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1  |  INTRODUC TION

The complex relationships between biodiversity and ecosystem 
functions at various spatial scales are still insufficiently understood. 
In the context of global change, this is all the more critical for the 
development of effective strategies for sustainable management of 
the environment. Here, we present the background, the conceptual 
framework and an experimental design to study the effects of β-
diversity on multifunctionality in temperate forests.

1.1  |  Global landscape homogenization and its 
consequences for ecosystems

Habitat loss, overexploitation of biological resources, pollution, in-
vasive species and climate change are the main causes of acceler-
ated global decline in biodiversity and related ecosystem alterations 

(Barnosky et al., 2011; Díaz et al., 2019; Maxwell et al., 2016; Sala 
et al., 2000). However, changes do not happen uniformly and vary 
across scales as the result of different drivers (e.g. local habitat 
destruction versus large-scale climate change) and with different 
consequences. Locally, taxonomic biodiversity decline is often domi-
nated by the loss of species from communities through reductions in 
species richness or through changes in abundance and evenness (α-
diversity) (Albrecht et al., 2021; Newbold et al., 2015). Species loss 
at the landscape scale (γ) can be brought about by a system-wide loss 
of species but, more frequently, it results from a decrease in dissimi-
larities between local communities (β-diversity), as landscapes be-
come homogenized through human activities (Dornelas et al., 2014; 
Gossner et al., 2016; McGill et al., 2015). While landscape-scale ho-
mogenization through natural resource management can certainly 
increase the provisioning of targeted products like food or timber, 
the subsequent loss of biodiversity can have cascading negative ef-
fects on other ecosystem services and, thus, on society (Beaumelle 
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Abstract
Intensification of land use by humans has led to a homogenization of landscapes and 
decreasing resilience of ecosystems globally due to a loss of biodiversity, including the 
majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided 
compelling evidence for a positive effect of biodiversity on ecosystem functions and 
services at the local (α-diversity) scale, but we largely lack empirical evidence on how 
the loss of between-patch β-diversity affects biodiversity and multifunctionality at 
the landscape scale (γ-diversity). Here, we present a novel concept and experimental 
framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a 
forest management-relevant scale. We examine this framework using 22 temperate 
broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we 
manipulated the structure between forest patches by increasing variation in canopy 
cover and deadwood. We hypothesized that an increase in landscape heterogeneity 
would enhance the β-diversity of different trophic levels, as well as the β-functionality 
of various ecosystem functions. We will develop a new statistical framework for BEF 
studies extending across scales and incorporating biodiversity measures from taxo-
nomic to functional to phylogenetic diversity using Hill numbers. We will further 
expand the Hill number concept to multifunctionality allowing the decomposition of γ-
multifunctionality into α- and β-components. Combining this analytic framework with 
our experimental data will allow us to test how an increase in between patch heteroge-
neity affects biodiversity and multifunctionality across spatial scales and trophic levels 
to help inform and improve forest resilience under climate change. Such an integrative 
concept for biodiversity and functionality, including spatial scales and multiple aspects 
of diversity and multifunctionality as well as physical and environmental structure in 
forests, will go far beyond the current widely applied approach in forestry to increase 
resilience of future forests through the manipulation of tree species composition.
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et al., 2020; Gamfeldt et al., 2013). Consequently, new management 
approaches are urgently needed to improve sustainability in land 
use and to promote and maintain ecosystem services to people in 
a changing world.

1.2  |  Biodiversity–ecosystem functioning research 
beyond the α-scale

More than 25 years of biodiversity–ecosystem functioning (BEF) 
research has provided solid foundational knowledge about how α-
diversity contributes to ecosystem functioning and stability at small 
scales, and how relationships at this scale ensure the delivery of 
ecosystem services, that is, the benefits people gain from nature 
(Cardinale et al., 2012; Isbell et al., 2017; Naeem et al., 2012; Weisser 
et al., 2017). For instance, past research has unravelled many mecha-
nisms underpinning the relationship between biodiversity and pro-
ductivity at the local scale, such as resource partitioning, abiotic 
facilitation and trophic interactions, based on observational, theo-
retical and experimental approaches (Duffy et al., 2017; Flombaum 
& Sala, 2008; Soliveres et al., 2016; Tilman et al., 1997). Similarly, 
increasing biodiversity at one trophic level, for example, plants, 
often increases associated biodiversity at other trophic levels so that 
‘diversity begets diversity’ at the local scale (Dinnage et al., 2012; 
Eisenhauer et al., 2013; Scherber et al., 2010). Considering several 
trophic levels together has the potential to better explain ecosystem 
functioning (Hines et al., 2015; Lefcheck et al., 2015; Luo et al., 2022; 
Schuldt et al., 2018). Furthermore, the strength of the BEF relation-
ships at the α-scale, measured via (standardized) slope, R2 or regres-
sion coefficients, increases with the number of functions taken into 
account to quantify ecosystem multifunctionality (i.e. the extent to 
which multiple ecosystem functions are provided simultaneously) 
and is thus biased (Hector & Bagchi, 2007; Isbell et al., 2011; Meyer 
et al., 2018). This may also be true for the β-scale.

