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Abstract: The meta-plot is a descriptive visual tool for meta-analysis that provides information on the primary studies in the meta-analysis and
the results of themeta-analysis. More precisely, themeta-plot portrays (1) the precision and statistical power of the primary studies in themeta-
analysis, (2) the estimate and confidence interval of a random-effects meta-analysis, (3) the results of a cumulative random-effects meta-
analysis yielding a robustness check of the meta-analytic effect size with respect to primary studies’ precision, and (4) evidence of publication
bias. After explaining the underlying logic and theory, the meta-plot is applied to two cherry-pickedmeta-analyses that appear to be biased and
to 10 randomly selected meta-analyses from the psychological literature. We recommend accompanying any meta-analysis of common effect
size measures with the meta-plot.

Keywords: meta-analysis, publication bias, statistical power, cumulative meta-analysis, funnel plot

Meta-analysis is an important tool for researchers to gain
an overview of the literature within a specific area, par-
ticularly as the numbers of journals and articles have
grown exponentially over the years. Meta-analyses sta-
tistically combine the results from similar studies and yield
estimates of average effect size, between-study variance in
true effect size (i.e., heterogeneity in true effect size), and
moderators of the effect size (Borenstein et al., 2009).
The quality of the output of a meta-analysis is largely

determined by the accuracy and precision of its estimates.
The accuracy of a meta-analysis is the difference between
the estimated average effect size and the true effect size.
The bigger this difference, the less accurate and the more
biased the average effect size estimate will be. The pre-
cision of the average effect size estimate is inversely re-
lated to its uncertainty or SE.
There are many factors that influence the accuracy

(bias) and precision of the meta-analytic average effect
size estimate. For example, an increase in the number of
primary studies generally positively affects the precision of
the meta-analytic effect size estimate, while each primary
study’s number of observations also positively affects the
estimate’s precision. Another important factor that affects
the accuracy and precision of a meta-analysis is publica-
tion bias: the selective publication of studies with a fa-
vorable, usually statistically significant, outcome. In case

of publication bias, meta-analytic average effect sizes will
be overestimated (i.e., the accuracy of the effect size es-
timator decreases). This problem is aggravated for smaller
study sample sizes (Nuijten et al., 2015). Importantly, the
bias of the average effect size estimate is not ameliorated
by including a large number of studies in a meta-analysis;
the accuracy of the average effect size estimate of one
large study is higher than of a meta-analysis based on say
1,000 smaller primary studies (Nuijten et al., 2015).
Study-level p-hacking, questionable research practices

aimed at achieving statistically significant p-values (John
et al., 2012), may also adversely affect the average effect
size estimates of meta-analyses, but its effects are com-
plicated (Van Aert et al., 2016). The interpretation of the
output of meta-analyses becomes even more difficult
because fields may differ in publication bias and p-hack-
ing, as fields also differ in their distribution of effect sizes
and sample sizes (Open Science Collaboration, 2015).
Because publication bias can seriously affect a meta-

analysis’ accuracy, it is important to check whether there is
evidence for publication bias in a meta-analysis. However,
current methods to detect publication bias in meta-
analysis often lack statistical power (Begg & Mazumdar,
1994; Sterne et al, 2000). Furthermore, existing methods
to correct for publication bias often depend on strong
assumptions, and effect size estimates between these
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correction methods can vary substantially for the same
meta-analysis (Carter et al., 2019; McShane et al., 2016;
Van Aert et al, 2019). The new method we present here
enables the examination of whether extreme publication
bias in combination with a true zero effect size can al-
ternatively explain the meta-analytic effect size, without
making strong assumptions and not statistically testing for
publication bias.

In this paper, we present the meta-plot, a general and
descriptive graphical tool for meta-analysis. Meta-plot
provides information on most of the aforementioned as-
pects of a meta-analysis. Specifically, the meta-plot por-
trays (1) the precision and statistical power of the primary
studies in the meta-analysis, (2) the average effect size
estimate and confidence interval of a random-effects
meta-analysis, (3) the results of a cumulative random-
effects meta-analysis yielding a robustness check of the
meta-analytic average effect size with respect to primary
studies’ precision, and (4) evidence of publication bias. We
recommend using the meta-plot in addition to any meta-
analysis.

In the supplement, we compare themeta-plot to existing
methods to detect and correct for publication bias. Below

we outline two cherry-picked examples of meta-analyses,
including their funnel plots as well as the results of some
publication bias methods. In the subsequent section, we
use these two examples to explain the meta-plot and its
characteristics. In the supplement, we apply and interpret
the meta-plot to 10 meta-analyses randomly selected from
the psychological literature to illustrate how the meta-plot
aids the interpretation of a meta-analysis. Finally, we also
illustrate a user-friendly web-application of the meta-plot.
All the code to run the plots in this paper can be found in
theOpen Science Framework (OSF) at https://osf.io/eayfr/.

