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Towards a structurally resolved human 
protein interaction network

David F. Burke    1,9, Patrick Bryant    2,3,9, Inigo Barrio-Hernandez    1,9, 
Danish Memon    1,9, Gabriele Pozzati    2,3,9, Aditi Shenoy    2,3, Wensi Zhu2,3, 
Alistair S. Dunham    1, Pascal Albanese4,5, Andrew Keller6, 
Richard A. Scheltema    4,5, James E. Bruce    6, Alexander Leitner    7, 
Petras Kundrotas    2,3,8  , Pedro Beltrao    1,7   & Arne Elofsson    2,3 

Cellular functions are governed by molecular machines that assemble 
through protein-protein interactions. Their atomic details are critical to 
studying their molecular mechanisms. However, fewer than 5% of hundreds 
of thousands of human protein interactions have been structurally 
characterized. Here we test the potential and limitations of recent progress 
in deep-learning methods using AlphaFold2 to predict structures for 65,484 
human protein interactions. We show that experiments can orthogonally 
confirm higher-confidence models. We identify 3,137 high-confidence 
models, of which 1,371 have no homology to a known structure. We identify 
interface residues harboring disease mutations, suggesting potential 
mechanisms for pathogenic variants. Groups of interface phosphorylation 
sites show patterns of co-regulation across conditions, suggestive of 
coordinated tuning of multiple protein interactions as signaling responses. 
Finally, we provide examples of how the predicted binary complexes can 
be used to build larger assemblies helping to expand our understanding of 
human cell biology.

Proteins are key cellular effectors determining most cellular processes. 
These rarely act in isolation, but instead, the coordination of the diver-
sity of processes arises from the interaction among multiple proteins 
and other biomolecules. The characterization of protein-protein inter-
actions (PPIs) is crucial for understanding which groups of proteins 
form functional units and underlies the study of the biology of the cell. 
Diverse experimental and computational approaches have been devel-
oped to determine the PPI network of the cell (that is, the interactome), 
with hundreds of thousands of human protein interactions determined 

to date1–3. Protein interactions vary from transient interactions that 
regulate an enzyme to permanent interactions in molecular machines.

The structural characterization of the human interactome has 
lagged behind, with experimental and homology models currently 
covering an estimated 15 protein interactions4,5. The structural char-
acterization of protein complexes is a critical step in understand-
ing the mechanisms of protein function, and in studying the impact 
of mutations4,6–8 and the regulation of cellular processes via the 
post-translational tuning of binding affinities9–12.
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the random set of models would be considered confident predictions 
at this cut-off. In Fig. 1c we show examples of predicted structures 
aligned to experimental or homology models, showing how the pre-
dictions and the confidence score relate to the observed alignments. 
For the majority of these cases, even with lower-confidence values, the 
interaction interface is generally in good agreement, except for the 
interaction between subunits of the proteasome 26S complex, ATP-
pase domain 2 (PSMC2) and non-ATPase domain 11 (PSMD11). It can be 
noted that several of the models in Fig. 1c are parts of large complexes: 
PRDX2–PRDX3: members of the peroxiredoxin family of antioxidant 
enzymes; RFC2–RFC5: subunits of heteropentameric Replication fac-
tor C (RF-C); YWHAB–YWHAG: parts of the 14-3-3 family of proteins 
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 
proteins beta (YWHAB) and gamma (YWHAG); and RPL9–RPL18A: 
ribosomal proteins L9 (RPL9) and L18a (RPL18A). This shows that Alpha-
Fold2 can predict the structures of directly interacting protein pairs 
present in large complexes.

Features impacting prediction confidence
As shown in Fig. 1a, protein pairs present in the Protein Data Bank (PDB) 
are enriched in high-scoring models compared with pairs in HuRI and 
Hu.MAP. There could exist several possible explanations for this, such 
as the inability of AlphaFold2 to identify transient or indirect interac-
tions. Nevertheless, it is also possible that the two high-throughput 
datasets contain noninteracting pairs. Therefore, to understand this 
difference better, we first studied an additional dataset created from 
large (>10 chains) heteromeric protein complexes.

