseflow.
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Since the mean values are equal 𝐴𝐴

(

⟨𝑄𝑄⟩ = 𝑟𝑟

)

 , the focus is on the ratio 𝐴𝐴 𝐴𝐴2

𝑄𝑄
∕𝐴𝐴2

𝑟𝑟  , which is less than unity and encap-
sulates the damping effect of the system. It must be noted that the dampening effect reflects the capability of the 
groundwater to mitigate recharge fluctuations. Thus, it can be interpreted as a measure of the catchment resilience 
to prolonged droughts, shown here to depend on the hydrogeological properties of the watershed.

Although simplified, the aggregated reservoirs model is physically based and allows to quantify baseflow dampen-
ing by using a few catchment's properties, such as the number of sub-catchments N, and the mean and the variance 
of the reservoir timescales, Kg and 𝐴𝐴 𝐴𝐴2𝑦𝑦 , respectively. We recall here that the reservoir timescale K reflects the ground-
water response which depends on the hydrogeological properties of the shallow aquifers connected to the river.

A first conclusion is that the impact of the number of sub-catchments N is relatively weak, and that ergodic condi-
tions valid for N ≫ 1 are reached even for a relatively small number N. Under ergodic conditions the damping 
factor 𝐴𝐴 𝐴𝐴2

𝑄𝑄
∕𝐴𝐴2

𝑟𝑟  depends primarily upon λ′ ≡ λ/Kg, the ratio between the time scale of the recharge λ and the geomet-
ric mean of the sub-catchments response times Kg. High damping occurs for λ′ ≪ 1, while there is practically 
no damping for λ′ ≫ 1. The damping factor grows monotonously between these limits and the main result of the 
study is quantifying its dependence upon arbitrary λ′, as affected by the variance of the sub-catchments response 
time (Figure 5). As a practical consequence, by relating the damping effect to physically meaningful parameters 
(mean and variance of the response times), it would be possible to identify those watersheds that are more sensi-
tive to prolonged or very severe droughts.

Another way to characterize the system behavior is to derive Keq, the response time of a unique sub-catchment, 
which leads to the same damping as that of the sub-catchments ensemble. Similar to the damping factor 𝐴𝐴 𝐴𝐴2

𝑄𝑄
∕𝐴𝐴2

𝑟𝑟  , 
Keq/Kg grows with λ′. As a consequence, an effective value that depends only on the geohydrological structure 
(encapsulated by Ki) and is independent of the recharge, cannot be defined. Under the assumption of weak 
heterogeneity corroborated by observations (Brutsaert, 2008), we derived an analytical solution for the equiv-
alent reservoir response as a function of the ratio λ′. The dependence on the input recharge suggests that a 
catchment can change its equivalent behavior according to a change in the recharge, typically due to a change 
in precipitation regime. When the correlation time of recharge is smaller than the mean characteristic response, 
the baseflow fluctuations are influenced by the aquifer properties, leading to a very attenuated amplitude. In 
contrast, when the correlation time is much larger than the mean characteristic response, the baseflow fluctu-
ations are dominated by recharge fluctuations and the resulting base flow is not damped. As a consequence, 
a change in the precipitation behavior might modify significantly the way a catchment can mitigate recharge 
fluctuations.

The present work aimed at developing a new theoretical framework for heterogeneous catchments, and for this 
reason we kept is as simple as possible by retaining only those processes we consider most relevant: the time 
variability of the recharge and the spatial variability of the groundwater storage effect, quantified by the variable 
K, which is modeled as random. The next envisaged step is validation with field data and comparison with distrib-
uted 3-D numerical models with the aid of a well monitored catchment. In particular, the numerical models, 
calibrated over a relatively wide geographical region, shall help in elucidating the leading hydrological processes 
at the catchment scale and test the validity of the conceptualizations adopted in the proposed framework.

Appendix A: Calculation of the Temporal Variance of Q
The temporal fluctuations of the total discharge Q with its statistical-averaged temporal-mean 𝐴𝐴 ⟨𝑄𝑄⟩ is given by:

𝑄𝑄′(𝑡𝑡) = 𝑄𝑄 − ⟨𝑄𝑄⟩ =

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖

{

∫
𝑡𝑡

0

𝑟𝑟(𝑡𝑡 − 𝜏𝜏) 𝑢𝑢(𝜏𝜏;𝐾𝐾𝑖𝑖) 𝑑𝑑 𝜏𝜏 − 𝑟𝑟∫
𝑡𝑡

0

⟨𝑢𝑢(𝜏𝜏;𝐾𝐾𝑖𝑖)⟩𝑑𝑑 𝜏𝜏

}

 (A1)

The variance is therefore the expected value of the square of the fluctuation:

Var[𝑄𝑄] = ⟨𝑄𝑄′(𝑡𝑡)
2
⟩ =

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗 ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′ ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′′

⟨[

𝑟𝑟(𝑡𝑡 − 𝑑𝑑 ′) 𝑢𝑢(𝑑𝑑 ′;𝐾𝐾𝑖𝑖) − 𝑟𝑟⟨𝑢𝑢(𝑑𝑑 ′;𝐾𝐾𝑖𝑖)⟩
][

𝑟𝑟(𝑡𝑡 − 𝑑𝑑 ′′) 𝑢𝑢(𝑑𝑑 ′′;𝐾𝐾𝑗𝑗) − 𝑟𝑟⟨𝑢𝑢(𝑑𝑑 ′′;𝐾𝐾𝑗𝑗)⟩
]⟩

=

=

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗 ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′ ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′′
{

𝑟𝑟(𝑡𝑡 − 𝑑𝑑 ′) 𝑟𝑟(𝑡𝑡 − 𝑑𝑑 ′′)⟨𝑢𝑢
(

𝑑𝑑 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝑑𝑑 ′′;𝐾𝐾𝑗𝑗

)

⟩ − 𝑟𝑟
2
⟨𝑢𝑢
(

𝑑𝑑 ′;𝐾𝐾𝑖𝑖

)

⟩⟨𝑢𝑢
(

𝑑𝑑 ′′;𝐾𝐾𝑗𝑗

)

⟩

}

 (A2)
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Given that 𝐴𝐴 𝑟𝑟(𝑡𝑡 − 𝜏𝜏 ′) 𝑟𝑟(𝑡𝑡 − 𝜏𝜏 ′′) = 𝜎𝜎2
𝑟𝑟 𝜌𝜌𝑟𝑟(|𝜏𝜏

′ − 𝜏𝜏 ′′|) + 𝑟𝑟
2 , the final variance is:

Var[𝑄𝑄] =

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗 ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′ ∫
𝑡𝑡

0

𝑑𝑑 𝑑𝑑 ′′

{

𝜎𝜎2
𝑟𝑟 𝜌𝜌𝑟𝑟

(

|𝑑𝑑 ′ − 𝑑𝑑 ′′|
)

⟨𝑢𝑢
(

𝑑𝑑 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝑑𝑑 ′′;𝐾𝐾𝑗𝑗

)

⟩ + 𝑟𝑟
2[⟨

𝑢𝑢
(

𝑑𝑑 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝑑𝑑 ′′;𝐾𝐾𝑗𝑗

)

⟩ − ⟨𝑢𝑢
(

𝑑𝑑 ′
)

⟩ ⟨𝑢𝑢
(

𝑑𝑑 ′′
)⟩]

}

 (A3)

The sub-catchments are spatially uncorrelated, that is, f(Ki, Kj) = f(Ki) f(Kj) for i ≠ j, where f is the probability 
function of the response times K. Thus, the ensemble average 〈u(τ′; Ki) u(τ″; Kj)〉 for two reservoirs transforms as:

⟨𝑢𝑢
(

𝜏𝜏 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝜏𝜏 ′′;𝐾𝐾𝑗𝑗

)

⟩ = ∫ 𝑑𝑑𝐾𝐾𝑖𝑖 ∫ 𝑑𝑑𝐾𝐾𝑗𝑗 𝑢𝑢
(

𝜏𝜏 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝜏𝜏 ′′;𝐾𝐾𝑗𝑗

)

𝑓𝑓 (𝐾𝐾𝑖𝑖,𝐾𝐾𝑗𝑗)

= ∫ 𝑑𝑑𝐾𝐾𝑖𝑖 ∫ 𝑑𝑑𝐾𝐾𝑗𝑗𝑢𝑢
(

𝜏𝜏 ′;𝐾𝐾𝑖𝑖

)

𝑢𝑢
(

𝜏𝜏 ′′;𝐾𝐾𝑗𝑗

)

𝑓𝑓 (𝐾𝐾𝑖𝑖) 𝑓𝑓 (𝐾𝐾𝑗𝑗)

= ⟨𝑢𝑢
(

𝜏𝜏 ′;𝐾𝐾
)

⟩⟨𝑢𝑢
(

𝜏𝜏 ′′;𝐾𝐾
)

⟩ for 𝑖𝑖 ≠ 𝑗𝑗

 (A4)

=⟨𝑢𝑢
(

𝜏𝜏 ′;𝐾𝐾
)

𝑢𝑢
(

𝜏𝜏 ′′;𝐾𝐾
)

⟩ for 𝑖𝑖 = 𝑗𝑗 (A5)

This expression is substituted in Equation A3 to further simplify the temporal variance in Equation 7.