Illustrating the Meta-Plot With Two Cherry-Picked
Example Meta-Analyses
To illustrate the meta-plot (see Figure 1), we cherry-picked
two meta-analyses that show signs of publication bias and
overestimated effects. The first example meta-analysis of
McCall and Carriger (1993) focuses on infant habituation
and memory performance as predictors of later IQ, as
assessed with the Pearson correlation coefficient. Twelve
studies are included in this meta-analysis, with each study
contributing one effect size to the analysis. Eleven of the
effect sizes were statistically significant based on a two-

Figure 1. Funnel plots (first row) and contour-enhanced funnel plots (second row) of McCall and Carriger (1993; first column) and Rabelo et al. (2015;
second column).
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tailed test with α = .05, and sample sizes of the primary
studies varied from 11 to 96 (mean = 37.25, SD = 29.05). A
random-effects meta-analysis was conducted on the
Fisher-z transformed correlations, using the Paule-Mandel
estimator (Paule & Mandel, 1982) for the between-study
variance in true effect size. The meta-analysis yielded a
correlation estimate equal to r = .390, p < .001, 95% CI
[.306; .469]. No evidence of heterogeneity was obtained
(bτ2 = 0, Q(11) = 6.74, p = .820; I2 = 0, 95% CI [0; 38.76]).
The left column of Figure 1 shows the funnel plot (top)

and contour-enhanced funnel plot (bottom) of the meta-
analysis. These plots suggest a small-study effect as the
primary study effect size seems to be negatively associated
to sample size (Egger’s test z = 2.241, p = .025). P-uniform
(Van Aert et al., 2016; Van Assen et al., 2015), a method to
test and correct for publication bias, indicates that pub-
lication bias (at least partly) causes the small-study effect
(L = 2.615, p = .005) in the meta-analysis of McCall and
Carriger.
Adjusting for publication bias, p-uniform’s estimate

equaled r = .177 (p = .119, 95% CI [�.233; .340]), whereas
the estimate of the selectionmodel approach by Vevea and
Hedges (1995) to correct for publication bias was r = .263
(p < .001, 95% CI [.224; .301], bτ2 = 0). To conclude, both
the funnel plots, publication bias tests, and publication bias
correction methods suggest that the meta-analysis over-
estimates the true effect size because of publication bias;
the evidence in favor of an association between infant
inhabitation and later IQ is substantially smaller than
suggested by the random-effects meta-analysis.
The second example meta-analysis of Rabelo et al.

(2015) studies the relation between the sensation of
weight and moral judgement of importance. This meta-
analysis contains 25 effect sizes, transformed to stan-
dardized mean difference Hedges’ g, with 23 being sta-
tistically significant if tested two-sided with α = .05, and all
of them being statistically significant if tested one-sided.
The average sample size is 61.12 (SD = 20.22, N ranging
from 30 to 100). The random-effects meta-analysis re-
sulted in a statistically significant medium effect size es-
timate of g = 0.571, p < .001, 95% CI [0.468: 0.673], and
bτ2 = 0 (Q(24) = 4.6, p = .999,993; I2 = 0, 95% CI [0, 0]),
signaling extreme homogeneity, which is a sign of publi-
cation bias (Augusteijn et al., 2019). Data and code of
Rabelo and colleages can be found in the OSF at https://
osf.io/cgmdi/.

The funnel plot and contour-enhanced funnel plots are
shown in the right column of Figure 1. It suggests small-
study effects, although Egger’s test was not statistically
significant (z = 1.629, p = .103). P-uniform signaled pub-
lication bias (L = 4.8, p < .001), and yields a statistically
non-significant estimate of the effect size of g = �0.149,
p = .789, 95% CI [�0.628; 0.186]. The estimate of the
effect size by the selection model approach was 0.254
(p < .001, 95% CI [0.220; 0.289] with bτ2 = 0. To conclude,
although random-effects meta-analysis suggested a me-
dium effect size, further analyses provided strong indi-
cations of publication bias and weaker evidence of a
nonzero association between the sensation of weight and
moral judgement of importance. Figure 2 shows the meta-
plot (first row) and summary meta-plot (second row) for
both examples. These meta-plots, and their comparison to
the funnel plots, are explained in the next section.

The Meta-Plot
The meta-plot contains four different pieces of informa-
tion: the (1) precision and statistical power of research
summarized in the meta-analysis, (2) the estimate and
confidence interval of a random-effects meta-analysis, (3)
the robustness of the effect size estimate with respect to
primary studies’ precision (cumulative meta-analysis), and
(4) evidence of publication bias. We discuss each of these
in turn, by first discussing the underlying theory, followed
by an explanation of each element in the meta-plot and its
application to the two examples introduced in the previous
section. For illustration and better understanding, Figure 3
shows a summarymeta-plot of McCall and Carriger (1993)
with a brief explanation of four aforementioned elements.