The set of large complexes consists of 12 large heteromeric protein 
complexes, and all (nonidentical) pairs of protein chains in each com-
plex were docked with each other. These pairs can be divided into the 
ones with direct interaction and those that do not interact directly. Here, 
we used a definition of more than 20 contacts of less than 8 Å between 
Calphas to exclude small interaction interfaces. When a complex con-
tained multiple copies of identical chains, all interactions were included 
to allow for alternative interactions between the chains. The difference 
in pDockQ scores between the direct and indirect interacting pairs is 
striking, where only 6% of the indirect pairs have a pDockQ score > 0.5 
compared with 38% of the directly interacting pairs (Fig. 2a). This shows 
that directly interacting pairs often can be predicted even when they 
are part of large complexes, in contrast to indirectly interacting pairs.

hu.MAP has many more high-confidence predictions than HuRI, 
which is based on Y2H experiments. To further understand this differ-
ence, we first analyzed a subset of all protein pairs from the CORUM23 
database, the best manually curated database of mammalian protein 
complexes, and predicted the interaction of all pairs in the same com-
plex. The average pDockQ score of CORUM is slightly higher than for 
hu.MAP, but the number of high-quality predictions is similar (16% ver-
sus 19%), indicating that the different databases of protein complexes 
have a similar fraction of high-confidence predictions and that HuRI 
is the outlier (Fig. 2b).

It is unlikely that the Y2H in HuRI data should contain a large set 
of indirect interactions, as only two human proteins are expressed 
in the same cell. Therefore, there must be another reason for the few 
high-confidence predictions. We examined the properties of the pairs 
present in the two datasets. Here, it can be seen that HuRI proteins 
differ from the hu.MAP (and other datasets) in two ways. HuRI protein 
pairs contain more intrinsic disorder (Fig. 2c) and have fewer efficient 
sequences (meff) in their multiple sequence alignments (MSAs) (Fig. 2d).  
In these figures it can also be seen that the pDockQ values tend to 
increase with less disorder and more sequences in the alignments, 
although it is clearly not an absolute relationship. Further, protein pairs 
in HuRI are less likely to be found in the same subcellular compartment 
(Fig. 2e), and have similar coexpression profiles (Fig. 2f). Considering 
all this, it is likely that many protein interactions in HuRI are transient 
and that AlphaFold2 cannot reliably predict such interactions.

Computational approaches for predicting the structures of inter-
acting protein pairs are primarily based on identifying structural simi-
larity for pairs of proteins against experimentally determined protein 
complexes4,6,13,14. The Interactome3D (refs. 4,14) repository currently 
lists 7,625 predicted models based on homology of domains, a number 
similar to the 8,359 pairs listed having an experimentally determined 
model. In addition, co-evolution-based information has been used 
to predict protein interactions and to guide structural docking for 
bacterial proteins15. Recently, neural network-based approaches have 
demonstrated the ability to accurately predict the structures of indi-
vidual proteins16,17 and protein complexes16,18–21. These approaches 
can correctly predict the structures of up to 60% of dimers18, and have 
been used to predict structures of 1,506 Saccharomyces cerevisiae pro-
tein interactions22. However, the application of these neural network 
models for the large-scale prediction of human complex structures 
has not been tested yet.

Here, we assess the possibilities and limitations of applying Alpha-
Fold2 to modeling human protein interactions on a large scale. We 
predicted the complex structures for two sets of human interactions 
obtained using different experimental methods, comprising 65,484 
unique human interactions. We show that it is possible to rank the mod-
els according to confidence, with 3,137 predicted structures ranked as 
highly confident. Further, we show that the higher-confidence predic-
tions are enriched among those supported by a combination of experi-
mental methods. We showcase the value of a structurally resolved 
interactome by studying disease mutations and phosphorylation of 
interface residues. Finally, we provide some indication that binary 
complexes can be used to build higher-order assemblies.

Structure prediction of human protein 
interactions
We selected experimentally identified human protein interactions 
from the Human Reference Interactome (HuRI)2 and the Human Protein 
Complex Map (hu.MAP v.2.0)3. HuRI comprises protein interactions 
determined by yeast two-hybrid (Y2H) screening2 from which we mod-
eled 55,586 pairs. From hu.MAP we selected 10,207 high-quality PPIs3. 
While HuRI is more likely to be enriched for direct protein interactions, 
including transient partners, the hu.MAP set is more likely to reflect sta-
ble protein interactions, including members of the same complex that 
may not be interacting directly. The overlap between the two datasets 
is small (309 pairs), and a comparison with two large-scale compendi-
ums of structural models4 indicates that 62,019 of the combined pairs 
do not have experimental models nor can they be modeled easily by 
homology, suggesting a large potential gain in structural knowledge.

