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Cellular functions are governed by molecular machines that assemble
through protein-proteininteractions. Their atomic details are critical to
studying their molecular mechanisms. However, fewer than 5% of hundreds
of thousands of human proteininteractions have been structurally
characterized. Here we test the potential and limitations of recent progress
in deep-learning methods using AlphaFold2 to predict structures for 65,484
human protein interactions. We show that experiments can orthogonally
confirm higher-confidence models. We identify 3,137 high-confidence
models, of which 1,371 have no homology to a known structure. We identify
interfaceresidues harboring disease mutations, suggesting potential
mechanisms for pathogenic variants. Groups of interface phosphorylation
sites show patterns of co-regulation across conditions, suggestive of
coordinated tuning of multiple protein interactions as signaling responses.
Finally, we provide examples of how the predicted binary complexes can

be used tobuild larger assemblies helping to expand our understanding of
human cell biology.

Proteins are key cellular effectors determining most cellular processes.
Theserarelyactinisolation, butinstead, the coordination of the diver-
sity of processes arises from the interaction among multiple proteins
and other biomolecules. The characterization of protein-proteininter-
actions (PPIs) is crucial for understanding which groups of proteins
form functional unitsand underlies the study of the biology of the cell.
Diverse experimental and computational approaches have been devel-
oped to determine the PPInetwork of the cell (thatis, theinteractome),
with hundreds of thousands of human proteininteractions determined

to date'>. Protein interactions vary from transient interactions that
regulate an enzyme to permanentinteractionsin molecular machines.

The structural characterization of the human interactome has
lagged behind, with experimental and homology models currently
covering an estimated 15 protein interactions*’. The structural char-
acterization of protein complexes is a critical step in understand-
ing the mechanisms of protein function, and in studying the impact
of mutations**™® and the regulation of cellular processes via the
post-translational tuning of binding affinities’ .

'European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK. 2Science for Life Laboratory, Stockholm
University, Solna, Sweden. *Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. “Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
SNetherlands Proteomics Center, Utrecht, The Netherlands. °Department of Genome Sciences, University of Washington Seattle, Seattle, WA, USA.
"Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland. 8Center for Computational Biology, The University of
Kansas, Lawrence, KS, USA. °These authors contributed equally: David F. Burke, Patrick Bryant, Inigo Barrio-Hernandez, Danish Memon and Gabriele

Pozzati. < e-mail: pkundro@ku.edu; pbeltrao@ebi.ac.uk; arne@bioinfo.se

Nature Structural & Molecular Biology | Volume 30 | February 2023 | 216-225

216


http://www.nature.com/nsmb
https://doi.org/10.1038/s41594-022-00910-8
http://orcid.org/0000-0001-8830-3951
http://orcid.org/0000-0003-3439-1866
http://orcid.org/0000-0002-5686-0451
http://orcid.org/0000-0002-1365-0710
http://orcid.org/0000-0002-4303-9939
http://orcid.org/0000-0001-7748-2501
http://orcid.org/0000-0001-9076-3025
http://orcid.org/0000-0002-1668-0253
http://orcid.org/0000-0001-6441-6089
http://orcid.org/0000-0003-4126-0725
http://orcid.org/0000-0001-5080-1664
http://orcid.org/0000-0002-2724-7703
http://orcid.org/0000-0002-7115-9751
http://crossmark.crossref.org/dialog/?doi=10.1038/s41594-022-00910-8&domain=pdf
mailto:pkundro@ku.edu
mailto:pbeltrao@ebi.ac.uk
mailto:arne@bioinfo.se

Article

https://doi.org/10.1038/s41594-022-00910-8

Computational approaches for predicting the structures of inter-
acting protein pairs are primarily based on identifying structural simi-
larity for pairs of proteins against experimentally determined protein
complexes**'* The Interactome3D (refs. ') repository currently
lists 7,625 predicted models based on homology of domains, anumber
similar to the 8,359 pairs listed having an experimentally determined
model. In addition, co-evolution-based information has been used
to predict protein interactions and to guide structural docking for
bacterial proteins®. Recently, neural network-based approaches have
demonstrated the ability to accurately predict the structures of indi-
vidual proteins'®” and protein complexes'®'®!, These approaches
cancorrectly predict the structures of up to 60% of dimers'®, and have
beenusedto predict structures of 1,506 Saccharomyces cerevisiae pro-
tein interactions*. However, the application of these neural network
models for the large-scale prediction of human complex structures
has not been tested yet.