However, multifunctionality and biodiversity at the local scale 
differ from those at the landscape scale. While most BEF research 
has so far focused on local scales, we advocate for an increased focus 
on the landscape scale for a number of reasons. First, the landscape 
scale is the scale where many management decisions are actually 
made and applied, because each farm or forest enterprise manages 
many different plots, stands or fields. Second, it is the spatial scale 
that has the strongest influence on the distribution of populations 
of most species (Dornelas et al., 2014; Gossner et al., 2016; McGill 
et al., 2015). The biodiversity of a landscape is composed of a set of 
local communities of multiple interacting species, which are linked 
by dispersal, thus forming metacommunities. The scientific frame-
work underpinning the metacommunity concept explicitly takes the 
separate and interactive roles of scale, dispersal and heterogeneity 
on biodiversity into account. As a result, it has developed various 
paradigms that explain the likelihood of species occurrence and co-
existence, including patch dynamics, species sorting, mass effects 
and neutral models (Leibold et al., 2004; Logue et al., 2011). Thus, 
the metacommunity concept provides a theoretical framework to 

test for different mechanisms that may underlie observed patterns 
of species compositional and biodiversity variation in a landscape 
(Leibold et al., 2004). Similarly, multifunctionality at the landscape 
scale, which is most relevant for the provisioning of ecosystem ser-
vices, differs from multifunctionality at the local scale. The between-
habitat variation in contributions to multifunctionality at the 
landscape scale is expected to be low in homogeneous landscapes, 
because similar habitat types with similar species compositions 
and structures provide comparable ecosystem functions (Gamfeldt 
et al., 2013; Mori et al., 2016; van der Plas et al., 2016). In contrast, 
in landscapes with a high variety of habitats, different habitat types 
support different species and ecosystem functions, contributing to a 
high landscape-level multifunctionality (Hautier et al., 2020; Loreau 
et al., 2003). Furthermore, in abiotically heterogeneous landscapes, 
β-diversity can also provide performance-enhancing effects on sin-
gle ecosystem functions, as different species with different habitat 
preferences are required in patches with different abiotic conditions 
(species sorting) to maximize biomass production (Isbell et al., 2018). 
Moreover, when compositions of species across habitat patches are 
more similar, representing a low β-diversity, they display more spatial 
and temporal synchrony in patch-scale ecosystem functioning than 
do those in heterogeneous landscapes, thereby reducing landscape-
scale (i.e. γ-scale) ecosystem stability (Firkowski et al., 2022; Wilcox 
et al., 2017).

Despite strong theoretical arguments for why β-diversity should 
be important in driving ecosystem functioning at the landscape 
level, empirical tests confronting these theoretical expectations are 
still scarce, despite repeated calls for operationalizing BEF findings 
to management-relevant scales (Eisenhauer et al., 2019; Srivastava 
& Vellend, 2005; van der Plas et al., 2019). The few studies on bio-
diversity and ecosystem functioning at the between-patch scale 
can be divided into those on small and large scales. There are 
those using controlled experiments at small scales focusing mostly 
on micro- or mesocosm experiments or manipulating patches of 
a few square metres of grassland (Firkowski et al.,  2022; Hammill 
et al., 2018; Hautier et al., 2020; van der Plas, 2021). Also, at the 
small scale, there are a number of observational studies, often on 
microorganisms or small invertebrates that use fine grain habitats 
(Ebeling et al.,  2020; Hautier et al.,  2018; Mori et al.,  2016; Mori, 
Fujii, et al., 2015). At larger scales, notably in agriculture or forests, 
studies are almost exclusively observational (Albrecht et al., 2021; 
Dainese et al.,  2019; Georgiev et al.,  2022; Gossner et al.,  2016; 
Grman et al., 2018; Ratcliffe et al., 2017; Schall, Schulze, et al., 2018; 
Sirami et al., 2019; van der Plas et al., 2016). Controlled experiments 
at these management-relevant scales are still rather focusing on 
early successional stages (Paquette et al., 2018).