Appendix B: Moment Analysis and Effective Linear Reservoir
Along a standard approach for linear systems, we analyze the temporal moments of the aggregated reservoir 
model. After Equation 4, the nth temporal moments of the discharge Q, of the recharge r and of the transfer 
function are defined as

𝑄𝑄𝑛𝑛 =
1

𝑟𝑟 ∫
∞

0

𝑄𝑄(𝑡𝑡) 𝑡𝑡𝑛𝑛𝑑𝑑𝑡𝑡 =
1

𝑟𝑟

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖 ∫
∞

0

𝑡𝑡𝑛𝑛𝑑𝑑𝑡𝑡∫
𝑡𝑡

0

𝑟𝑟(𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏;𝐾𝐾𝑖𝑖)𝑑𝑑𝜏𝜏 (B1)

𝑟𝑟𝑛𝑛 =
1

𝑟𝑟 ∫
∞

0

𝑟𝑟(𝑡𝑡) 𝑡𝑡𝑛𝑛𝑑𝑑𝑡𝑡 (B2)

𝑈𝑈𝑛𝑛𝑛𝑛𝑛 = ∫
∞

0

𝑢𝑢(𝑡𝑡;𝐾𝐾𝑛𝑛) 𝑡𝑡
𝑛𝑛𝑑𝑑𝑡𝑡 (B3)

where 𝐴𝐴 𝑟𝑟 = ∫ ∞

0
𝑟𝑟(𝑡𝑡) 𝑑𝑑𝑡𝑡 is the total recharge volume (per unit area). After manipulation, we get for the first two 

moments

𝑄𝑄1 =

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖(𝑟𝑟1 + 𝑈𝑈1,𝑖𝑖) (B4)

𝑄𝑄2 =

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖(𝑟𝑟2 + 2𝑟𝑟1𝑈𝑈1,𝑖𝑖 + 𝑈𝑈2,𝑖𝑖) (B5)

𝑆𝑆2

𝑄𝑄
= 𝑄𝑄2 −𝑄𝑄2

1 (B6)

where 𝐴𝐴 𝐴𝐴2

𝑄𝑄
 is the second-order temporal moment of Q. The above establishes a relation between the temporal 

moments of the quantities involved in Equation 4. Substituting U1,i = Ki and 𝐴𝐴 𝐴𝐴2,𝑖𝑖 = 2𝐾𝐾2

𝑖𝑖
 in the previous expres-

sions and ensemble averaging over Ki, leads to

⟨𝑄𝑄1⟩ = 𝑟𝑟1 + ⟨𝐾𝐾⟩ (B7)

⟨𝑄𝑄2⟩ = 𝑟𝑟2
2
+ 2𝑟𝑟1⟨𝐾𝐾⟩ + 2⟨𝐾𝐾2

⟩ (B8)

⟨𝑆𝑆2
𝑞𝑞 ⟩ = ⟨𝑄𝑄2⟩ − ⟨𝑄𝑄2

1
⟩ (B9)

The term 𝐴𝐴 ⟨𝑄𝑄2

1
⟩ in Equation B9 is obtained by considering that the reservoirs i and j are not correlated when i ≠ j
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⟨𝑄𝑄2

1
⟩ =

⟨

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
(

𝑟𝑟2
1
+ 𝑟𝑟1𝐾𝐾𝑖𝑖 + 𝑟𝑟1𝐾𝐾𝑗𝑗 +𝐾𝐾𝑖𝑖𝐾𝐾𝑗𝑗

)

⟩

 (B10)

=
(

𝑟𝑟2
1
+ 2𝑟𝑟1⟨𝐾𝐾⟩ + ⟨𝐾𝐾⟩

2
)

+

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝2𝑖𝑖

(⟨

𝐾𝐾2
⟩ − ⟨𝐾𝐾⟩

2
)

 (B11)

Introducing the latter expression in Equation B9 leads to

⟨𝑆𝑆2

𝑄𝑄
⟩ = 𝜎𝜎2

𝑟𝑟 + 2⟨𝐾𝐾2
⟩ − ⟨𝐾𝐾⟩

2
−

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝2𝑖𝑖

(

⟨𝐾𝐾2
⟩ − ⟨𝐾𝐾⟩

2
)

 (B12)

Introducing the lag-time Λ = 〈q1〉 − r1 and the dispersion 𝐴𝐴 Σ = ⟨𝑆𝑆2
𝑞𝑞 ⟩ − 𝜎𝜎2

𝑅𝑅
 , which corresponds to the mean and 

variance of the water travel time in the system (Rodríguez-Iturbe & Valdés, 1979), they are given by