Here, we assess the possibilities and limitations of applying Alpha-
Fold2 to modeling human protein interactions on a large scale. We
predicted the complex structures for two sets of human interactions
obtained using different experimental methods, comprising 65,484
unique humaninteractions. We show that it is possible to rank the mod-
elsaccordingto confidence, with 3,137 predicted structures ranked as
highly confident. Further, we show that the higher-confidence predic-
tions are enriched among those supported by acombination of experi-
mental methods. We showcase the value of a structurally resolved
interactome by studying disease mutations and phosphorylation of
interface residues. Finally, we provide some indication that binary
complexes can be used to build higher-order assemblies.

Structure prediction of human protein
interactions
We selected experimentally identified human protein interactions
from the Human Reference Interactome (HuRI)*and the Human Protein
Complex Map (hu.MAP v.2.0)’. HuRI comprises protein interactions
determined by yeast two-hybrid (Y2H) screening’ from which we mod-
eled 55,586 pairs. From hu.MAP we selected 10,207 high-quality PPIs’.
While HuRlis more likely to be enriched for direct proteininteractions,
including transient partners, the hu.MAP setis more likely to reflect sta-
ble proteininteractions, including members of the same complex that
may notbeinteracting directly. The overlap between the two datasets
issmall (309 pairs), and acomparison with two large-scale compendi-
ums of structural models* indicates that 62,019 of the combined pairs
do not have experimental models nor can they be modeled easily by
homology, suggesting alarge potential gain in structural knowledge.
We predicted the structure of 65,484 nonredundant pairs using the
FoldDock pipeline'®, based on AlphaFold2 (ref. ). As in the FoldDock
pipeline, we combined size and the predicted local Distance Differ-
ence Test (pIDDT) scores of the interface into asingle score to predict
the DockQscore of acomplex, dubbed pDockQ (Methods), which can
rank models by confidence. We tested pDockQ score by comparing the
predicted models with1,465 experimental models, of which 742 (50%)
were correct (DockQ > 0.23). For predictions with pDockQ > 0.23,70%
(6710f955) are well modeled, and for pDockQ > 0.5, 80% (521 of 651).
We show inFig. 1a the distribution of pDockQ for the predicted and
random protein interactions, and provide data for all models in Sup-
plementary Table 1. The pDockQ of known interacting proteins tends
to be higher than for the random set, with the predictions for hu.MAP
showing on average higher confidence than the HuRI set. Additionally,
whenselecting hu.MAP interactions also supported by Y2H or crosslink
data (crosslinking) results in even higher-confidence values (Fig. 1a).
This suggests that high-confidence models are enriched for protein
interactions supported by the two types of methods associated with
high affinity and direct interactions. We identified 3,137 structures
(Fig. 1b) as high-confidence models (pDockQ > 0.5). The number of
structuresincreased to10,061if a cut-off of 0.23 was used. Only 0.3% of

therandom set of models would be considered confident predictions
at this cut-off. In Fig. 1c we show examples of predicted structures
aligned to experimental or homology models, showing how the pre-
dictions and the confidence score relate to the observed alignments.
For the majority of these cases, even with lower-confidence values, the
interaction interface is generally in good agreement, except for the
interaction between subunits of the proteasome 26S complex, ATP-
pase domain 2 (PSMC2) and non-ATPase domain11(PSMD11). It canbe
noted that several of the modelsin Fig.1c are parts of large complexes:
PRDX2-PRDX3: members of the peroxiredoxin family of antioxidant
enzymes; RFC2-RFC5: subunits of heteropentameric Replication fac-
tor C (RF-C); YWHAB-YWHAG: parts of the 14-3-3 family of proteins
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation
proteins beta (YWHAB) and gamma (YWHAG); and RPL9-RPL18A:
ribosomal proteins L9 (RPL9) and L18a (RPL18A). This shows that Alpha-
Fold2 can predict the structures of directly interacting protein pairs
presentinlarge complexes.

Featuresimpacting prediction confidence
AsshowninFig.1a, protein pairs presentin the Protein Data Bank (PDB)
areenriched in high-scoring models compared with pairsinHuRl and
Hu.MAP. There could exist several possible explanations for this, such
as the inability of AlphaFold2 to identify transient or indirect interac-
tions. Nevertheless, it is also possible that the two high-throughput
datasets contain noninteracting pairs. Therefore, to understand this
difference better, we first studied an additional dataset created from
large (>10 chains) heteromeric protein complexes.