Thus far, only two approaches exist to investigate the role of 
β-diversity for γ-diversity and γ-multifunctionality at larger scales. 
First, theoretical modelling approaches have used virtual landscapes 
to test for effects of biodiversity on multifunctionality using vir-
tual species (Firkowski et al., 2022; Wang & Loreau, 2016). These 
studies have shown that increasing β-diversity stabilizes regional 
ecosystems via spatial asynchrony. Second, an increasing number 
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of studies assemble information gained from field observations 
of different local patches into new, virtual landscapes composed 
of different combinations of those patches (and hence use a ‘hy-
brid approach’ consisting of both empirical and modelling compo-
nents), to infer their multifunctionality (Ebeling et al., 2020; Gossner 
et al., 2016; Schall, Schulze, et al., 2018; van der Plas et al., 2019). 
These applications focus on the additive effects of combining dif-
ferent local patches and their species compositions on biodiversity 
and multifunctionality at the γ-scale. However, these approaches 
are unable to consider potential interactions between patches or 
cross-boundary BEF effects (i.e. non-additive effects), caused by the 
movement of matter or organisms between them (Scherer-Lorenzen 
et al., 2022). Today, we have well-established metacommunity the-
ory (Chase et al., 2020) and clear expectations that BEF relationships 
will change when scaling up BEF research (Gonzalez et al.,  2020). 
However, we lack both the experimental data and the statistical 
frameworks for biodiversity and multifunctionality across scales, 
and experiments and empirical data at management-relevant scales 
(Eisenhauer et al., 2019).

1.3  |  Homogenization in production forests

Forests have an intricate three-dimensional structure and thus rep-
resent very complex habitats that provide many niches, allowing 
coexistence of numerous species (MacArthur & MacArthur,  1961; 
Vierling et al.,  2008). This complexity scales from the tree level 
(Müller et al., 2014), over patches of successional stages (Heidrich 
et al.,  2020; Hilmers et al.,  2018), to landscapes containing a mo-
saic of different succession stages. A second axis of complexity is 
based on the amount and diversity of deadwood (Seibold, Bässler, 
et al., 2015). Forest management has shaped these structural com-
ponents. A focus on timber production has shaped both α-diversity 
and β-diversity of forests for centuries (Aszalós et al., 2022). In the 
Middle Ages (500–1500 CE), multi-purpose forest management 
created a heterogeneous forest landscape of native tree species 
with coppicing, promoting early-successional stages and pastures, 
interspersed with veteran trees that harboured old-growth special-
ists (Miklín et al.,  2018). In contrast, particularly in the Northern 
Hemisphere, modern forestry since the late 18th century, has fo-
cused increasingly on timber production (Rackham, 2008; Schelhaas 
et al.,  2003) often at the expense of structural and biological di-
versity via planting even-aged conifer-dominated forests (Aszalós 
et al., 2022). In addition, since the early 19th century, forest man-
agement has systematically removed dying and dead trees as a pre-
cautionary measure against pest outbreaks, with the subsequent 
disappearance of forest specialists, including many birds, beetles, 
true bugs, lichens and fungi (Abrego et al.,  2015; Seibold, Brandl, 
et al., 2015). Since the late 1950s, a shift to continuous cover for-
estry started in many countries in the global North (Pommerening & 
Murphy, 2004). This increased the vertical complexity of forests by 
avoiding larger gaps and promoting regeneration under the canopy 
of mature trees many years ahead of the final harvest. However, this 

created large-scale homogeneous two-layered forests with reduced 
horizontal complexity and biodiversity (Heidrich et al., 2020; Schall, 
Gossner, et al., 2018).