We predicted the structure of 65,484 nonredundant pairs using the 
FoldDock pipeline18, based on AlphaFold2 (ref. 17). As in the FoldDock 
pipeline, we combined size and the predicted local Distance Differ-
ence Test (plDDT) scores of the interface into a single score to predict 
the DockQ score of a complex, dubbed pDockQ (Methods), which can 
rank models by confidence. We tested pDockQ score by comparing the 
predicted models with 1,465 experimental models, of which 742 (50%) 
were correct (DockQ > 0.23). For predictions with pDockQ > 0.23, 70% 
(671 of 955) are well modeled, and for pDockQ > 0.5, 80% (521 of 651).

We show in Fig. 1a the distribution of pDockQ for the predicted and 
random protein interactions, and provide data for all models in Sup-
plementary Table 1. The pDockQ of known interacting proteins tends 
to be higher than for the random set, with the predictions for hu.MAP 
showing on average higher confidence than the HuRI set. Additionally, 
when selecting hu.MAP interactions also supported by Y2H or crosslink 
data (crosslinking) results in even higher-confidence values (Fig. 1a). 
This suggests that high-confidence models are enriched for protein 
interactions supported by the two types of methods associated with 
high affinity and direct interactions. We identified 3,137 structures 
(Fig. 1b) as high-confidence models (pDockQ > 0.5). The number of 
structures increased to 10,061 if a cut-off of 0.23 was used. Only 0.3% of 

http://www.nature.com/nsmb


Nature Structural & Molecular Biology | Volume 30 | February 2023 | 216–225 218

Article https://doi.org/10.1038/s41594-022-00910-8

Crosslinking support for predicted complex 
structures
Chemical crosslinking followed by mass spectrometry is an approach 
which can be used to identify reactive residues (usually lysines) that 
are in proximity, as constrained by the geometry of the crosslink agent 
used. The identification of such residues across a pair of proteins can 
help define the likely protein interface. To determine if the predicted 
complex structures agree with such orthogonal spatial constraints, we 
obtained a compilation of crosslinks for pairs of residues across 528 
protein pairs with predicted models (Fig. 3a, Supplementary Table 1 
and Methods). In total, 51% of the models had one or more crosslinks 
at a distance below the expected maximal distance possible (Fig. 3a). 
Restricting the predicted models to higher confidence by the pDockQ 
score increased the fraction of complexes with acceptable crosslinks, 
reaching 75% for pDockQ scores greater than 0.5 (Fig. 3a). This result 
is in line with the benchmark results above.

In total, we have identified 479 crosslinks providing supporting 
evidence for 171 predicted complex structures with pDockQ > 0.5. 
Of these, 41 correspond to complex structures with no experimen-
tal structure or homology models, from which we selected some to 
illustrate (Fig. 3b–e). Figure 3b shows the AlphaFold2 (AF2) model 
for the full length of the ERLIN1/ERLIN2 complex, which mediates 
the endoplasmic reticulum-associated degradation (ERAD) of ino-
sitol 1,4,5-trisphosphate receptors (IP3Rs). AlphaFold2 predicts a 
globular domain (1–190) followed by an extended helical region with 
a kink around amino acid position 280. Unlike the model in Interac-
tome3D, the paralogous proteins are stacked side-by-side with the 
hydrophobic face of the helices buried and the hydrophilic face 
(mainly Lys) exposed to solvent. A crosslink between the C-terminal 
residues K275 (ERLIN1) and K287 is predicted to bridge a distance of 

18 Å, supporting the predicted model. In Fig. 3c we show the model 
for proteins IMMT and CHCHD3, components of the mitochondrial 
inner membrane MICOS complex. AlphaFold2 predicts a globular 
helical domain at the C-terminal end of IMMT (550–750) to interact 
with the C-terminal end of CHCHD3 (150–225). This is supported by 
data of three crosslinks: between K173 (CHCD3) and K565 (IMMT), and 
K203 (CHCD3) to both K714 and K726 of IMMT. Figure 3d shows the 
complex of transfer RNA-guanine-N(7)-methyltransferase (METTL) 
with its noncatalytic subunit (WDR4). The structure of WDR4 has not 
yet been solved experimentally but contains WD40 repeats, which 
are expected to form a β-propeller domain, as predicted here. The 
METTL domain is predicted to interact with the side of the WDR40, 
away from the ligand-binding pore. This orientation is supported by 
a crosslink between K122 (WDR4) and K143 (METTL) (18 Å). Finally, in 
Fig. 3e we show the predicted complex structure for the heterogene-
ous nuclear ribonucleoprotein C (HNRNPC) and the RNA-binding 
protein, RALY. Two regions in both proteins are predicted with high 
confidence (plDDT > 70), with the lower-confidence regions not shown. 
The N-terminal domain in HNRNPC (16–85) is predicted to interact 
with the N-terminal domain of RALY (1–100). A long helix in HNRNPC 
(185–233) is predicted to interact with a helix in RALY (169–228). This 
interhelix interface is supported by crosslinking data for three pairs of 
lysines at either end of the helices (189 → 222; 229 → 179; and 232 → 183).