Precision of Research
The precision of an effect size estimate is here defined as
the reciprocal of its SE,1 and is directly and positively
related to the sample size on which the estimate is based. If
(and only if) the true effect size differs from zero, precision
is also directly and positively related to the statistical
power of the study.2 Large sample size and sufficient
statistical power are generally considered as signs of high
quality in an empirical study (Aberson, 2011; Ellis, 2010).
Illustrating the importance ascribed to the statistical power
of a study, the American Psychological Association has
recommended doing a power analysis preceding empirical
studies (Wilkinson, 1999). In a similar vein, we believe it is

1 Often precision is also defined as the reciprocal of the squared standard error. The advantage of defining precision as 1/SE is explained later in
footnote 3.

2 If the true effect equals zero, statistical power is not defined. As one does not know the true effect size to be estimated in the meta-analysis, we
believe it is essential to speak of the “precision of the research summarized in themeta-analysis” rather than the “power of research summarized
in the meta-analysis”.
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important that a descriptive meta-analytic tool provides
summary information on the precision of individual
studies and their statistical power. The meta-plot does just
that by showing at the top the percentage of primary
studies having at least 80% statistical power to detect a
small (S; Cohen’s d: d = 0.2, Pearson correlation coeffi-
cient: ρ = 0.1), medium (M; d = 0.5, ρ = 0.3), and large (L;
d =0.8, ρ = 0.5) effect. Although these effect sizes and their
labels, formulated by Cohen (1988) are rather arbitrary,
they are well-known and often used. In case another true
effect size value is meaningful to the researcher, or a
certain precision or sample size, the researcher is rec-
ommended to focus on the estimated effect size based on
the primary studies having at least that precision rather
than on those (“small,” “medium,” “large” effect size) in
the meta-plot.

Next to being less precise, small studies are generally
also associated with larger overestimation of effect sizes in
the presence of publication bias (Bakker et al, 2012;
Nuijten et al., 2015), and hence relatively many false
positives get published where the true effect size is zero
(Van Assen et al., 2015) Consequently, in a research field
where small studies are ubiquitous and publication bias is

present, a zero true effect size may still yield a statistically
significant, medium or even large effect size estimate in a
meta-analysis.

Although we believe that the precision of the research
summarized by the meta-analysis is informative as such,
we argue against dismissing the results of a meta-analysis
based on small studies per se. First, if the true effect size is
(very) large in a field, small studies can have sufficient
statistical power and result in little overestimation, even in
the presence of publication bias (Nuijten et al., 2015).
Second, even when the true effect size is zero or small,
small studies are not at all problematic in a field with no
publication bias and no questionable research practices, as
these studies do not yield biased estimates of the effect
(but only less precise estimates). One could even argue
that in such an unbiased field, multiple small studies are
preferable to a few large studies (keeping constant sample
size across studies), as the multiple small studies provide
more evidence on heterogeneity and moderator effects.

Currently, however, publication bias and questionable
research practices seem to affect many fields of research
(Fanelli, 2010; Fanelli et al., 2017; Ferguson & Brannick,
2012; Levine et al., 2009). Moreover, in many research

Figure 2. Meta-plots (first row) and summary meta-plots (second row) of McCall and Carriger (1993; first column) and Rabelo et al. (2015; second
column).
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areas, researchers cannot be certain they are examining a
(very) large true effect size. Consequently, interpreting the
results of a meta-analysis incorporating many small
studies, particularly if they have p-values just below .05, is
tricky. These p-values just below .05 may be a signal of a
true nonzero effect, or just the result of a combination of a
true zero effect and publication bias, questionable research
practices, and “(bad) luck”. The fourth element of the
meta-plot, which will be explained later, will help distin-
guish between results arising from non-zero true effects
and those arising from zero true effects in a field with
publication bias.
Turning to the meta-plot, the top of the plot shows the

statistical power of the primary studies in the meta-
analysis, using four percentages. The first percentage to
the left gives the percentage of primary studies in the
meta-analysis that do not have sufficient statistical power
to detect a large population effect. “Sufficient statistical
power” is operationalized as 80% power as proposed by

Cohen (1988), using a two-tailed test with α = .05 and
assuming a between-subjects design. The other three
percentages and top arrows (pointing to the right) refer to
the percentage of primary studies succeeding to have suf-
ficient power to detect a large (L), medium (M), and small
effect (S), respectively. Note that the first two out of four
percentages always add up to 100%. The vertical lines in
the plot correspond to the sample sizes needed for suffi-
cient power, for either studies on correlations (29, 84, 782)
or studies comparing the means of two independent
populations using a balanced design with equal group sizes
(52, 128, 784). More detailed information on studies’
precision can be obtained from primary studies’ position
on the x-axis, which is directly related to the study’s
sample size (see Appendix A1 for calculating a study’s
precision and position on the x-axis).
It is important to note that the x-axis of the meta-plot is

the same across applications, meaning that it is not af-
fected by the precision of the primary studies summarized