Two common features of natural forests are widely missing in 
these forests. First, early and late successional stages with their spe-
cific species compositions and microclimates are missing (De Frenne 
et al.,  2019; Hilmers et al.,  2018). Second, trees are typically har-
vested before their half-life, to avoid increasing damage by insects 
or fungi (Knoke, 2003; Larrieu et al., 2017). Consequently, resource 
availability is heavily reduced for many forest species, especially for 
species that depend on deadwood (Figure 1, Graf et al., 2022; Larrieu 
et al., 2017; Müller & Bütler, 2010). Experiments have shown that 
local diversity of deadwood is more critical for a high biodiversity 
than the amount, highlighting the important resource niche diversity 
over resource amount for deadwood-dependent species (Seibold 
et al., 2016). Moreover, deadwood in gaps supports a higher niche 
diversity via variation in microclimate compared to deadwood under 
a closed canopy (Lettenmaier et al., 2022). Today, production forests 
resemble one another structurally at the landscape scale, with little 
deadwood, the absence of old and very young forest stages, and low 
vertical complexity in middle-aged forests with few gaps. Several 
studies have shown that forest structural complexity affects diver-
sity. For example, Heidrich et al. (2020) found horizontal heteroge-
neity in forests as most important for high diversity among different 
taxa and trophic levels. Similarly, Mori, Ota, et al. (2015) showed a 
substantial decrease in β-diversity of oribatid mites in homogeneous 
production forests compared to more natural forests with a higher 
habitat diversity.

Studies in disturbance ecology have found that the current ob-
served increase in the severity and extent of various disturbance 
regimes such as drought, wildfires, windthrow and pest outbreaks 
in forests can be explained, not only by climate change, but also 
in large part by the anthropogenic homogenization of forests that 
has created highly susceptible forests over large areas (Biedermann 
et al., 2019; Seidl et al., 2014, 2016). This has refuelled interest in 
using forest structure as a tool for managing forest ecosystem func-
tions and resilience. Hence, along with using the adaptive capacity 
of current tree species (Petrik et al., 2022) and supporting a diverse 
tree species composition (Messier et al., 2022), enhancing the vari-
ation in forest structure could also be a powerful and easily deploy-
able approach to improve the resilience and multifunctionality of 
forests. Moreover, in the course of current natural disturbances, the 
previously scarce resource of deadwood is increasing in many places 
(Senf et al., 2019). This raises the question of how changes in struc-
ture and deadwood due to increasing disturbances along with inten-
tional manipulations can be used to restore and support biodiversity 
and ecosystem functioning in homogenized production forests and 
to make them more resilient in a future climate. Here, we focus on 
management effects aiming at an increased heterogeneity on the 
landscape level. Heterogeneity is also driven by other factors such 
as forest ownerships, soil conditions and historical legacies, which 
also have important implications for ecosystem services (Simons 
et al., 2021). However, this large-scale heterogeneity is regularly not 
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    |  1441MÜLLER et al.

related to management decisions whose effects on heterogeneity 
and, consequently, on β-diversity and multifunctionality are our 
main research interest.

1.4  |  Increasing heterogeneity in forests 
through novel management methods

Increasing awareness about the reduced complexity in many pro-
duction forests compared to natural forests around the world has 
evoked a number of innovative approaches for managing forests, 
both for enhancing natural biodiversity and ecosystem services, and 
to increase resilience and adaptive capacity under global change. 
Most of them focus on the α-scale, but combining them offers ex-
cellent options to manipulate the β-scale. Based on the observation 
that even large-scale disturbances always leave parts of the forest 
unaffected (Donato et al.,  2012), retention forestry aims to retain 

groups of trees or deadwood after harvesting to maintain natural 
structure and function (Dörfler et al., 2018; Gustafsson et al., 2012; 
Lindenmayer et al., 2012; Thorn et al., 2020). Another approach is to 
create within-patch heterogeneity to induce premature senescence 
in younger forests. This can accelerate the ageing process to create 
a diversity of microhabitats and to support greater saproxylic spe-
cies diversity (Cavalli & Mason,  2003; Sebek et al.,  2013). A third 
option is to manage production forests for old-growth features, for 
example by prolonging the rotation cycle and by creating structural 
components that are typical for old-growth forests, such as large di-
ameter deadwood or huge tree crowns (Bauhus et al., 2009; Larrieu 
et al., 2012; Moning & Müller, 2009). Here, canopy cover variation 
is a key factor in forming variation in habitat conditions (Entling 
et al.,  2007; Heidrich et al.,  2020; Mueller et al.,  2016; Zellweger 
et al.,  2017). Particularly for light-demanding tree species, open 
conditions are critical for recruitment. A number of these tree spe-
cies are those expected to be suitable under warmer conditions in 

F I G U R E  1  Concept of the BETA-FOR 
project and the underlying hypotheses. 
(a) Due to management history, forest 
districts have been reduced in their 
niche space (“Before”) compared to 
natural forests, which is re-enhanced 
in our experiment (ESBC-After) using 
an Enhancement of Structural Beta 
Complexity. (b) This should translate into 
alterations of species coexistence, with 
(c) different response of biodiversity and 
(d) functionality of ecosystems in control 
and manipulated forest districts (Figure 2), 
creating a landscape with higher spatial 
variation in ecosystem functions (e). H1–
H7 refer to the corresponding hypotheses 
(see main text).
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1442  |    MÜLLER et al.

the future (Messier et al.,  2022). Moreover, variation in light and 
deadwood affects assembly processes (Bässler et al., 2016; Müller 
et al., 2022).