Theset of large complexes consists of 12 large heteromeric protein
complexes, and all (nonidentical) pairs of protein chains in each com-
plex were docked with each other. These pairs can be divided into the
oneswithdirectinteractionandthose that donotinteract directly. Here,
we used a definition of more than 20 contacts of less than 8 A between
Calphas to exclude smallinteraction interfaces. When a complex con-
tained multiple copies of identical chains, allinteractions wereincluded
toallow foralternativeinteractions between the chains. The difference
in pDockQ scores between the direct and indirect interacting pairs is
striking, where only 6% of the indirect pairs have apDockQ score > 0.5
compared with38% of the directly interacting pairs (Fig. 2a). This shows
that directly interacting pairs often can be predicted even when they
are part of large complexes, in contrast to indirectly interacting pairs.

hu.MAP has many more high-confidence predictions than HuRI,
whichisbased on Y2H experiments. To further understand this differ-
ence, we first analyzed a subset of all protein pairs from the CORUM*
database, the best manually curated database of mammalian protein
complexes, and predicted the interaction of all pairs in the same com-
plex. The average pDockQ score of CORUM is slightly higher than for
hu.MAP, but the number of high-quality predictionsis similar (16% ver-
sus19%), indicating that the different databases of protein complexes
have a similar fraction of high-confidence predictions and that HuRlI
isthe outlier (Fig. 2b).

It is unlikely that the Y2H in HuRI data should contain a large set
of indirect interactions, as only two human proteins are expressed
in the same cell. Therefore, there must be another reason for the few
high-confidence predictions. We examined the properties of the pairs
present in the two datasets. Here, it can be seen that HuRI proteins
differ fromthe hu.MAP (and other datasets) intwo ways. HuRI protein
pairs contain moreintrinsic disorder (Fig. 2c) and have fewer efficient
sequences (meff) intheir multiple sequence alignments (MSAs) (Fig. 2d).
In these figures it can also be seen that the pDockQ values tend to
increase with less disorder and more sequences in the alignments,
althoughitis clearly not anabsolute relationship. Further, protein pairs
inHuRl areless likely to be foundin the same subcellular compartment
(Fig.2e), and have similar coexpression profiles (Fig. 2f). Considering
all this, itis likely that many protein interactions in HuRlI are transient
and that AlphaFold2 cannot reliably predict such interactions.
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Fig.1| Application of AlphaFold2 complex predictions to a large dataset of
human PPIs. a, Distribution of model confidence score (pDockQ) for predicted
structures from two large human protein interaction datasets (hu.MAP and
HuRI), compared with confidence metrics from 2,000 random pairs of proteins.
The hu.MAP dataset was further subsetted to those that have support from Y2H
(‘Y2H’) or crosslink data (‘Crosslinking’), or correspond to pairs with available
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DockQ = 0.74
pDockQ = 0.68 3
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experimental or homology modeling information (‘Structure’). b, Number of
proteininteractions with models built from both datasets and those that we
consider being of high confidence (‘Predicted’), corresponding to those with
pDockQ > 0.5. ¢, Examples of predicted models (orange and green) overlapped
with the corresponding experimental models (gray) and the observed (DockQ)
or predicted (pDockQ) quality of the models.

Crosslinking support for predicted complex
structures

Chemical crosslinking followed by mass spectrometryisanapproach
which can be used to identify reactive residues (usually lysines) that
arein proximity, as constrained by the geometry of the crosslink agent
used. The identification of such residues across a pair of proteins can
help define the likely proteininterface. To determine if the predicted
complex structures agree with such orthogonal spatial constraints, we
obtained a compilation of crosslinks for pairs of residues across 528
protein pairs with predicted models (Fig. 3a, Supplementary Table 1
and Methods). In total, 51% of the models had one or more crosslinks
atadistance below the expected maximal distance possible (Fig. 3a).
Restricting the predicted models to higher confidence by the pDockQ
scoreincreased the fraction of complexes with acceptable crosslinks,
reaching 75% for pDockQ scores greater than 0.5 (Fig. 3a). This result
isin line with the benchmark results above.