Λ = ⟨𝐾𝐾⟩

Σ = ⟨𝐾𝐾2
⟩ + 𝑠𝑠2𝑦𝑦 −

𝑁𝑁
∑

𝑖𝑖=1

𝑝𝑝2𝑖𝑖 𝑠𝑠
2
𝑦𝑦

 (B13)

It is seen that while the mean (lag-time) does not depend on the catchment size N, the variance (dispersion) does 
depend on it. The results for the limiting cases are:

•  N = 1, that is, a small catchment (non-ergodic conditions): Σ = 〈K 2〉
•  N ≫ 1, a large catchment (ergodic conditions): 𝐴𝐴 Σ ≃ ⟨𝐾𝐾2

⟩ + 𝑠𝑠2𝑦𝑦

Thus, the spreading caused by the aggregation of linear reservoirs increases with catchment size N, from 〈K 2〉 
to 𝐴𝐴 ⟨𝐾𝐾2

⟩ + 𝑠𝑠2𝑦𝑦 .

Since the lag-time and dispersion pertaining to an effective single linear reservoir are equal to Λ  =  Kef and 
𝐴𝐴 Σ = 𝐾𝐾2

𝑒𝑒𝑒𝑒
 , with Kef the effective reservoir constant, it is not possible to recover both moments Equation B13 of the 

aggregated catchments from a single reservoir with parameter Kef.

Appendix C: Transient Solution for the Global Variance of Q for an Exponential ρr

Equation 9 can be solved by considering an exponential autocovariance ρr(τ) = exp(−τ/λ) and assuming that 
Ki = Kg exp(y), with y distributed as a normal function 𝐴𝐴   . The integral can be solved analytically by changing 
variables: τ′ − τ′′ = z and τ′ + τ′′ = ω:

𝜎𝜎2

𝑄𝑄
=

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗 ∫
𝑡𝑡

0

𝑑𝑑𝑑𝑑∫
2𝑡𝑡−𝑑𝑑

𝑑𝑑

𝑑𝑑𝑑𝑑 𝜎𝜎2
𝑟𝑟 exp

[

−
𝑑𝑑

𝜆𝜆

] [

𝑢𝑢

(

𝑡𝑡 −
𝑑𝑑 − 𝑑𝑑

2
;𝐾𝐾𝑔𝑔 exp(𝑦𝑦𝑖𝑖)

)

𝑢𝑢

(

𝑡𝑡 −
𝑑𝑑 + 𝑑𝑑

2
;𝐾𝐾𝑔𝑔 exp(𝑦𝑦𝑗𝑗)

)

+

𝑢𝑢

(

𝑡𝑡 −
𝑑𝑑 + 𝑑𝑑

2
;𝐾𝐾𝑔𝑔 exp(𝑦𝑦𝑖𝑖)

)

𝑢𝑢

(

𝑡𝑡 −
𝑑𝑑 − 𝑑𝑑

2
;𝐾𝐾𝑔𝑔 exp(𝑦𝑦𝑗𝑗)

)]

 (C1)

which after integration leads to:

�2
�(�) =

�′�2
�

exp(��) + exp(��)

⎧

⎪

⎨

⎪

⎩

exp(��)
�′ + exp(��)

+

[

2 exp(��)exp(��) − �′(exp(��) + exp(��))
]

exp
[

�
(

−��

��
− ��

��

)]

(exp(��) − �′)(�′ − exp(��))
−

�′(exp(��) + exp(��))exp
[

−�
(

��

�
+ ��

��

)]

(�′ + exp(��))(�′ − exp(��))

−
�(exp(��) + exp(��))exp

[

−�
(

��

�
+ ��

��

)]

(�′ − (exp(��) + exp(��)))(�′ + exp(��))
+

exp(��)
�′ + exp(��)

⎫

⎪

⎬

⎪

⎭

 (C2)

where λ′ = λ/Kg. For t → ∞, we obtain:
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𝜎𝜎2

𝑄𝑄
=

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗
𝜆𝜆′𝜎𝜎2

𝑟𝑟

exp(𝑦𝑦𝑖𝑖) + exp(𝑦𝑦𝑗𝑗)

(

exp(𝑦𝑦𝑖𝑖)

𝜆𝜆′ + exp(𝑦𝑦𝑖𝑖)
+

exp(𝑦𝑦𝑗𝑗)

𝜆𝜆′ + exp(𝑦𝑦𝑗𝑗)

)

 (C3)

By assuming the independence of K, taking the ensemble mean and recognizing the variance for a single linear 
reservoir, that is, 𝐴𝐴 𝐴𝐴2

𝐿𝐿𝐿𝐿
= 𝜆𝜆′∕(exp(𝑦𝑦) + 𝜆𝜆′) , the final result for the global variance is Equation 13.

Data Availability Statement
Data were not used, nor created for this research.
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