Figure 3. Overview of a summary meta-plot with a brief explanation of its elements.
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in the meta-analysis. This facilitates comparing different
meta-analyses and their meta-plots. The use of a standard
format in the meta-plot also helps eliminate the subjec-
tivity that is characteristic of the funnel plot (Tang & Liu,
2000). The maximum precision value of 1 on the x-axis in
themeta-plot always translates to a sample size that equals
1,300. This is close to the sample size needed to have a
statistical power of 95% to detect a small true effect size;
for correlations and comparing two population means
1,293 and 1,302 observations are needed, respectively. The
x-axis is approximately linear in precision, meaning that it
is on a square root scale of sample size. Consequently, the
x-axis approximates a ratio scale of primary studies’
precision.3

Turning to the meta-plots of the two examples shown in
the first row of Figure 2, it is clear that the primary studies’
precision in both meta-analyses is low. These meta-
analyses contained many small studies with insufficient
statistical power to detect a true large effect size (40% of
the studies in Rabelo et al., 2015, and 67% of the studies in
McCall & Carriger, 1993), andmany studies with sufficient
statistical power to detect a large but not a medium true
effect size (60% in Rabelo et al. and 33% in McCall and
Carriger). Whereas the meta-analyses did not contain any
large studies with sufficient statistical power to detect a
small true effect size, McCall and Carriger contained two
studies (17%) with (barely) sufficient statistical power to
detect a medium true effect size. Finally, note that the
funnel plot (first row of Figure 1) does not contain any
information on statistical power of individual studies to
detect a certain true effect size.

Random-Effects Meta-Analysis Effect Size Estimate
and Its Confidence Interval
In line with the usual desire of researchers to generalize the
results of a meta-analysis to studies that were not included
(Aguinis et al., 2010; Hunter& Schmidt, 2000), we chose to
calculate and depict the random-effects meta-analysis ef-
fect size estimate and its 95% confidence interval (CI 95) in
themeta-plot by default. The random-effectsmodel implies
that the researcher assumes that the true effect sizes in-
corporated in the meta-analysis are a (random) sample of a
larger normally distributed population of effect sizes and
wishes to generalize his/her inferences to that population. It

enables estimating the between-study variance in the true
effect size. Many methods for estimating this between-
study variance exist. We implemented the Paule-Mandel
estimator as it generally shows the best statistical properties
(Langan et al., 2016; Veroniki et al., 2016) and has attractive
theoretical properties (van Aert & Jackson, 2018). For our
estimation we used the R package metaphor (Viechtbauer,
2010). Although the random-effects model is often rec-
ommended as the default choice, it must be noted that the
fixed-effect model is to be preferred if inference is limited
to the studies in themeta-analyses, even if effect size seems
heterogeneous (Hedges & Vevea, 1998; Rice et al., 2018).
The user of meta-plot can also choose to depict the results
of fixed meta-analysis.

In the meta-plot, the random-effects meta-analysis ef-
fect size estimate is represented by the dotted horizontal
line. For convenience and ease of interpretation, each
effect size’s direction is reversed in case the meta-analysis
effect size estimate is negative.

The estimate and its CI 95 are also shown by the left-
most vertical line in the plot, where the estimate is rep-
resented by the black dot that naturally lies on the
horizontal dotted line. As the meta-plot always shows the
value 0 on the y-axis representing the effect size, the
hypothesis of a zero true effect size is tested (two-tailed) by
checking if the CI 95 contains the value 0.

The meta-plots for the two examples in the first row of
Figure 2 show that both effect size estimates (approxi-
mately r = .39 for McCall & Carriger, 1993, and g = 0.571
for Rabelo et al., 2015) are above zero, and highly sta-
tistically significant (i.e., very small p-values) as the value 0
lies outside their confidence intervals. Note that the funnel
plots in Figure 1 also show the effect size estimate of a
random-effectsmeta-analysis, but generally does not show
its precision or 95% confidence interval.

Robustness of Effect Size Estimate With Respect to
Primary Studies’ Precision (Cumulative Meta-Analysis)
The third element depicted by the meta-plot is the result of
allmeta-analyses based on studieswith a certain precision or
larger. That is, each black dot at a certain x-value represents
the effect size estimate of a random-effects meta-analysis
based on all primary studies with precision x or larger.4 Thus,
a black dot represents the results of a meta-analysis, and not

3 The squared standard error of the estimate of the (Fisher-z transformed) correlation is approximately 1/N, and of the comparison of two
independent population means it is approximately equal to (n1 × n2)/(n1 + n2) (see Appendix A1). Studies’ position on the x-axis is calculated using
these approximations of their standard error. Consequently, if we have three studies A, B, C with x-values xA < xB < xC and xC � xB = xB � xA, then
the difference in precision between study A and study B is approximately equal to that of study B and study C. Moreover, if on the other hand xB/
xA = xC/xB, then the precision (or standard error of the study’s effect size estimate) of study B is the same fraction larger than that of study A, as
study C’s is larger than that of Study B.

