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PARTITION COMPLEXES AND TREES

GIJS HEUTS AND IEKE MOERDIJK

(Communicated by Julie Bergner)

Abstract. We construct a functor from the partition complex of a finite set
A to a category of trees with leaves labelled by A and prove that it is homotopy
initial. This construction and our proof are elementary and require very few
preliminaries, but imply an equivalence between different bar constructions of
an operad in great generality.

1. Introduction

Let A be a finite set. The partitions of A form a partially ordered set under
refinement. This poset has an initial object (the indiscrete partition) and a final
object (the discrete partition); removing these two extreme partitions leaves a poset
for which we write P(A). The nerve NP(A) is a simplicial set called the partition
complex of A. These partition complexes play a central role in the study of bar-
cobar (or Koszul) duality for operads [2, 4], as we will review in Section 4.

In this short note we give an elementary relation between the partition complex
NP(A) and a certain category T(A) of rooted trees with set of leaves A. These two
objects play an important role in the literature on operads. However, the precise
and direct comparison between the two that we provide here seems not to have
been observed before.

The category T(A) has a morphism f : T → S if the tree T can be obtained
from S by contracting a set of inner edges of S. This category has an initial object,
namely the ‘corolla’ CA with leaves A and no internal edges. Removing this object
from T(A) gives a subcategory that we denote T(A)+.

The category of simplices of the simplicial set NP(A) will be denotedΔ/NP(A).
This can be thought of as a category of layered trees. It has the same weak homo-
topy type as NP(A) itself (see Section 2), and our result is as follows:

Theorem 1.1. There is a functor

ϕ : Δ/NP(A) → T+(A)

with the property that for every object T of T+(A), the slice category ϕ/T is weakly
contractible. In particular, ϕ induces a weak homotopy equivalence between the
classifying spaces of these two categories. In fact, ϕ even induces homology isomor-
phisms with coefficients in an arbitrary presheaf of abelian groups.
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The second statement of the theorem is a consequence of the first by Quillen’s
Theorem A [14]. However, the first statement is significantly sharper than just ϕ
inducing a homotopy equivalence of classifying spaces, as illustrated by the last
sentence of the theorem. As an application this immediately implies a comparison
of different versions of the bar construction of an operad, namely the simplicial one
and the bar construction of Ginzburg–Kapranov [6] and Getzler–Jones [5]. Such a
comparison has only been available in the context of differential graded operads by
work of Fresse [4, Theorem 4.1.8] (see also [12,17]) through a much more elaborate
argument. By contrast, our proof is short, requires only the most basic concepts
of the theory of simplicial sets, and applies to operads in any homotopical context
(e.g. spaces or spectra). It would be interesting to see if our argument can be
adapted to more general settings, such as different bar constructions for PROPs
and properads (cf. [18, Theorem 6.7] and [7]).

The essential content of this paper consists of Sections 2 and 3. In Section 2 we
review the partition complex. In Section 3 we discuss the category T(A) of trees
and prove Theorem 1.1. Section 4 stands apart from the rest of the paper: its sole
purpose is to illustrate the various occurrences of the category T(A) in the liter-
ature. A functor ϕ : D → C with the property that ϕ/c is a weakly contractible
category for each object c of C is called homotopy initial. For readers unfamil-
iar with homotopy initial functors, we include a brief review of their elementary
properties in the appendix.

2. Partition complexes and layered trees

Fix a finite set A. We introduced its partition complex NP(A) above. The p-
simplices of this simplicial set are chains of length p of nontrivial partitions, which
can be thought of as layered trees with p internal layers. For example, the partitions

(abcde)(f) ≤ (ab)(cde)(f)

of the set A = {a, b, c, d, e, f} define a 1-simplex in NP(A) represented by the
layered tree

1

0

a b c d e f

Here the layer labelled 1 represents the partition (ab)(cde)(f), whereas the layer
labelled 0 represents (abcde)(f). The numbering of the dotted lines refers to the
simplicial structure, so that the ith face map corresponds to removing (or rather,
contracting) all of the internal edges on the dotted line. Let us fix some terminology.