In total, we have identified 479 crosslinks providing supporting
evidence for 171 predicted complex structures with pDockQ > 0.5.
Of these, 41 correspond to complex structures with no experimen-
tal structure or homology models, from which we selected some to
illustrate (Fig. 3b-e). Figure 3b shows the AlphaFold2 (AF2) model
for the full length of the ERLINI/ERLIN2 complex, which mediates
the endoplasmic reticulum-associated degradation (ERAD) of ino-
sitol 1,4,5-trisphosphate receptors (IP3Rs). AlphaFold2 predicts a
globular domain (1-190) followed by an extended helical region with
akink around amino acid position 280. Unlike the model in Interac-
tome3D, the paralogous proteins are stacked side-by-side with the
hydrophobic face of the helices buried and the hydrophilic face
(mainly Lys) exposed to solvent. A crosslink between the C-terminal
residues K275 (ERLIN1) and K287 is predicted to bridge a distance of

18 A, supporting the predicted model. In Fig. 3¢ we show the model
for proteins IMMT and CHCHD3, components of the mitochondrial
inner membrane MICOS complex. AlphaFold2 predicts a globular
helical domain at the C-terminal end of IMMT (550-750) to interact
with the C-terminal end of CHCHD3 (150-225). This is supported by
data of three crosslinks: between K173 (CHCD3) and K565 (IMMT), and
K203 (CHCD3) to both K714 and K726 of IMMT. Figure 3d shows the
complex of transfer RNA-guanine-N(7)-methyltransferase (METTL)
with its noncatalytic subunit (WDR4). The structure of WDR4 has not
yet been solved experimentally but contains WD40 repeats, which
are expected to form a 3-propeller domain, as predicted here. The
METTL domain is predicted to interact with the side of the WDR40,
away from the ligand-binding pore. This orientation is supported by
acrosslink between K122 (WDR4) and K143 (METTL) (18 A). Finally, in
Fig. 3e we show the predicted complex structure for the heterogene-
ous nuclear ribonucleoprotein C (HNRNPC) and the RNA-binding
protein, RALY. Two regions in both proteins are predicted with high
confidence (pIDDT >70), with the lower-confidence regions not shown.
The N-terminal domain in HNRNPC (16-85) is predicted to interact
with the N-terminal domain of RALY (1-100). A long helix in HNRNPC
(185-233) is predicted to interact with a helix in RALY (169-228). This
interhelixinterfaceis supported by crosslinking data for three pairs of
lysines at either end of the helices (189 > 222;229 > 179; and 232 - 183).

Disease-associated missense mutations at
interfaces

Missense mutations associated with human diseases can alter pro-
tein function via diverse mechanisms, including disrupting protein
stability, allosterically modulating enzyme activity and altering PPIs.
Structuralmodels canallow the rationalization of possible mechanisms
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Fig.2|Protein and interaction features impacting on prediction confidence:
analysis of different datasets. In all subfigures, proteins from HuRIin green,
hu.MAP gray, CORUM orange and from large PDB complexes blue. a, pDockQ
values of directly and indirectly interacting proteins from the same complex
(blue); for comparison, HuRI and hu.MAP data are shown with thin lines.

b, pDockQ values of CORUM (orange), HuRI (green) and hu.MAP (gray) datasets.
¢, Fraction of residues predicted to be disordered (pLDDT < 0.5) shows that

protein pairsin HuRI are enriched in disorder. d, Proteins in HuRI have fewer
sequences in the paired MSAs as measured by the mean number of efficient
sequences in the MSA (meff). e, Proteins that share subcellular localization
(solid lines) are enriched in high pDockQ scoresin all three datasets. f, Only
protein pairs in hu.MAP are coexpressed according to STRING, using similarity in
Genotype-Tissue Expression (gtex), and coexpressed pairs are enriched in pairs
with high pDockQ scores.

of interface disease mutations. To determine the usefulness of the
predicted structures, we compiled a set of mutations located at
interface residues that were previously experimentally tested for
the impact on the corresponding interaction®. We then performed
in silico predictions of changes in binding affinity upon mutations
using FoldX* and observed that mutations known to disrupt the
interactions are predicted to have a strong destabilization of binding
compared with mutations known not to have an effect (Fig. 4a and
Supplementary Table 2). Very high confidence (pIDDT > 90) of the
mutated residues led to more substantial discrimination between
mutations known and not known to disrupt the complex formation
(Fig. 4a), indicating that only very accurate models are useful when
using the FoldX forcefield for estimating the impact of binding affinity
of mutations.