4 In case of correlation effect sizes or two-sample designs with equal groups, “precision x or larger” may also be replaced by “sample size x or
larger”.
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of a single primary study. The CI 95 of each estimate is also
presented by a vertical line. The results of the meta-analysis
of very precise studies (x > 1) are presented at the complete
right of the plot (x = 1).
The collection of black dots are the result of a cumulative

meta-analysis with respect to precision. Others have already
suggested using a cumulative meta-analysis for assessing
whether a negative relationship exists between precision
and observed effect size; a small-study effect (Atakpo &
Vassar, 2016; Borenstein et al., 2009; Leimu & Koricheva,
2004). We implemented this suggestion in the meta-plot.
The meta-plot makes small-study effects visible: if it is the

case that large effect sizes are associatedwith smaller studies,
the black dots in themeta-plotwould generally decrease from
left to right. Small-study effects may also be visible from a
funnel plot by funnel plot asymmetry, but it is often difficult
to visually identify this asymmetry in a funnel plot (Terrin
et al., 2005). Small-study effects are easier to identify in the
meta-plot as the estimates are more precise (less variable)
than those in the funnel plot and are also related to each other
as opposed to those in the funnel plot. More specifically, dots
in the funnel plot are based on effect sizes of primary studies,
whereas the dots in themeta-plot are based on the results of a
cumulative meta-analysis. That is, the leftmost black dot is a
meta-analysis based on all studies, the black dot to the right
of the leftmost one is the meta-analysis based on all studies
except for the one with the lowest precision, etc. As estimates
are not only more precise, but also use overlapping infor-
mation, a possible trend is generally clearer from ameta-plot
than froma funnel plot. Note, however, that by presenting the
results of cumulative meta-analyses the meta-plot makes the
inspection of individual primary effect sizes more difficult
compared to the funnel plot.
We should add a cautionary notewhen using themeta-plot

to conclude evidence of a small-study effect. For instance,
consider a meta-analysis consisting of 10 primary study
effect sizes differing in precision, with equal effect size es-
timates for the nine least precise studies and a lower effect
size estimate of the most precise study. In that case, the
cumulative meta-analysis will show a downward trend
suggesting strong evidence of a small-study effect. Although
a small-study effect arguably exists in this particular ex-
ample, evidence in favor of it is weak at best since the lower
effect size estimate of themost precise studymay also be the
result of sampling error. We therefore recommend caution
concluding a small-study effect based on themeta-plot alone.
Turning to the meta-plots in the first row of Figure 2, we

clearly see a decreasing trend in the black dots pointing out
small-study effects in both meta-analyses. The funnel plots

and contour-enhanced funnel plots also clearly show an
association between primary study’s precision and their ef-
fect size, although variability of estimates ismuch higher than
in the meta-plot. Partly, the association is so clearly visible in
these funnel plots because we (cherry-)picked the meta-
analyses for their strong evidence of small-study effects.
The results of the cumulative meta-analysis in the meta-

plot also provide other useful perspectives for interpre-
tation that are not provided by the funnel plot. As over-
estimation of average effect size in a meta-analysis is most
prevalent if the included primary studies have small
sample sizes, researchers have suggested to exclude such
small and possibly biased studies from a meta-analysis
(Button et al., 2013; Ioannidis, 2008; Kraemer et al., 1998;
Nuijten et al., 2015). Stanley et al. (2010) proposed to
discard the 90% least precise observed effect sizes in a
meta-analysis and interpret the mean of only the 10%
most precise effect sizes as meta-analytic effect size es-
timate. As methods such as this proposed estimator can be
less biased in case of publication bias, they are recom-
mendable as sensitivity analyses when conducting a meta-
analysis.
Turning to the meta-plots of the example meta-analyses

(first row of Figure 2), we see that for both examples the
meta-analytic estimates based on approximately the 10%
most precise studies as well as the estimate of only the
largest study (rightmost dot with CI 95) are statistically
significantly different from zero. However, as is clear from
the x-axis of themeta-plots, neithermeta-analysis includes
a large study (i.e., the study with the largest sample size is
96 for McCall & Carriger, 1993, and 100 for Rabelo et al.,
2015), which implies that even the estimate of the largest
study may have considerable bias in case of publication
bias combined with a zero or small true effect size. This
dependence on the precision of the largest included
studies, where the largest studies may still be small and
result in overestimation of effect size, can therefore be
considered a limitation of relying on ameta-analysis based
on only the 10% most precise studies.5

As such, we advise to also consider the estimates of meta-
analyses based on primary studies with sufficient statistical
power given a small, medium, and large true effect size.
These are shown in the summary meta-plots in the second
row of Figure 2. Next to the estimate and CI 95 of the meta-
analyses including all studies (leftmost), it shows these re-
sults for studies with sufficient power (80%) to detect a large
true effect size (left vertical line), medium true effect size
(middle), and small true effect size (right). Note that the
summary meta-plot is just the meta-plot with (often many)

5 Note that discarding 90% of the studies of the meta-analysis may also yield biased average effect size estimates in case of heterogeneous true
effect size and negatively affect estimation of the between-study variance.
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dots left out, keeping only the leftmost dot and those im-
mediately to the right of the vertical lines. As such the
summarymeta-plot ismore transparent than themeta-plot if
the meta-analysis is conducted on many studies. Addition-
ally, small-study effects will also be visible from the sum-
mary meta-plot. We therefore recommend reporting the
summary meta-plot in meta-analyses including many
studies.