Disease-associated missense mutations at 
interfaces
Missense mutations associated with human diseases can alter pro-
tein function via diverse mechanisms, including disrupting protein 
stability, allosterically modulating enzyme activity and altering PPIs. 
Structural models can allow the rationalization of possible mechanisms 
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Fig. 1 | Application of AlphaFold2 complex predictions to a large dataset of 
human PPIs. a, Distribution of model confidence score (pDockQ) for predicted 
structures from two large human protein interaction datasets (hu.MAP and 
HuRI), compared with confidence metrics from 2,000 random pairs of proteins. 
The hu.MAP dataset was further subsetted to those that have support from Y2H 
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experimental or homology modeling information (‘Structure’). b, Number of 
protein interactions with models built from both datasets and those that we 
consider being of high confidence (‘Predicted’), corresponding to those with 
pDockQ > 0.5. c, Examples of predicted models (orange and green) overlapped 
with the corresponding experimental models (gray) and the observed (DockQ) 
or predicted (pDockQ) quality of the models.

http://www.nature.com/nsmb


Nature Structural & Molecular Biology | Volume 30 | February 2023 | 216–225 219

Article https://doi.org/10.1038/s41594-022-00910-8

of interface disease mutations. To determine the usefulness of the 
predicted structures, we compiled a set of mutations located at 
interface residues that were previously experimentally tested for 
the impact on the corresponding interaction24. We then performed 
in silico predictions of changes in binding affinity upon mutations 
using FoldX25 and observed that mutations known to disrupt the 
interactions are predicted to have a strong destabilization of binding 
compared with mutations known not to have an effect (Fig. 4a and 
Supplementary Table 2). Very high confidence (plDDT > 90) of the 
mutated residues led to more substantial discrimination between 
mutations known and not known to disrupt the complex formation 
(Fig. 4a), indicating that only very accurate models are useful when 
using the FoldX forcefield for estimating the impact of binding affinity  
of mutations.

Next, we mapped human disease (from ClinVar) and cancer 
mutations (from The Cancer Genome Atlas) to the interface residues 
defined by the set of high-confidence protein complex predictions 
(pDockQ > 0.5) (Supplementary Table 1). The hu.MAP and HuRI con-
fident predictions identified 280 interfaces carrying pathogenic 
mutations and 602 interfaces corresponding to the top 25% of recur-
rently mutated interfaces in cancer, defined as the highest number 

of mutations per interface position (Fig. 4b and Methods). We find a 
strong enrichment in pathogenic versus benign mutations at interface 
residues relative to the rest of the protein (2.3-fold enrichment, P value 
2.7 × 10−31).

We illustrate in Fig. 4c examples of protein network clusters with 
interface disease mutations across a range of biological functions. 
For example, interface mutations in chromatin remodeling, including 
members of SWI/SNF complex (SMARCD1, SMARCD2, SMARCD3), and 
several transcription factors related to development (for example, 
TCF3, TCF4, LMO1 and LMO2).