Next, we mapped human disease (from ClinVar) and cancer
mutations (from The Cancer Genome Atlas) to the interface residues
defined by the set of high-confidence protein complex predictions
(pDockQ > 0.5) (Supplementary Table 1). The hu.MAP and HuRI con-
fident predictions identified 280 interfaces carrying pathogenic
mutations and 602 interfaces corresponding to the top 25% of recur-
rently mutated interfaces in cancer, defined as the highest number

of mutations per interface position (Fig. 4b and Methods). We find a
strong enrichmentin pathogenic versus benign mutations at interface
residuesrelative to therest of the protein (2.3-fold enrichment, Pvalue
2.7x107%),

Weillustrate in Fig. 4c examples of protein network clusters with
interface disease mutations across a range of biological functions.
For example, interface mutations in chromatin remodeling, including
members of SWI/SNF complex (SMARCD1, SMARCD2, SMARCD?3), and
several transcription factors related to development (for example,
TCF3, TCF4,LMOl1 and LMO?2).

We sselected examples of interfaces with disease mutations and no
previousexperimental dataorhomologytoavailable models (Fig.4d-g).
Figure 4d shows the interface of WDR4-METTLI1, which has support-
ing crosslink information described above. WDR4 has two annotated
pathogenic variants at thisinterface, linked with Galloway-Mowat Syn-
drome 6, with the highlighted R170 participating in interactions with
anegatively charged residue of METTLLI. Figure 4e shows an example
ofaninterface with 32 recorded interface mutationsin cancer for both
proteins, including the highlighted arginines in LDOC1, which form
electrostaticinteractions with the opposite chain. TWIST1 has several
annotated pathogenic mutations, including L149R and L159H, which
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one crosslink (indicated with blue line): ERLINI/ERLIN2 complex (b), IMMT and
CHCHD3, components of the mitochondrial inner membrane MICOS complex
(c), the complex of transfer RNA-guanine-N(7)-methyltransferase (METTL)
with its noncatalytic subunit (WDR4) (d) and the heterogeneous nuclear
ribonucleoprotein C (HNRNPC) and the RNA-binding protein, RALY (e).

areatresiduesburiedintheinterface (Fig. 4f).Inparticular, the LI49R
mutation, associated with Saethre-Chotzen syndrome, would strongly
disrupt packing. The R118G mutation would disrupt theinteraction with
residue F22 mainchain O in TCF4. In RAD51D we found the mutation
R266C (Breast-ovarian cancer, familial), which interacts across the
interface with XRCC2 (Fig. 4g) and paralogous genes involved in the
repair of DNA double-strand breaks by homologous recombination.
Interestingly, we also found mutations at R239, to Trp/GIn/Gly, associ-
ated with Breast-ovarian cancer whichinteracts with Tyr119in XRCC2,
whichitselfis also annotated as having mutations linked to hereditary
cancer-predisposing syndrome.

Phospho-regulation of protein complex
interfaces

Protein phosphorylation canregulate proteininteractions by modulat-
ing the binding affinity viathe change in size and charge of the modified
residue. Over 100,000 experimental human phosphorylation sites
have been determined to date’*”, but only 5-10% of these have aknown
function®. Mapping phosphorylation site positions to protein inter-
faces can generate mechanistic hypotheses for their functional rolesin
controlling proteininteractions. We used arecent characterization of
the human phosphoproteome® to identify 4,145 unique phosphosites
atinterface residues among the highly confident models. The aver-
age functionalimportance, defined by the functional score described
earlier®, was generally higher than random for phosphorylation sites
atinterfaces (Fig. 5a), and we found some enrichment for targets of
multiple kinases, including tyrosine kinases (ERBB2, AXL, ABL2, FER)
(Fig. 5b). This suggests that some interfaces may be under coordinated
regulation by specific kinases and conditions.