The summary meta-plots of the examples indeed also
suggest small-study effects. The plot of McCall and Carriger
(1993) only shows the results of three meta-analyses, as no
studies were conducted with sufficient statistical power to
detect a small effect. Similarly, the summary meta-plot of
Rabelo et al. (2015) only shows the results of two cumulative
meta-analyses, as it does not contain studies with sufficient
statistical power to detect a medium effect.

Evidence of Publication Bias
The last and fourth optional element enables examining
potential publication bias. That is, whether a statistically
significant meta-analytic effect size can be explained by
publication bias alone. The meta-plot presents the ex-
pected effect sizes of the cumulative meta-analysis based
on a zero true effect in combination with extreme publi-
cation bias (i.e., if only statistically significant results get
included in the meta-analysis) using black stars. Although
a zero true effect size is a very minimal threshold, we
selected the zero true effect size reference point as null-
hypothesis significance testing is still the main statistical
framework in the social sciences. The expected effect sizes
based on a zero true effect size combined with extreme
publication bias necessarily decrease with studies’ in-
creasing precision, as overestimation by publication bias
decreases with increased precision. As such, the expected
effect sizes also depict small-study effects. See Appendix
A2 for the technical details on how the results corre-
sponding to the black stars are calculated.

The value of the expected results in assessing publication
bias lies in its comparison with the results of the cumulative
meta-analysis based on the precision of the primary studies
(the black dots). In case of a nonzero true effect size, the
black dots are expected to lie above the black stars and a
zero true effect size in combination with extreme publica-
tion bias cannot explain the results, and the true effect size
may exceed zero. If the black dots are not above the black
stars, an alternative explanation of the effect in the meta-
analysis is extreme publication bias in combination with a
zero true effect size, and we recommend not to interpret the
statistically significant meta-analytic effect size estimate as
evidence of a nonzero true effect size.6 Note that this
method of detecting publication bias only makes sense if
most primary studies are statistically significant; after all, if a
meta-analysis includes a substantial proportion of non-
significant studies, this is already evidence in itself that
publication bias is not extreme. Therefore, this element of
the meta-plot is only shown if at least 80% of the primary
effect sizes are statistically significant.7

We applied our method to assess publication bias on
both the meta-plots of McCall and Carriger (1993) and
Rabelo et al. (2015), because they both contain more than
80% statistically significant primary effect sizes (12 of 13
vs. 23 of 25). As the black dots of McCall and Carriger lie
above the black stars that are expected from extreme
publication bias, publication bias cannot entirely explain
the observed effects suggesting a nonzero true effect size
may exist. In the meta-plot of Rabelo et al. on the other
hand, the black dots almost coincide with the black stars,
showing that the results of the meta-analysis can be en-
tirely explained by a zero true effect size in combination
with extreme publication bias. Note that these results for
both meta-analyses are also in line with the majority of the
results of the publication bias methods reported earlier.
Finally, while the funnel plot only provides evidence of
small-study effects and not publication bias, the contour-

6 For testing the hypothesis of a zero true effect size and extreme publication bias we need the sampling distribution of the effect size under these
conditions. The meta-plot presents the expected value of this distribution (by the black stars) but not its variance. The variance of this
distribution can be shown to be (usually much) smaller than the variance of the estimated effect size that is used in the calculation of the CI 95
presented in the meta-plot. The reason is that the variance of an individual effect size is now only calculated over that 2.5% of the sampling
distribution that exceeds the critical value or statistical significance threshold, rather than of the complete sampling distribution. Consequently,
CI95 presented in the meta-plot is (usually much) wider than that derived from a zero true effect size in combination with extreme publication
bias. Hence, one can safely reject the hypothesis of a zero true effect size and extreme publication bias when the CI95 does not contain the
dashed line because the actual CI 95 is smaller (i.e., the two-tailed p-value of the test is certainly lower than .05). As a final note, we could also
have implemented the appropriate test of the null-hypothesis of a zero true effect size and extreme publication bias as the variance of the
sampling distribution can be analytically derived, but we chose not to do so as our goal was to provide a descriptive tool and because this
particular null-hypothesis is non-standard.