(1) Observe that a simplex in NP(A) is nondegenerate if there is no horizontal
level at which all vertices are unary (meaning they have only one incoming edge, if
we orient our trees towards the root). A simplex is called elementary if it has exactly
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PARTITION COMPLEXES AND TREES 2725

one non-unary vertex at every horizontal level. As an example, observe that the
picture above does not represent an elementary simplex, but the two trees pictured
below do represent elementary simplices, namely the two chains of partitions

(abcde)(f) ≤ (ab)(cde)(f) ≤ (a)(b)(cde)(f),

(abcde)(f) ≤ (ab)(cde)(f) ≤ (ab)(c)(d)(e)(f).

2

1

0

a b c d e f

2

1

0

a b c d e f

As this example illustrates, any nondegenerate and non-elementary simplex in
NP(A) is a face of an elementary one, but the latter need not be unique.

(2) The category of simplices of NP(A) is denoted Δ/NP(A). Objects of this
category are layered trees (with A as set of leaves), morphisms are opposite to
compositions of face operations deleting a layer and contracting all edges in that
layer, and degeneracy operations inserting a new layer consisting entirely of unary
vertices. There is a functor

ζ : Δ/NP(A) −→ P(A)

sending a chain of partitions to its final element. This functor induces a homotopy
equivalence of classifying spaces. Indeed, as is well known, this is the case for any
small category C in place of P(A), since the projection

ζ : Δ/NC −→ C

sending (c0 → · · · → cp) to cp satisfies the hypothesis of Quillen’s Theorem A again,
see [16].

3. Trees without layers and the main theorem

There is a more basic category of trees T(A) whose objects are isomorphism
classes of finite rooted trees with A as set of leaves, in which every vertex has at
least two incoming edges. Morphisms in this category are compositions of ‘face
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maps’ creating an inner edge, as in

∂f
e e f

Each such morphism S → T maps edges to edges, while it preserves the root and
induces the identity on the set of leaves. Note that a morphism S → T exists only
if S can be obtained from T by contracting a sequence of inner edges and is unique
in that case. Thus T(A) is in fact a poset. This category of trees is the same as
the one considered by Ching [2] and by Hoffbeck and the second author [11].

The category T(A) has an initial object, namely the minimal tree with leaves
A connected by a single vertex to its root: we label this tree CA and refer to it as
the corolla with A leaves. We shall write T+(A) for the full subcategory of T(A)
obtained by omitting this initial object; in other words, the full subcategory of trees
with at least one inner edge.

Forgetting the layers and deleting unary vertices now defines a functor from
layered trees to trees,

ϕ : Δ/NP(A) → T+(A),

which is the functor of Theorem 1.1. The remainder of this section is devoted to
its proof and a couple of examples.

Proof of Theorem 1.1. For an object T of T+(A), a layering of T is a p-simplex
σ of NP(A) for which ϕ(σ) = T . An elementary such layering corresponds to a
linear ordering of the vertices of T compatible with the partial ordering defined by
the tree structure. In particular, p = |V (T )| − 2 in this case, where V (T ) is the set
of vertices of T . If τ is a face of a layering of T , then there exists a map ϕ(τ ) → T
in T+(A). Vice versa, if σ is a level tree for which ϕ(σ) maps to T , then σ is a face
of a layering of T .

Now fix a tree T in T+(A). The slice ϕ/T is the category of simplices of a
simplicial set L(T ) generated by the (|V (T )|−2)-simplices representing elementary
layerings of T . The corolla CA is not an object of T+(A), but we introduce the
convention that L(CA) = ∅. Also, in the course of the argument below, we will
consider trees in T+(B) for sets B different from A.

We call a vertex v of T a leaf vertex if all its incoming edges are leaves of the tree
T . For such a v, let Lv(T ) ⊆ L(T ) be the simplicial subset generated by simplices
which represent elementary layerings of T with v on top. Then

L(T ) =
⋃

v

Lv(T )

with v ranging over leaf vertices of T . Moreover, for any such v the simplicial set
Lv(T ) is clearly a cone on the simplicial set L(∂vT ), with ∂vT the tree obtained
from T by removing the vertex v and its incoming edges. To be precise, Lv(T )
may be identified with the join L(∂vT ) �Δ[0]. (This identification results from the
observation that any layering of ∂vT , or a face of it, may be naturally upgraded to
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PARTITION COMPLEXES AND TREES 2727

an object of Lv(T ) by attaching the corolla with vertex v at the top.) Similarly, if
v1, . . . , vk is a finite set of leaf vertices of T , then the intersection