Toidentify potentially co-regulated interfaces, we collected meas-
urements of changes in phosphorylation levels across a large panel of
over 200 conditions”. We retained 260 phosphosites that had a sig-
nificant regulation in three conditions and then computed all-by-all
pairwise correlations in phosphosite fold changes across conditions
(Supplementary Table 1). We clustered these phosphosites by their
profile of correlations (Fig. 5¢), identifying 16 groups of co-regulated
interface phosphorylationsites (Fig. 5cand Supplementary Table 3). For
each group of phosphosites, we identified the conditions where these
have the strongest up- or down-regulation (Supplementary Fig. 1) and
plotted asubset of conditions in Fig. 5d. We also performed agene ontol-
ogy enrichment analysis for each group of co-regulated phosphosites,
includingboth proteins of the modified interfaces, tosearch for common
biological functions (Fig. 5e and Supplementary Table 4). Here, one-sided
hyper-geometric tests were used for statistical analysis. For example,
we observed a cluster of interface phosphosites in proteins related to
intermediate filaments (cluster 7) which show strong regulation pat-
terns along the cell cycle, downregulated in S-phase and up-regulated
in G1and mitosis. Phosphositesin cluster 1(cell cycle G1-S phase transi-
tion) show the opposite trends, with up-regulation in late S-phase and
down-regulationin Gl1and mitosis. Some clusters show regulation under
specifickinaseinhibition, whichmay provide novel hypotheses for kinase
regulation of specific processes. For example, phosphosites in cluster
9 (regulation of chromosome assembly) tend to be up-regulated after
inhibition of ROCK and up-regulated after inhibition of mTOR.

While not all phosphosites at interfaces are likely to regulate the
binding affinity, this analysis provides hypotheses for the potentially
coordinated regulation of multiple proteins by tuning of their interac-
tions after specific perturbations.
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as follows: Experimental Neutral (-0.5,1.0, 5.1); Experimental Impact (0.1, 3.4,
8.6); AF plddt > 90 Neutral (-0.9, 0.3, 4.7); AF plddt > 90 Impact (-2.7,1.0,12.5,);
AF 70 < plddt > 90 Neutral (-2.0, 0.3, 9.0); AF 70 < plddt > 90 Impact (-4.0, 0.5,

f 9

XRCC2

/) ‘
N

7.0); AF 50 < plddt > 70 Neutral (1.2, 0.1, 2.7); AF 50 < plddt > 70 Impact (-0.2,
0.3,1.7); AF plddt < 50 Neutral (2.6, 0.1, 2.0); AF plddt < 50 Impact (-2.6,-0.3,
0.3).b, Unique PPI pairs for high-confidence models (pDockQ > 0.5) in total,

with mutations in cancer, mapped to the interface (all and top 25% ratios) and
with pathogenic or likely pathogenic clinical variants mapped to the interface.

¢, Modules related to relevant biological processes. The color of the edge
represents the presence of cancer mutationsin the interface (top 25% ratio, color
red), and the shape the presence of pathogenic clinical variants (double line).
d-g, Selected relevant structures with no previous structural knowledge showing
clinical variants or mutations in cancer mapped to theinterface (mutated
residues inred). The interface of WDR4-METTL1(d), the interface of LDOC1 (e),
the interface of TWIST1(f) and the interface of RADS1D (g).

Higher-order assemblies from binary protein
interactions

Proteinsinteract with multiple partners either simultaneously, as part
of larger protein complexes, or separated in time and space. Thisis also
reflectedin our structurally characterized network, where proteins can
be found in groups, as illustrated in a global network view of the pro-
tein interactions with confident models (Fig. 6, Supplementary Fig. 2
and Supplementary Datal). One key benefit of structurally character-
izing an interaction network is the identification of shared interfaces
for multiple interactors. As an example, we highlight GDI1 (RabGDP
dissociation inhibitor alpha) which interacts with multiple Rab pro-
teins, regulating their activity by inhibiting the dissociation of GDP.
The predicted complex structures for these interactions show how
these share the same interface and therefore cannot co-occur. Other
clusters in the network suggest that the proteins form larger protein

complex assemblies with many-to-many interactions. As the use of
AlphaFold2 for predicting larger complex assemblies can be limited
by computational requirements, we tested whether the structures for
pairs of proteins could be iteratively structurally aligned. We tested
this procedure on a small set of complexes covered in this network,
with known structures and the number of subunits ranging from five
(RFC complex, TFIIH core complex) to 14 (20S proteasome). We then
aligned an experimentally determined structure with the predicted
models (Fig. 6; gray, experimental model). These examples showcase
the potential and also limitations of this procedure.