7 As the calculation of black stars assumes that all studies are statistically significant, it is not fair to compare the expected value of the effect size
assuming statistical significance (black stars) to the average effect size based on a set of studies where many are nonsignificant. That is, when
the true effect size is small and publication bias is weak, the average effect size may be lower than the black stars, falsely suggesting that there
may be publication bias. Hence, the meta-plot only compares the black stars to results of meta-analyses with a reasonably high proportion of
statistically non-significant studies. The percentage of 80 allows for 0, 1, 2 (etc.) non-significant studies in a meta-analysis containing 2–4, 5–9,
10–14 (etc.) studies, respectively.
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enhanced funnel plots in Figure 1 helps to distinguish
publication bias as a cause of small-study effects. Both
contour-enhanced funnel plots indeed provide evidence of
publication bias, as most primary study effect sizes appear
“just statistically significant.” However, as opposed to the
meta-plot, the contour-enhanced funnel plot cannot tell if
the meta-analytic results can or cannot be alternatively
explained by a zero true effect size in combination with
extreme publication bias.

Software for Creating a Meta-Plot
Meta-plots can currently be created for three effect size
measures: standardized mean difference based on two
independent groups (Hedges g), Pearson correlation coef-
ficient, and odds ratio (see Appendix A). The function
“meta_plot()” in the R package “puniform” (van Aert,
2020) can be used for creating a meta-plot. The func-
tion’s input concerning primary studies depends on the
effect size measure. In case of standardized mean differ-
ences, the user has to specify means, SDs, and sample sizes
for both groups. For correlation coefficients sample size and
sample correlation coefficient are needed. For odds ratios
the cell frequencies of a 2 × 2 frequency table are required.

By default a meta-plot is drawn based on all effect sizes in a
meta-analysis, but a summary meta-plot can be created by
specifying the argument “nr_lines = ‘summary’” in the
“meta_plot()” function.
We also developed a user-friendly web application

(https://rvanaert.shinyapps.io/meta-plot/) to create meta-
plots for researchers who are not familiar with R. Figure 4
shows a screenshot of this web application. The same in-
formation as in the “meta_plot()” function has to be
specified, but using a web browser and a graphical user
interface. Data can be entered in a table, or uploaded via a
comma separated file that follows a specific format as
explained in the manual of the web application. If the data
are loaded in the web application, the meta-plot and
summary meta-plot are created by clicking the button
(“Create plots”), and these plots can also be downloaded as
a pdf file (“Download plots” button).

Discussion

This paper presents, explains and illustrates meta-plot, a
user-friendly graphical tool for meta-analysis. The goal of

Figure 4. Screenshot of the web application of meta-plot after applying meta-plot to the meta-analysis of Rabelo et al. (2015).
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the meta-plot is to assist in the interpretation of meta-
analytic results in the context of the field and the primary
studies’ effect sizes on which the meta-analysis is based.
The meta-plot contains information on the statistical
power of the primary studies, statistical significance of the
primary study effect sizes, and the random-effects esti-
mate of the average effect size including its 95% confi-
dence interval. It also contains the results of a cumulative
meta-analysis with respect to precision, yielding a ro-
bustness check of themeta-analytic effect size with respect
to primary studies’ precision as well as evidence of small-
study effects and publication bias. Because of providing
these useful pieces of information, we recommend ac-
companying any meta-analysis of common effect size
measures with the meta-plot.

One problem of meta-analyses is the interpretation of
small-study effects (Sterne et al., 2011), as signaled by a
decreasing trend in the meta-plot. The meta-plot helps
with interpreting small-study effects using the percentage
of statistically significant primary effect sizes; a low per-
centage of statistically significant results cannot go to-
gether with strong publication bias. All of the meta-
analyses with clear evidence of a small-study effect in
our paper (the two cherry-picked examples, and Berry
et al. (2012), that is, three out of 12 meta-analyses) have
more than 90% significant effect sizes, suggesting that
publication bias may be the cause of the small-study ef-
fects. The two cherry-picked examples illustrate that
small-study effects can be fully explained by publication
bias, and that heterogeneity of effect sizes is not needed to
explain the results. Publication bias also explains at least
part of the decreasing trend in Berry et al., but the trend
may also reflect heterogeneity of effect size as the cu-
mulative meta-analysis shows that small studies yielded
relatively large effect sizes.

These three examples also show how publication bias,
average effect size, and heterogeneity of effect size may
interact in complex ways (Augusteijn et al., 2019; Jackson,
2006), and suggest that statistics is not the be-all and end-
all when interpreting the small-study effect. We recom-
mend examining the designs and studies that gave rise to
the primary study effect sizes. Meta-analyses in psychol-
ogy typically report large heterogeneity (Van Erp et al.,
2017) probably because they incorporate studies with
widely varying designs, variables, and measures, whereas
meta-analyses of multi-lab direct replication studies
mostly find no heterogeneity and seldom substantial
heterogeneity (Klein et al., 2018; Olsson-Collentine et al.,
2020). Hence, small-study effects are less likely to be
caused by heterogeneity in meta-analyses of very similar
studies than when the meta-analysis includes studies that
may differ in many respects.