Keeton  (2006) developed the concept of enhancing structural 
complexity (ESC) by increasing the variation in vertical and hori-
zontal canopy density and by creating different types of deadwood 
within stands. In general, the ESC strategy appears promising for 
promoting biodiversity and presumably enhancing the diversity of 
ecosystem functions, but this concept lacks an explicit β-diversity 
component. More recently, the increase in natural disturbances in 
homogenized forests has also stimulated interest in alternative man-
agement systems, such as natural dynamics silviculture (Aszalós 
et al.,  2022) that aim to emulate natural disturbance dynamics at 
stand- and landscape scales through silvicultural interventions. 
However, evidence for a causal chain from natural disturbances to 
BEF across scales is still limited, mainly because studies on natural 
disturbances often lack a properly replicated design, and simply do 
not often combine changes in β-diversity with variation in ecosys-
tem functioning. So far, existing forest disturbance experiments 
have addressed only α-components of BEFs (e.g. Elek et al., 2018; 
Heikkala et al., 2016; Spence, 2001). To improve our understanding 
of BEF relationships at larger spatial scales, we need to complement 
these previous studies with new experiments manipulating spatially 
explicit β-components of forest biodiversity.

In summary, (i) heterogeneity of forests at the landscape scale 
has been reduced by modern forest management with focus on 
wood production, (ii) this heterogeneity is highly relevant for BEF, (iii) 
our understanding of how α- and β-diversity determine γ-diversity 
and γ-multifunctionality of temperate forests is limited, and (iv) cli-
mate change has already started to change forest heterogeneity, 
but the consequences for BEF at larger spatial scales remain un-
clear. This makes forests an ideal ecosystem for controlled BEF field 
experiments across scales with high management relevance (Mori 
et al., 2018). Which measures are taken to increase heterogeneity, 
and on which scale, depends on the forest habitat type.

2  |  A RESE ARCH AGENDA WITH APPLIED 
RELE VANCE

We made use of the fact that management-driven manipulations 
can easily be implemented in production forests of the temperate 
zone. We demonstrate how to use them in setting up a design suit-
able for BEF research under real-world conditions at a management-
relevant scale. We expect that the results of such an experiment will 
be of high value for developing both BEF theory beyond the α-level 
and for adjusting forest management practices towards preserv-
ing biodiversity and various ecosystem functions. To address the 
above-mentioned research frontiers, we established the BETA-FOR 
project, an experiment in historically homogenized production for-
ests (Figure 1a). We manipulated the within-patch (50 × 50 m) het-
erogeneity using independent manipulations of deadwood amount 
and light conditions by gap felling (Figure 1a). We thus increased the 

heterogeneity between patches in each of 11 treatment districts, 
each composed of a forest with similar history and species composi-
tion and of a similar size (about 10–20 ha). According to metacom-
munity theory, the increase in heterogeneity in treatment districts 
should shift the mechanisms of community assembly from local 
patch dynamics to mass effects and species sorting modulated by 
dispersal rates of different groups (Logue et al., 2011). We expect 
that these manipulations will affect the mechanisms of community 
assembly and species coexistence, as well as forest multidiversity 
(taxonomic, phylogenetic and functional) and multifunctionality at 
the district level during the time span of a decade representing the 
typical window of silvicultural interventions in temperate forests. To 
study our main research question ‘Does silvicultural Enhancement 
of Structural Beta Complexity (ESBC, see below) between forest 
patches increase biodiversity (taxonomic, phylogenetic and func-
tional) and multifunctionality in forest landscapes and what are 
the main mechanisms driving this change?’ we will test seven main 
hypotheses:

Hypothesis 1. Increases in deadwood and light in ESC 
(Figure 1a) will lead to increased habitat diversity and biodi-
versity at the local scale (α-diversity) because of increases in 
habitat heterogeneity.

Hypothesis 2. Compared to homogeneous Control districts, 
ESBC will shift assembly mechanisms of the meta-community 
in the landscape from patch dynamics to species sorting and 
mass effects, modulated by dispersal rates due to increased 
heterogeneity (Figure 1b).