We selected examples of interfaces with disease mutations and no 
previous experimental data or homology to available models (Fig. 4d–g).  
Figure 4d shows the interface of WDR4-METTL1, which has support-
ing crosslink information described above. WDR4 has two annotated 
pathogenic variants at this interface, linked with Galloway-Mowat Syn-
drome 6, with the highlighted R170 participating in interactions with 
a negatively charged residue of METTL1. Figure 4e shows an example 
of an interface with 32 recorded interface mutations in cancer for both 
proteins, including the highlighted arginines in LDOC1, which form 
electrostatic interactions with the opposite chain. TWIST1 has several 
annotated pathogenic mutations, including L149R and L159H, which 
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values of directly and indirectly interacting proteins from the same complex 
(blue); for comparison, HuRI and hu.MAP data are shown with thin lines.  
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protein pairs in HuRI are enriched in disorder. d, Proteins in HuRI have fewer 
sequences in the paired MSAs as measured by the mean number of efficient 
sequences in the MSA (meff). e, Proteins that share subcellular localization 
(solid lines) are enriched in high pDockQ scores in all three datasets. f, Only 
protein pairs in hu.MAP are coexpressed according to STRING, using similarity in 
Genotype-Tissue Expression (gtex), and coexpressed pairs are enriched in pairs 
with high pDockQ scores.
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are at residues buried in the interface (Fig. 4f). In particular, the L149R 
mutation, associated with Saethre–Chotzen syndrome, would strongly 
disrupt packing. The R118G mutation would disrupt the interaction with 
residue F22 mainchain O in TCF4. In RAD51D we found the mutation 
R266C (Breast-ovarian cancer, familial), which interacts across the 
interface with XRCC2 (Fig. 4g) and paralogous genes involved in the 
repair of DNA double-strand breaks by homologous recombination. 
Interestingly, we also found mutations at R239, to Trp/Gln/Gly, associ-
ated with Breast-ovarian cancer which interacts with Tyr119 in XRCC2, 
which itself is also annotated as having mutations linked to hereditary 
cancer-predisposing syndrome.

Phospho-regulation of protein complex 
interfaces
Protein phosphorylation can regulate protein interactions by modulat-
ing the binding affinity via the change in size and charge of the modified 
residue. Over 100,000 experimental human phosphorylation sites 
have been determined to date26,27, but only 5–10% of these have a known 
function28. Mapping phosphorylation site positions to protein inter-
faces can generate mechanistic hypotheses for their functional roles in 
controlling protein interactions. We used a recent characterization of 
the human phosphoproteome26 to identify 4,145 unique phosphosites 
at interface residues among the highly confident models. The aver-
age functional importance, defined by the functional score described 
earlier26, was generally higher than random for phosphorylation sites 
at interfaces (Fig. 5a), and we found some enrichment for targets of 
multiple kinases, including tyrosine kinases (ERBB2, AXL, ABL2, FER) 
(Fig. 5b). This suggests that some interfaces may be under coordinated 
regulation by specific kinases and conditions.

To identify potentially co-regulated interfaces, we collected meas-
urements of changes in phosphorylation levels across a large panel of 
over 200 conditions29. We retained 260 phosphosites that had a sig-
nificant regulation in three conditions and then computed all-by-all 
pairwise correlations in phosphosite fold changes across conditions 
(Supplementary Table 1). We clustered these phosphosites by their 
profile of correlations (Fig. 5c), identifying 16 groups of co-regulated 
interface phosphorylation sites (Fig. 5c and Supplementary Table 3). For 
each group of phosphosites, we identified the conditions where these 
have the strongest up- or down-regulation (Supplementary Fig. 1) and 
plotted a subset of conditions in Fig. 5d. We also performed a gene ontol-
ogy enrichment analysis for each group of co-regulated phosphosites, 
including both proteins of the modified interfaces, to search for common 
biological functions (Fig. 5e and Supplementary Table 4). Here, one-sided 
hyper-geometric tests were used for statistical analysis. For example, 
we observed a cluster of interface phosphosites in proteins related to 
intermediate filaments (cluster 7) which show strong regulation pat-
terns along the cell cycle, downregulated in S-phase and up-regulated 
in G1 and mitosis. Phosphosites in cluster 1 (cell cycle G1-S phase transi-
tion) show the opposite trends, with up-regulation in late S-phase and 
down-regulation in G1 and mitosis. Some clusters show regulation under 
specific kinase inhibition, which may provide novel hypotheses for kinase 
regulation of specific processes. For example, phosphosites in cluster 
9 (regulation of chromosome assembly) tend to be up-regulated after 
inhibition of ROCK and up-regulated after inhibition of mTOR.