Lv1(T ) ∩ · · · ∩ Lvn(T )

is a cone on L(∂v1,...,vnT ), where ∂v1,...,vnT is obtained from T by removing all of
the vertices v1, . . . , vn and their incoming edges. Thus, the Lv(T ) together form a
cover of L(T ) by weakly contractible simplicial sets, all of whose finite intersections
are again contractible. So L(T ) is itself weakly contractible. Hence its category of
simplices Δ/NL(T ) is weakly contractible as well, cf. item (2) of Section 2. This
proves the first part of the theorem. The statement about homology isomorphisms
now follows from item (d) of the appendix. �

Example 3.1. An operad O in the category of sets defines a presheaf NO on
T+(A) called its nerve. This presheaf assigns to any tree T the set of labellings
of the vertices of T by operations in O of arity corresponding to the number of
inputs of the vertex. The functoriality with respect to edge contractions uses the
composition of operations in O. The category of elements of NO is denoted

T+(A,O) := T+(A)/NO.

The presheaf NO pulls back to a presheaf ϕ∗(NO) on Δ/NP(A) whose category
of elements we denote Δ/NP(A)O. It is the category of elements of a simplicial set
NP(A)O. This simplicial set is a labelled partition complex of the kind considered
in [4] and [17]. As explained in item (a) of the appendix, our theorem implies that
the functor

Δ/NP(A)O −→ T+(A,O)

is again homotopy initial, so in particular a weak homotopy equivalence.

Example 3.2. The previous example can be generalized to operads in simplicial
sets, or in chain complexes, for example. (As explained in the appendix, really
any symmetric monoidal model category or ∞-category could be used instead.)
Concretely, let us consider the case of an operad O in chain complexes. Again it
provides a presheaf NO on the category T+(A). Item (d) of the appendix implies
that ϕ induces an isomorphism between the homology of the presheaf NO and the
homology of the presheaf ϕ∗(NO) on the category Δ/NP(A). This isomorphism
gives a different and much more direct proof of the Fresse’s comparison between
different bar constructions for an operad (cf. [4, Theorem 4.1.8]) mentioned in the
introduction, see also the discussion in the next section. Indeed, the homology of
ϕ∗(NO) is the homology of the simplicial bar construction of O, whereas the ho-
mology of NO itself is that of the operadic bar construction of Ginzburg–Kapranov
[6] and Getzler–Jones [5]. Note that Fresse’s proof goes via a construction in the
opposite direction, from trees to layered trees, which he calls ‘levelization’.

Remark 3.3. The category T+(A,O) we described above only concerns trees with-
out unary or nullary vertices and is therefore insensitive to the terms O(1) and
O(0) of the operad. It would be interesting to see if our methods can be extended
to cover the case where one includes potentially nontrivial unary operations. A
comparison of bar constructions in this more general setting is given by Vallette
[18, Theorem 6.7].
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4. More on the category of trees

In this concluding section we collect some remarks on the category of trees T(A)
described above, which should illustrate its relevance and some of its basic proper-
ties.

(1) As A ranges over finite sets, the categories T(A) (as well as T+(A)) form an
operad in the category of small categories. Indeed, for a ∈ A, a composition map
of the form

T(B) ◦a T(A) → T(A ◦a B)

is given by grafting trees with leaves B onto the leaf a of a tree with leaves A. Here
A◦aB denotes the set (A−{a})	B. An algebra for this operad is a category with
a colax symmetric monoidal structure, as has been emphasized by Hinich [8].

(2) The homotopy type of the classifying space of T+(A) (or equivalently of the
partition complex NP(A)) is a wedge of (|A| − 1)! spheres of dimension |A| − 3 (cf.
[15]).

(3) Let E be a symmetric monoidal simplicial model category (or symmetric
monoidal ∞-category) with a zero object. Then there is a ‘trivial’ operad 1 having
the monoidal unit in arity 1 and the zero object in all others. If O is an operad
with O(1) the monoidal unit, then there is a unique augmentation O → 1 and one
may form its simplicial bar construction with object of p-simplices

BOp = O ◦ · · · ◦O.