Hypothesis 3. ESBC increases β-diversity compared to con-
ventionally managed forests because it increases structural 
heterogeneity (Figure 1).

Hypothesis 4. With increasing patch heterogeneity, both 
biodiversity and ecosystem functionality increase, but bio-
diversity increases faster than ecosystem functionality be-
cause of partial functional redundancy of species (Figure 1c).

Hypothesis 5. The increasing biodiversity in ESBC affects 
multifunctionality due to direct effects on trophic levels, and 
via propagating across the food web (Figure 3).

Hypothesis 6. The strength (i.e. standardized slope) of the 
relationship between β-diversity and β-multifunctionality in-
creases as a direct function of the number of taxa and eco-
system functions included (Figure 1d).

Hypothesis 7. ESBC shifts a forest landscape from providing 
a few functions everywhere to a more heterogeneous land-
scape where many functions are provided because of the 
presence of diverse patches and the interactions that occur 
among them (Figure 1e).
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To test these hypotheses, we established 11 pairs of forest dis-
tricts at 11 sites in Germany, with each district consisting of nine 
different patches (Figure 2). Within each pair of forest districts, one 
district was subjected to silvicultural interventions to manipulate the 
variation in canopy cover and deadwood features across patches, 
thereby mimicking the variation of successional stages in a natural 
forest. By killing ~30% of trees within the 50 × 50 m2 manipulation 
patches, leaving snags, logs, stumps or combinations in either ag-
gregated or distributed spatial distribution, we aimed to increase 
within-district heterogeneity (Figure 2) and thus presumably biodi-
versity across trophic levels (Figure 3). The second district is a con-
trol stand. This is a comparable forest stand that undergoes uniform 
thinning approximately every 10 years, as is typical for production 
forests of this age. A comparable proportion of trees (~30%) as in 
the treatment stand is removed in the form of thinning. However, 
no deadwood from harvest residues remains on the site and no 
sustained openings in the canopy are produced. This design offers 
realistic comparisons between current production forests and ones 
designed to support wood production as well as biodiversity and 
ecosystem function. Furthermore, it allows controlling for effects of 

the context. Results in BEF studies have been shown to be context 
dependent. With our experimental sites, we cover a broad range of 
the climatic conditions of temperate broadleaf forests in Europe.

We will use various sampling techniques to collect data on forest 
structure including conventional field measurements of trees and 
deadwood, terrestrial laser scanning, and airborne remote sensing 
techniques using drones and satellites with information on airborne 
lidar, radar and optical data. Biodiversity data of various taxa will 
be collected belowground and aboveground, and in the canopy 
(Figure 3). Taxa are selected across kingdoms and trophic levels, as 
suggested for multitrophic studies (Seibold et al., 2018). These taxa 
have different mobility, ecological constraints, and body size and 
act at different scales ranging from micrometres to hectares, pro-
viding opportunities for analyses incorporating different dispersal 
rates and abilities. Similarly, to cover the major ecosystem functions 
in temperate forests (Schuldt et al., 2018), we will assess key pro-
cesses, capturing those related to carbon (soil respiration, different 
aspects of productivity, carbon sequestration in soil and biomass) 
and nutrient cycling (microbial processes, organic matter decompo-
sition), as well as to micro-climate regulation. Furthermore, biotic 

F I G U R E  2  Study design of the 
BETA-FOR experiment consisting of 
forest districts with a size of 10–20 ha: 
(a) In the districts with treatment, we 
manipulate the local structural complexity 
by variation in light and deadwood 
(enhancing structural complexity), thereby 
Enhancing the Structural Beta Complexity 
(ESBC). (b) Treatments are distributed 
within the landscape via two different 
districts (control and ESBC). (c) District 
pairs (control and ESBC) form one site 
and are replicated 11 times throughout 
Germany.
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processes will be quantified, including tree regeneration and mortal-
ity, pollination, seed dispersal, resistance to herbivory, predation and 
parasitism (Schuldt et al., 2018). Several of these processes directly 
or indirectly underpin important ecosystem services, such as timber 
production or climate regulation. This comprehensive assessment 
of biodiversity and ecosystem functions will be important to assess 
how different organisms respond and interact and how this affects 
ecosystem functions at different scales. In addition, it makes it pos-
sible to assess whether biodiversity affects ecosystem functions di-
rectly or via the propagation of biodiversity effects through higher 
trophic levels. (Figure 3).