While not all phosphosites at interfaces are likely to regulate the 
binding affinity, this analysis provides hypotheses for the potentially 
coordinated regulation of multiple proteins by tuning of their interac-
tions after specific perturbations.
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Higher-order assemblies from binary protein 
interactions
Proteins interact with multiple partners either simultaneously, as part 
of larger protein complexes, or separated in time and space. This is also 
reflected in our structurally characterized network, where proteins can 
be found in groups, as illustrated in a global network view of the pro-
tein interactions with confident models (Fig. 6, Supplementary Fig. 2  
and Supplementary Data 1). One key benefit of structurally character-
izing an interaction network is the identification of shared interfaces 
for multiple interactors. As an example, we highlight GDI1 (RabGDP 
dissociation inhibitor alpha) which interacts with multiple Rab pro-
teins, regulating their activity by inhibiting the dissociation of GDP. 
The predicted complex structures for these interactions show how 
these share the same interface and therefore cannot co-occur. Other 
clusters in the network suggest that the proteins form larger protein 

complex assemblies with many-to-many interactions. As the use of 
AlphaFold2 for predicting larger complex assemblies can be limited 
by computational requirements, we tested whether the structures for 
pairs of proteins could be iteratively structurally aligned. We tested 
this procedure on a small set of complexes covered in this network, 
with known structures and the number of subunits ranging from five 
(RFC complex, TFIIH core complex) to 14 (20S proteasome). We then 
aligned an experimentally determined structure with the predicted 
models (Fig. 6; gray, experimental model). These examples showcase 
the potential and also limitations of this procedure.

The TFIIH core complex is composed of five subunits with 1-to-1 
stoichiometry. All subunits can be modeled, with the final complex 
generally agreeing (Fig. 6) with a cryoEM structure for these subunits 
(PDB:6NMI). The most significant difference to the cryoEM model is 
the relative positioning of the ERCC3 subunit. The exact final model 
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obtained can vary depending on the aligned pairs, with multiple possi-
ble final conformations (Supplementary Fig. 3). Figure 6 illustrates the 
conformation that best matches the cryoEM model in PDB:6NMI. For 
example, for the TFIIH core complex, there is a predicted model where 
the complex adopts a more open conformation (as seen in PDB:5OQ J) 
and alternative predicted placements of the GTF2H1 subunit.

The RFC complex is also composed of five subunits with 1-to-1 
stoichiometry. One iterative alignment of pairwise protein interac-
tions builds a model that includes all five subunits organized similarly 
to that observed in the PDB:6VVO cryoEM structure (Fig. 6). In this 
predicted model, the subunits RFC2/5/4/3 match the experimentally 

observed model well, but there are apparent deviations introduced 
by compounding errors in alignment by this iterative process. Indi-
vidual subunits in the cryoEM structure can be aligned to each of the 
model subunits well, but then the alignment of the rest of the model 
is progressively worse the further away the subunits are positioned 
from the aligned subunit. The RFC1 subunit is individually not well 
predicted. Further, the RFC3-RFC5 interaction pair is predicted with 
high confidence, while, in fact, these do not share a direct contact in 
the experimental structure. AlphaFold2 places RFC3 at the RFC5-RFC4 
interface, likely due to the structural similarity between RFC3  
and RFC4.
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Encouraged by the examples tested, we defined an automatic 
procedure to generate larger models by iterative alignment of pairs 
(Methods). We start building all possible dimers in a complex, then 
sort them by pDockQ, and start building from the first ranked dimers. 
Next, we add the highest-ranked dimer, which shares one subunit with 
the complex if it does not overlap; this is repeated for all dimers until 
the complex is complete or no additional proteins can be added. We 
tested this on the 20S proteasome, a particularly challenging example, 
with stoichiometries different from 1-to-1 and homologous subunits. 
This automatic procedure could build a model containing all 14 subu-
nits (half of the proteasome), which are mostly placed in agreement 
within the experimental model (Fig. 6). However, the exact order of 
the chains is incorrect, that is, at each location an incorrect protein is 
placed, highlighting that AF2 cannot distinguish which two proteins 
interact from a set of homologous proteins.

Two additional proteins where we could build a good model are 
Heterodisulfide reductase from Methanothermococcus thermolitho-
trophicus (PDB:5ODC) and the eukaryotic translation initiation factor 
2B from Schizosaccharomyces pombe (PDB:5B04) (Supplementary  
Fig. 4). For PDB:5ODC we could build a complete model of the protein 
with an r.m.s. deviation of 6.0 Å (TM-score 0.90)30 starting from dimers. 
However, for PDB:5B04 it was not possible as the chains started over-
lapping when we tried to build a larger model. However, if we build 
trimers and then use all three dimers from these trimers we can build a 
complete model with an r.m.s. deviation of 7.3 Å (TM-score 0.86), show-
ing that it is sometimes necessary to use larger subunits to assemble 
the complexes. Results from a follow-up study31 show that it is often 
possible to build the structures of complexes if the subunits are well 
predicted. In summary, we find that it is possible to iteratively align 

structures of pairs of interacting proteins to build larger assemblies, 
but we also identified issues that limit this procedure at the moment.