The TFIIH core complex is composed of five subunits with 1-to-1
stoichiometry. All subunits can be modeled, with the final complex
generally agreeing (Fig. 6) with a cryoEM structure for these subunits
(PDB:6NMI). The most significant difference to the cryoEM model is
the relative positioning of the ERCC3 subunit. The exact final model
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Fig.5|Co-regulation of phosphorylationssites at interface residues.

a, Distribution of phosphosite functional scores for phosphosites at interface
residues and random phosphosites. The min, mean and max values were as
follows: Random = 0.02, 0.26, 0.98; HuURI = 0.06, 0.37,0.99; hu.MAP = 0.06,
0.33,0.99. The boxes represent the first and third quartiles. The upper whisker
extends from the third quartile to the largest value no further than 1.5 x IQR.
The lower whisker extends from the first quartile to the smallest value at most
1.5 xIQR. b, Enrichment of kinase substrates among phosphosites at interface
residues. The Pvalue was derived from an over-representation analysis using
aone-sided hyper-geometric test (N = 7,150). ¢, Hierarchical clustering of the

o

10 20 30
-log, (P value)

pairwise correlation values for changes in phosphosite levels across conditions.
Groups of phosphosites showing high correlation values were defined as
clusters (1to16), asindicated in colors along the outside of the clustergram.

d, Degree of regulation of phosphosites from each cluster in a select panel of
conditions, defined by a one-sided Z-test comparing the fold change of the
phosphosites in a cluster compared with the entire distribution of fold changes
inthat condition. The result is summarized as the -log(P value), and signed as
positive if the median value is above the background or negative otherwise.

e, Gene ontology enrichment analysis for the proteins with phosphosites
annotated to select clusters.

obtained canvary depending onthe aligned pairs, with multiple possi-
ble final conformations (Supplementary Fig. 3). Figure 6 illustrates the
conformation that best matches the cryoEM model in PDB:6NMI. For
example, for the TFIIH core complex, thereisapredicted model where
the complexadopts amore open conformation (asseenin PDB:50Q])
and alternative predicted placements of the GTF2H1 subunit.

The RFC complex is also composed of five subunits with 1-to-1
stoichiometry. One iterative alignment of pairwise protein interac-
tions builds amodel thatincludesall five subunits organized similarly
to that observed in the PDB:6VVO cryoEM structure (Fig. 6). In this
predicted model, the subunits RFC2/5/4/3 match the experimentally

observed model well, but there are apparent deviations introduced
by compounding errors in alignment by this iterative process. Indi-
vidual subunits in the cryoEM structure can be aligned to each of the
model subunits well, but then the alignment of the rest of the model
is progressively worse the further away the subunits are positioned
from the aligned subunit. The RFC1 subunit is individually not well
predicted. Further, the RFC3-RFCS interaction pair is predicted with
high confidence, while, in fact, these do not share a direct contact in
the experimental structure. AlphaFold2 places RFC3 at the RFC5-RFC4
interface, likely due to the structural similarity between RFC3
and RFC4.
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Fig. 6 | Protein complex predictions for higher-order assemblies. The middle
circleis anetwork view of all PPIs predicted with high confidence (pDockQ > 0.5).
The edges and nodes are colored inred if there is a previous experimental or
homology model for the interaction and blue if such information is unavailable.
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We selected four examples of recapitulated complexes (yellow circles and black
arrows) plotted in further detail. In these small networks, only the edges are
colored based on structural evidence. In the case of RabGDP, the faded nodes and
edges represent predictions with slightly lower confidence (pDockQ > 0.3).

Encouraged by the examples tested, we defined an automatic
procedure to generate larger models by iterative alignment of pairs
(Methods). We start building all possible dimers in a complex, then
sortthem by pDockQ, and start building from the first ranked dimers.
Next, we add the highest-ranked dimer, which shares one subunit with
the complex if it does not overlap; this is repeated for all dimers until
the complex is complete or no additional proteins can be added. We
tested this on the 20S proteasome, a particularly challenging example,
with stoichiometries different from 1-to-1and homologous subunits.
This automatic procedure could build amodel containing all 14 subu-
nits (half of the proteasome), which are mostly placed in agreement
within the experimental model (Fig. 6). However, the exact order of
the chainsisincorrect, thatis, at each location an incorrect protein is
placed, highlighting that AF2 cannot distinguish which two proteins
interact from a set of homologous proteins.

Two additional proteins where we could build a good model are
Heterodisulfide reductase from Methanothermococcus thermolitho-
trophicus (PDB:50DC) and the eukaryotic translationinitiation factor
2B from Schizosaccharomyces pombe (PDB:5B04) (Supplementary
Fig.4).For PDB:50DC we could build acomplete model of the protein
withanr.m.s.deviation of 6.0 A (TM-score 0.90)*° starting from dimers.
However, for PDB:5B04 it was not possible as the chains started over-
lapping when we tried to build a larger model. However, if we build
trimers and thenuse all three dimers from these trimers we canbuilda
complete model withanr.m.s. deviation of 7.3 A (TM-score 0.86), show-
ing that it is sometimes necessary to use larger subunits to assemble
the complexes. Results from a follow-up study® show that it is often
possible to build the structures of complexes if the subunits are well
predicted. In summary, we find that it is possible to iteratively align

structures of pairs of interacting proteins to build larger assemblies,
but we also identified issues that limit this procedure at the moment.