3  |  A BRIEF DESCRIPTION OF THE 
PROPOSED ANALYSIS FR AME WORK

In BEF studies, species richness is the most frequently used bio-
diversity measure. However, richness only uses information on 
species presence/absence and disregards species abundance/even-
ness. To incorporate species abundance/evenness into biodiversity 
measures, a consensus among ecologists in biodiversity research 
has emerged that Hill (1973) numbers (effective number of species) 
should be used to quantify species or taxonomic diversity (TD; see 
Ecology forum Ellison, 2010 and subsequent papers).

Hill numbers, parameterized by a diversity order q  ≥ 0, repre-
sent a continuum of TD measures which include the three most 
widely used species diversity measures: (i) the Hill number of order 
q  =  0 reduces to species richness that treats species equally and 
thus is sensitive to individuals of rare species; (ii) the Hill number of 

order q = 1 reduces to the exponential of Shannon diversity, which 
treats individuals of each species equally and thus is sensitive to 
abundant/common species; and (iii) the Hill number of order q = 2 
reduces to the inverse of the Simpson concentration index and is 
sensitive to very abundant or dominant species. Therefore, the role 
of rare, common and dominant species can be assessed using this 
framework. For example, Wang and Loreau (2016) applied the Hill 
number of q = 2 to assess the relationship between diversity and 
temporal variability across scales. By being able to continuously 
shift the focus from rare species to dominant species, Hill numbers 
are particularly attractive for BEF studies, where relationships be-
tween diversity and functions can be based on rare or dominant 
species, or both. Their application in our approach will be a novel 
contribution to BEF research.

One advantage of using Hill numbers is that the framework pro-
vides a unified approach to include species differences with respect 
to species' evolutionary history (i.e. phylogenetic diversity [PD]) or 
species traits (functional diversity [FD]; see Chao & Colwell, 2022 
for a review). TD quantifies the effective number of equally abun-
dant species, PD quantifies the effective number of equally diver-
gent lineages, and FD quantifies the effective number of equally 
distinct virtual functional groups. Thus, the framework permits the 
use of the same units for TD, PD and FD and can be implemented 
to disentangle biodiversity changes across the three dimensions of 
diversity in the BEF relationship, which is also novel for BEF studies.

Biodiversity is inherently a hierarchical concept covering differ-
ent structural, ecological integration levels ranging from genes to 
ecosystems (Gaggiotti et al., 2018). In our hierarchical framework, 
there are 11 sites (landscapes). Within each site, there are two dis-
tricts (Control and ESBC); in each district, there are nine patches 
(Figure 2). α-, β- and γ-biodiversity can be defined ‘relatively’ at each 
level. There have been many definitions, concepts and measures of 
β-diversity. Chao and Chiu (2016) bridged two major approaches (the 
variance framework and diversity decomposition) by showing that 
the two approaches lead to the same Jaccard- and Sørensen-type 
(dis)similarity measures. Thus, in our analysis, we will focus on the 
multiplicative decomposition, that is, we apply Whittaker's  (1960, 
1972) original multiplicative definition of β-diversity but use Hill 
numbers for any diversity order q ≥ 0.

We are predominantly interested in assessing the extent of dif-
ferentiation between patches in a specific district. Thus, α-diversity 
refers to within-patch diversity, which can be interpreted as the av-
erage effective number of species per patch. γ-diversity refers to 
the diversity of a district (consisting of nine patches) and can be in-
terpreted as the effective number of species in a district. β-diversity 
is defined as γ-diversity divided by α-diversity, and measures the 
degree of species compositional differentiation among patches. β-
diversity attains a minimum value of 1, if all nine patches are iden-
tical in terms of species identity and abundance, and it attains a 
maximum value of 9, when no species are shared among commu-
nities. Thus, β-diversity is expressed in units of ‘patch equivalents’ 
or effective number of patches; it can be further transformed to 
Jaccard- and Sørensen-type (dis)similarity measures in a fixed range 

F I G U R E  3  Representation of different trophic levels among the 
18 taxonomic groups sampled in all patches. Grey arrows show 
propagating biodiversity effects through the trophic levels (H7). 
The green arrow is an example of direct effects of a taxonomic 
group of a trophic level on multifunctionality.
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of [0, 1]. Similar interpretation and transformations can be extended 
to PD and FD in a parallel way.