Concluding discussion
We have predicted complex structures for pairs of human proteins 
known to physically interact from two different datasets based on differ-
ent experimental approaches. We note that the source of data used for 
the protein interactions is important and impacts the fraction of models 
that can be confidently predicted. Our analysis suggests that protein 
interactions supported by a combination of affinity-, co-fraction- 
and complementation-based methods result in higher-confidence 
models. We believe these protein interactions tend to correspond to 
high-affinity interactions which are very likely to share a direct physical 
permanent interaction. We show that it is possible to use metrics from 
the models (for example, pDockQ score) to rank higher-confidence 
models, providing an additional accuracy level to large-scale PPI stud-
ies, and in the future to provide additional high-quality targets for 
detailed studies of stable complexes. Experimental data from crosslink 
mass spectrometry experiments provide an ideal resource for further 
validating these predictions via orthogonal means.

Based on comparisons with solved structures, we suggest that 
models with pDockQ > 0.5 are 80% likely to be correct. Additionally, 
models with lower scores (pDockQ > 0.23) are still 70% likely to contain 
many correct solutions and may highlight correct interfaces. Such 
lower-confidence models are likely to be useful for generating hypoth-
eses and large-scale analyses of global properties. Equally important 
is the caveat that high-confidence predictions will still contain errors, 
and, in particular, we note that in protein complexes containing paralo-
gous proteins (which is common in higher eukaryotes32), the current 
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procedure cannot identify the exact pairing of the protein. For such 
cases, additional methods need to be developed.

Structural models for protein interfaces are critical for under-
standing molecular mechanisms and the impact of mutations and 
post-translational modifications. We illustrate this using disease muta-
tions and phosphorylation data. While much disease-associated varia-
tion is often found in noncoding regions of the genome, the growth of 
exome sequencing of large cohorts of patients will lead to discovering 
many more protein mutations linked to disease, which will require such 
large structural characteristics. Both for mutations and for phospho-
rylation sites, we think these analyses should be seen as generating 
hypotheses for further testing, and we make this information available 
in the supplementary material to facilitate such future work.

Finally, we show that it is in principle possible to build structural 
models for larger assemblies from predicted binary complexes. In a 
follow-up paper we have shown that it is possible to build large assem-
blies fully automatically by using predictions of dimers and trimers31. 
Aspects that may limit this include the structural homology between 
subunits, unknown subunit stoichiometries and limits in the predicted 
interactions31. Additional work will be needed to determine the exact 
stoichiometry and to design methods and score systems to build such 
larger complex assemblies, as well as to predict the interactions of 
proteins with weak and transient interactions.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Protein interaction data and annotations
Human protein pairs known to physically interact were obtained from 
the hu.MAP dataset, retaining pairwise protein interactions with ≥0.5 
confidence, and most interactions from the HuRI dataset. These inter-
actions were further enriched by obtaining annotations on crosslinked 
peptides matched across pairs of interaction proteins, disease-related 
mutations and protein phosphorylation sites in the selected proteins. 
In addition, all nonhomologous pairs from 12 protein complexes (Sup-
plementary Table 5) and 4,320 protein pairs from 2,102 different pro-
tein complexes (Supplementary Table 6) in CORUM23 were used for 
additional analyses. A complete list of all datasets is available from 
the supplementary data. A subset of crosslink data was collected from  
refs. 33–43, and filtered for peptides unique to only one protein sequence. 
A crosslink was considered validated by the structure if the distance 
between the epsilon amino groups on the side-chains of the relevant 
pair of lysine residues was within 32 Å. Clinical missense variants associ-
ated with disease were collected from ClinVar. We selected only those 
having pathogenic or likely pathogenic effects, which were mapped to 
Uniprot protein sequences using VarMap. The final list of mutated posi-
tions was then compared with the interface positions. We obtained a list 
of protein phosphorylation sites with predicted functional relevance26, 
phosphosite annotations28 and regulation of phosphorylation sites 
across a large panel of conditions29. These phosphosites were also 
mapped to interface positions as defined by the predicted models. 
All protein interaction networks were processed using R packages 
igraph (v.1.2.5) and qgraph (v.1.9), and further graphical editing was 
done using Cytoscape44.