Themeta-plot also has some limitations. First, the meta-
plot provides no useful information on two important el-
ements of the meta-analysis; heterogeneity of effect sizes
and possible moderator effects. The meta-plot is a
graphical tool providing information on the average effect
size estimate, including a robustness check and a check if
publication bias may alternatively explain this average
estimate. For assessing heterogeneity and how its as-
sessment is affected by and robust to publication bias we
refer to the Q-plot (Augusteijn et al., 2019). Moderator
effects are, in our opinion, best assessed and tested using
statistics rather than using a graphical tool, although the
meta-plot can also be applied to a subset of studies based
on scores on a moderator. A second limitation is that the
meta-plot currently can only be applied to common effect
size measures Hedges’ g, Pearson’s correlation, and the
odds ratio. Extending the meta-plot to other effect size
measures is an opportunity for future research. Third, the
meta-plot only examines the possible effect of publication
bias where this bias is the unidirectional suppression of
statistically nonsignificant effect sizes. Evidence of other
types of publication bias cannot be detected with the meta-
plot because these types do not result in a specific trend in
the effect size estimates of the cumulative meta-analysis.

Fourth, p-hacking in the primary studies may distort the
meta-plot. For example, not reporting all dependent
measures of a primary study, likely one of the most
prevalent p-hacking behaviors (John et al., 2012), will
yield an overestimated effect size if only themeasure with
the largest effect size gets reported. This is also an al-
ternative explanation for observing estimates of the cu-
mulative meta-analysis that are larger than the expected
effect size under extreme publication bias and no effect
(i.e., black stars in the meta-plot). Note that p-hacking
distorts the results of all meta-analysis and publication
bias methods (e.g., Carter et al., 2019; Ulrich & Miller,
2015; van Aert et al., 2016), so this is not a problem of the
meta-plot in particular. Fifth, estimation of the between-
study variance in a random-effects meta-analysis is
known to be imprecise in case of a small number of effect
sizes in ameta-analysis (Chung et al., 2013; Kontopantelis
et al., 2013; Sidik & Jonkman, 2007). This also affects the
results of the first steps of the cumulative meta-analysis
(i.e., the average effect size estimate and its confidence
interval) that are shown in the meta-plot. Finally, the
meta-plot does not include statistical tests in addition to
those of cumulative meta-analysis. However, this is by
design; as tests often make strong assumptions and have
limited power, we chose not to incorporate statistical tests
in the meta-plot.

Although we believe the meta-plot has substantial added
value to a meta-analysis in its own right, the meta-plot may
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also assist in meta-research. Meta-research is the study of
research itself: its methods, reporting, reproducibility,
evaluation, and incentives (Ioannidis, 2018). Output of the
meta-plot directly provides information on statistical power
and statistical significance of research in different fields or
disciplines. For instance, concerning power, the meta-plots
of the 10 randomly selectedmeta-analyses frompsychology
reveal that seven (70%)meta-analyses contain a substantial
percentage (28% ormore) of studies with insufficient power
(less than 80%) to detect a large true effect size, and only
one (10%) meta-analysis contains at least one study with
sufficient power to detect a small true effect size. Output of
meta-plot like this can be further used to analyze the sta-
tistical power of studies as a function of field or journal.
The meta-plot also provides essential input for analyses

of statistical significance of primary studies and the related
issue of publication bias. The literature suggests that around
95% of main results are statistically significant in papers in
psychology (Fanelli, 2012), and this was even higher in the
selection of papers with four or more experiments in the
flagship journal Psychological Science (Francis, 2014).
However, these findings starkly contrast with the results of
our 10 meta-plots; the median and average number of
statistically significant findings are 44.4% and 46.8%, re-
spectively, and only 2 (20%) contain at least 95% significant
findings. Our findings are in line with a large review of
meta-analyses in Psychological Bulletin (2004–2014),
which found that 28.9% of 3,398 primary study effect sizes
in meta-analyses were statistically significant (Van Aert
et al., 2019). We believe this large disparity between pri-
mary study findings in meta-analyses and main results in
papers is explained by biases operating on themain result of
a paper, but that meta-analyses often also include effect
sizes that are of secondary importance in their paper and
therefore not or less affected by biases. This reasoning
suggests the need for another assessment or test of bias (i.e.,
publication bias or other biases related to statistical sig-
nificance), which compares the average effect size of
studies where the effect was a primary outcome to the
average effect size of studies where it was not.

Conclusion
In summary, we have developed a new user-friendly
graphical tool for meta-analysis that assists the meta-
analyst in interpreting the results of the meta-analysis.
It provides succinct information on statistical power and
the significance of primary studies, as well as the results of
random-effects meta-analyses and several sensitivity an-
alyses. As themeta-plot fills a similar role to the funnel plot
in meta-analytic research but is less subjective and (much)
more informative, meta-analysts should consider adding
the meta-plot to any meta-analysis.
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