Here there are p copies ofO on the right, the symbol ◦ denotes the usual composition
product of symmetric sequences, the inner face maps use the operad structure of O,
while the outer face maps use the augmentation. The realization of this simplicial
object in E is (one possible version of) the bar construction BO of the operad O.

It is not difficult to see (cf. [4, Section 4.3]) that this simplicial bar construction
BO can be described explicitly in terms of the labelled partition complexes intro-
duced above. Indeed, the term O◦p(A) = BOp(A) consists of layered trees of height
p with leaves A, and each internal vertex labelled by an operation of O. Combining
this with our result, one deduces fairly easily that BO(A) is a suspension of the
cofiber of the map

hocolimT∈T+(A)NO(T ) → hocolimT∈T(A)NO(T ) 
 O(A).

This gives an alternative description for the simplicial bar construction in terms of
trees. In the case where E is the category of chain complexes over a commutative
ring, this reproduces the comparison of bar constructions given by Fresse [4]. If
E is the category of pointed topological spaces or spectra, Ching [2] observes that
the simplicial bar construction is even homeomorphic to the one defined in terms
of trees; our result is a bit weaker, but applies more generally.

(4) If again O is an operad in a suitable simplicial model category, then the term
hocolimT∈T(A)NO is essentially the Boardman–Vogt W -construction WO(A) (as
described in [1]). Indeed, the latter can be represented by ‘the space’ of trees with
leaves A, vertices labelled by operations of O and inner edges labelled by a length t
in the 1-simplex Δ1. If such a length is 0, then the resulting tree is identified with
the one where that inner edge is contracted and the operations corresponding to its
endpoints are composed. Viewed in this way, the subobject hocolimT∈T+(A)NO(T )
can be thought of as the decomposable operations inWO(A), i.e., the ones arising as
a composition of two or more operations in the operadWO. Writing Indec(WO(A))
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PARTITION COMPLEXES AND TREES 2729

for the quotient of WO(A) by the decomposable operations, the previous remark
implies an equivalence of symmetric sequences

BO 
 ΣIndec(WO).

In the context of topological operads, this observation goes back to Salvatore [2,
Lemma 2.4].

(5) The Fulton–MacPherson operad FMd has as its terms FMd(A) certain man-
ifolds with corners that compactify the configuration spaces Confd(A) of |A| points
in R

d, or rather their quotients by translation and dilation (cf. the discussion in
[9, Section 1.8]). These manifolds are naturally stratified, with strata indexed by the
objects of the category T(A). The stratum corresponding to a tree is homeomor-
phic to a product over the vertices of T of the configuration spaces corresponding to
the inputs of each vertex; the corolla CA corresponds to the maximal open stratum.
The operad FMd is weakly equivalent to the operad Ed of little d-cubes but has
more favourable cofibrancy properties.

Using the description of FMd(A) as a stratified space, it is not difficult to see
that the homotopy colimit

hocolimT+(A)NFMd(−)

is equivalent to the boundary of the manifold FMd(A). Thus, one deduces from
(3) above that the terms of the bar construction (and hence of the bar construction
of the little d-disks operad Ed) are equivalent to the spaces

Σ
(
FMd(A)/∂FMd(A)

)
.

The reader might compare this to the remark immediately following [3, Lemma
9.5]. This reference contains a much more detailed analysis of the bar construction
of the Fulton–MacPherson operad and includes a proof of the ‘self-duality’ of the
Ed-operad.

Appendix

This appendix is a service to the reader not familiar with homotopy initial func-
tors, illustrating some useful properties of this notion. None of this material is
original. A standard account in the context of model categories is [10, Section 19.6]
or [13, Section 4.1] in the context of ∞-categories.

If ϕ : D → C is a functor and c an object of C, then ϕ/c (or simply D/c, leaving
ϕ implicit) denotes the category with objects the pairs consisting of an object d ofD
and a morphism α : ϕ(d) → c, and with morphisms from α to another α′ : ϕ(d′) → c
the morphisms β : d → d′ in D making the resulting triangle

ϕ(d) ϕ(d′)

c
α

ϕ(β)

α′

commute. The functor ϕ is called homotopy initial (or homotopy left cofinal by
some) if for each object c of C, the category ϕ/c has contractible classifying space.