In many BEF analyses, biodiversity, in most cases the num-
ber of species, was experimentally manipulated, for example, by 
sowing or planting different numbers of plant species (Paquette 
et al., 2018; Weisser et al., 2017), thus obviating issues of under-
sampling and statistical estimation of biodiversity. As such, most 
BEF analyses are conducted conditional on species richness and 
assume that there are no undetected species/diversity. Although 
this precondition simplifies the quantification of diversity and its 
change, the resulting BEF relationship should not be used for in-
ference or prediction in real-world systems due to the lack of ade-
quate statistical models and proper estimates of sampling errors/
uncertainties. The assumption of diversity being known and pre-
determined might be true only in fully controlled manipulative ex-
periments generally restricted to plants with sessile life cycles. In 
most empirical studies, particularly including higher trophic levels 
and mobile organisms, this assumption is violated regularly. For our 
real-world and multi-trophic BEF framework, we therefore aim to 
use statistical sampling models and assess sampling errors/uncer-
tainties of variables subsequently fed into inferential models re-
vealing causal relationships.

Estimates of diversity, including species richness at any hierar-
chical level or scale, depends on an adequate sampling/effort. To 
control for sampling effects, we can statistically quantify sampling 
completeness and propose standardization techniques (rarefaction/
extrapolation) for α-, β- and γ-diversity with confidence intervals 
(Chao & Jost, 2012). In addition, if data are sufficient, undetected 
species/diversity in samples can be inferred. The methods tackling 
the problem of unseen species can also be applied to multivariate 
analyses with community matrices (Gotelli & Chao, 2013) and tests 
of meta-community paradigms in empirical approaches (Logue 
et al.,  2011). Rigorously incorporating sampling models in multi-
trophic BEF studies and combining them with pertinent generalized 
linear mixed models to assess the effect of potential covariates or 
environmental variables, also in confirmatory path analyses to test 
for indirect effects across trophic levels, is a novel aspect in our 
approach.

For the analysis of multifunctionality, a number of methods have 
been proposed (see Byrnes et al., 2014; Meyer et al., 2018). However, 
we plan to expand the Hill numbers in a way that multifunctionality 
can be quantified conceptually in the same way as biodiversity de-
scribed above. This incorporation of Hill numbers in multifunction-
ality will then allow us to decompose γ-multifuntionality into α- and 
β-components, allowing the development of a consistent framework 
for use in BEF research in real world landscapes across scales.

4  |  CONCLUSION

In times of global change with increasing disturbances and decreas-
ing global biodiversity, it is crucial to test real-world applications 
of BEF theory across different biomes and realms to increase the 

effectiveness of management strategies with the aim to halt biodi-
versity loss and to increase ecosystem resilience. At the α-scale, it 
has been shown that results of BEF experiments are realistic (Duffy 
et al., 2017; Jochum et al., 2020) and that the underlying theory is ap-
plicable (e.g. Civitello et al., 2015; Eisenhauer et al., 2016). However, 
for β-diversity, we need new approaches to move from modelling and 
virtual landscapes to working with real-world conditions. This is an 
important research frontier because β-diversity may be particularly 
sensitive to global environmental change (Dornelas et al., 2014) as 
well as a key determinant for the functioning and stability of ecosys-
tems (Catano et al., 2020; Grman et al., 2018; Hammill et al., 2018; 
Hautier et al., 2018, 2020; Loreau et al., 2021; Wang et al., 2021). 
We consider our concept to be highly innovative, both from the ana-
lytical perspective and the experimental approach. Our experiment, 
with replicated manipulations at landscape scales with high manage-
ment relevance, and including control landscapes, is currently unique 
for temperate forests. In addition, the consideration of all trophic 
levels and a broad set of ecosystem functions make our approach 
novel. Our statistical framework will unify different aspects of biodi-
versity along Hill numbers when decomposing γ into α and β and will 
take into account unobserved species. This will provide an important 
step forward in BEF studies conducted under real-world conditions. 
Expanding the Hill numbers to multifunctionality will also allow us to 
present a new unifying BEF analysis framework based on the same 
mathematical principles for biodiversity and multifunctionality.

Despite the intense social debate and huge monetary investment 
to improve land-use strategies throughout Europe, particularly in ag-
riculture and forestry, approaches focused on these ecosystems lack 
similar concepts and experimental approaches (e.g. European Green 
Deal, EU Biodiversity Strategy for 2030). Our approach may serve 
as a blueprint for introducing environmental heterogeneity in BEF 
research with applications to foster biodiversity and ecosystem mul-
tifunctionality across spatial scales in various environments, and to 
guide sustainable land use under changing environmental conditions.
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