Protein complex prediction
To predict protein complexes of pairwise interactions, we used the 
FoldDock pipeline18 based on AlphaFold2 (ref. 17). We used the option 
of fused + paired MSAs and ran the model configuration m1-10-1 as this 
provides the highest success rate accompanied by a 20-fold speed-up. 
Both the fused and paired MSAs were constructed by running HHblits 
on every single chain against Uniclust30. The fused MSA was generated 
by simply concatenating the output of each of the single-chain HHblits 
runs for two interacting chains. The paired MSA was constructed by 
combining the top hit for each matching OX identifier between two 
interacting chains, using the output from the single-chain HHblits runs.

pDockQ confidence score
To score models, we used features from the predicted complexes to 
calculate the predicted DockQ score, pDockQ. This score is defined 
with the following sigmoidal equation:

pDockQ = 0.707
1 + e−0.03148(x−388.06)

+ 0.03138

where
x = average interface plDDT*log(number of interface contacts).
The parameters were optimized to predict the DockQ score using 

the dataset from ref. 45. The number of interface contacts is defined as 
elsewhere in this paper (any residues with an interface atom within 
10 Å of the other chain), and the plDDT is the predicted lDDT score 
from AlphaFold2 taken over the interface residues as defined by the 
interface contacts.

Building larger complexes from binary protein interactions
A simple procedure to build larger complexes from a set of paired 
models was developed. All dimers in the set are by default ranked by 
their pDockQ values.

	1.	 The building is started from a single dimer, by default the  
dimer with the highest pDockQ value. This is referred to as  
the ‘complex’.

	2.	 All other dimers in the set are then tried to be added to the 
‘complex’. Starting with the one with the second highest 
pDockQ, a chain is added to the complex if:
	(a)	Exactly one chain of the dimer is identical to one chain in the 

complex
	(b)	The structure of these two chains is similar enough (default 

TM-score > 0.8)
	(c)	The dimer is then rotated so that the two chains overlap
	(d)	The second chain in the dimer does not clash with more than 

25% of its residues (Cα-Cα distance < 5 Å) with any chain in the 
complex.

	3.	 If a chain is added, the procedure is started over again and 
repeated until no more chains can be added.

Analysis of phosphosites in the protein-protein interfaces
Phosphosite residues in interfaces were identified from a previously 
published comprehensive list of known human phosphosites26. Kinases 
associated with phosphorylation of interface residues were obtained 
from the PhosphositePlus database, and over-representation analysis 
of kinases was performed using a hyper-geometric test. Highly regu-
lated interface phosphosites were defined as those with more than 
twofold change in phosphorylation in more than two perturbation 
conditions across a collated phosphoproteomics dataset comprising 
a range of physiological conditions and drug treatments29. Pearson 
correlation was calculated amongst these regulated phosphosites and 
clusters of co-regulated phosphosites were identified using hierarchi-
cal clustering (‘Ward’ method) of Euclidean distances of the correlation 
matrix. Phosphosite clusters were created by cutting the dendrogram 
at the appropriate level using the cutree (h = 17) function in R. Phos-
phosite clusters that were significantly regulated in each perturba-
tion condition were identified by a Z-test from the comparison of fold 
changes in phosphosite measurements of all phosphosites in a cluster 
against the overall distribution of phosphorylation fold changes across 
the condition. Gene ontology over-representation of each cluster was 
performed separately using a hyper-geometric test in R. The gene 
ontology terms were obtained from the c5 category of the Molecular 
Signature Database (MSigDBv7.1)46. All over-representation analyses 
were performed using the enricher function of the clusterProfiler 
package (v.3.12.0)6 in R.

Comparison with other databases
All proteins used here were mapped to UniProt47 to retrieve subcellular 
localization, STRING48 for coexpression and other interaction data, and 
gtex49 for tissue-specific expression.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets and meta-data are available from https://doi.org/10.17044/
scilifelab.16866202.v1. Further, all models generated as well as some 
of the multiple sequence alignments can be found at https://archive.
bioinfo.se/huintaf2/. Source data are provided with this paper.

Code availability
All code used in this project can be found at https://gitlab.com/Elofs-
sonLab/huintaf2/. Tools to run AlphaFold2 for combined folding and 
docking can be found at https://gitlab.com/ElofssonLab/FoldDock/.
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