Quillen’s Theorem A [14] states that if ϕ is homotopy initial, then it induces
a homotopy equivalence of classifying spaces BD 
 BC. However, the properties
of a homotopy initial functor are much stronger than this. As suggested by the
terminology, restriction along ϕ preserves arbitrary homotopy limits, as explained
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in (e) below. (Alternatively, restriction along ϕ : Dop → Cop preserves homotopy
colimits.) Let us list several useful properties of such functors, most of which can
be seen as special instances of the last example (e).

(a) If X is a presheaf of sets on C, with its restriction ϕ∗X a presheaf on D,
then the induced functor

D/ϕ∗X → C/X

between the respective categories of elements is again homotopy initial (since the
slice of D/ϕ∗X over (c, x) is isomorphic to D/c), hence induces a homotopy equiv-
alence

B(D/ϕ∗X)
�−→ B(C/X).

Note that this map is a pullback of the map BD → BC, but that the projection
of the codomain to BC is rarely a fibration.

(b) The same applies more generally for a fibered category p : E → C and its
pullback ϕ∗E → D. To prove this, one shows similarly that for e an object of E,
the classifying space of ϕ∗E/e is weakly equivalent to that of D/p(e) by another
application of Quillen’s Theorem A. (The directions are important here; the result
would not generally hold for opfibered categories.)

(c) Generalizing (a), one could take X• to be a simplicial presheaf on C. Then

D/ϕ∗X• → C/X•

is a map of bisimplicial sets that is a weak equivalence in each fixed simplicial degree
(of X•), hence induces a weak equivalence on diagonals.

(d) If A is a presheaf of abelian groups on C, then ϕ induces an isomorphism
H∗(C;A) → H∗(D;ϕ∗A) in homology. (Here homology is defined as the collection
of left derived functors of the colimit functor from abelian presheaves on C to
the category of abelian groups.) For this result it is not necessary to require that
A is locally constant, as for ordinary weak equivalences. Proof: If P• → A is a
resolution of A where P• = Z[X•] is free on a simplicial presheaf X•, then the
presheaf ϕ∗(P•) = Z[ϕ∗X•] is a similar resolution of X•. The result then follows
because for each simplicial degree p, the map H∗(C;Z[Xp]) → H∗(D;Z[ϕ∗Xp]) can
be identified with

H∗(C/Xp;Z)
�−→ H∗(D/ϕ∗(Xp);Z),

which is an isomorphism by case (a).
(e) Consider the category ECop

of presheaves with values in a simplicial model
category E, and similarly EDop

. These presheaf categories can be equipped with
the projective model structures and ϕ induces a Quillen adjunction

EDop

ECop

.
ϕ!

ϕ∗

Constructing a similar adjunction for the trivial functor C → 1 gives the Quillen
adjunction

ECop

E
colimC

const

and similarly for D. If ϕ is homotopy initial, then there is a natural isomorphism
of derived functors (cf. [10, Section 19.6])

LcolimD ◦Rϕ∗ ∼= LcolimC.

In other words, the restriction functor Rϕ∗ preserves homotopy colimits.
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Proof: This is rather straightforward from the usual Bousfield–Kan formula for
homotopy colimits, which states that for an E-valued presheaf X on C taking values
in cofibrant objects, its homotopy colimit may be computed as a tensor product

X(−)⊗C N(C/−).

Similarly, one computes the homotopy colimit of ϕ∗X as

X(ϕ(−))⊗D N(D/−).

The latter is isomorphic to

X(−)⊗C N(C/ϕ(−)),

and the natural comparison map N(C/ϕ(−)) → N(C/−) is a weak homotopy
equivalence of simplicial diagrams on C by the assumption that ϕ is homotopy
initial. This implies the result.

Examples (a) and (d) can be seen as special cases of this preservation of homotopy
colimits: for example (a), this relies on the fact that the classifying space of the
category of elements C/X is a model for the homotopy colimit of the functor

Cop → Sets
const−−−→ sSets.

(f) There is an ∞-categorical version of (e) above, stating that precomposition
by ϕ preserves colimits with values in a fixed ∞-category E (cf. [13, Theorem
4.1.3.1]). Also, example (b) can be seen as a special instance of the fact the pullback
of a homotopy initial functor along a cartesian fibration is again homotopy initial
[13, Proposition 4.1.2.15].
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