Concluding discussion

We have predicted complex structures for pairs of human proteins
knownto physically interact from two different datasets based on differ-
entexperimental approaches. We note that the source of data used for
the proteininteractionsisimportant and impacts the fraction of models
that can be confidently predicted. Our analysis suggests that protein
interactions supported by a combination of affinity-, co-fraction-
and complementation-based methods result in higher-confidence
models. We believe these protein interactions tend to correspond to
high-affinity interactions which are very likely to share adirect physical
permanent interaction. We show that it is possible to use metrics from
the models (for example, pDockQ score) to rank higher-confidence
models, providing an additional accuracy level to large-scale PPl stud-
ies, and in the future to provide additional high-quality targets for
detailed studies of stable complexes. Experimental data from crosslink
mass spectrometry experiments provide anideal resource for further
validating these predictions via orthogonal means.

Based on comparisons with solved structures, we suggest that
models with pDockQ > 0.5 are 80% likely to be correct. Additionally,
models with lower scores (pDockQ > 0.23) are still 70% likely to contain
many correct solutions and may highlight correct interfaces. Such
lower-confidence models are likely to be useful for generating hypoth-
eses and large-scale analyses of global properties. Equally important
isthe caveat that high-confidence predictions will still containerrors,
and, inparticular, we note thatin protein complexes containing paralo-
gous proteins (which is common in higher eukaryotes®), the current
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procedure cannot identify the exact pairing of the protein. For such
cases, additional methods need to be developed.

Structural models for protein interfaces are critical for under-
standing molecular mechanisms and the impact of mutations and
post-translational modifications. Weillustrate this using disease muta-
tionsand phosphorylation data. While much disease-associated varia-
tionis often foundin noncoding regions of the genome, the growth of
exome sequencing of large cohorts of patients will lead to discovering
many more protein mutations linked to disease, which will require such
large structural characteristics. Both for mutations and for phospho-
rylation sites, we think these analyses should be seen as generating
hypotheses for further testing, and we make thisinformation available
inthe supplementary material to facilitate such future work.

Finally, we show that it is in principle possible to build structural
models for larger assemblies from predicted binary complexes. In a
follow-up paper we have shown thatitis possible to build large assem-
blies fully automatically by using predictions of dimers and trimers’..
Aspects that may limit this include the structural homology between
subunits, unknown subunit stoichiometries and limitsin the predicted
interactions. Additional work will be needed to determine the exact
stoichiometry and to design methods and score systems to build such
larger complex assemblies, as well as to predict the interactions of
proteins with weak and transient interactions.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41594-022-00910-8.
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Methods

Protein interaction data and annotations

Human protein pairs known to physically interact were obtained from
the hu.MAP dataset, retaining pairwise protein interactions with >0.5
confidence,and mostinteractions from the HuRI dataset. These inter-
actions were further enriched by obtaining annotations on crosslinked
peptides matched across pairs of interaction proteins, disease-related
mutations and protein phosphorylationsitesinthe selected proteins.
Inaddition, allnonhomologous pairs from 12 protein complexes (Sup-
plementary Table 5) and 4,320 protein pairs from 2,102 different pro-
tein complexes (Supplementary Table 6) in CORUM* were used for
additional analyses. A complete list of all datasets is available from
the supplementary data. A subset of crosslink data was collected from
refs.**, and filtered for peptides unique to only one protein sequence.
A crosslink was considered validated by the structure if the distance
between the epsilon amino groups on the side-chains of the relevant
pair of lysine residues was within 32 A. Clinical missense variants associ-
ated with disease were collected from ClinVar. We selected only those
having pathogenic or likely pathogenic effects, which were mapped to
Uniprot protein sequences using VarMap. The final list of mutated posi-
tions was then compared with the interface positions. We obtained a list
of protein phosphorylationsites with predicted functional relevance®,
phosphosite annotations®® and regulation of phosphorylation sites
across a large panel of conditions?. These phosphosites were also
mapped to interface positions as defined by the predicted models.
All protein interaction networks were processed using R packages
igraph (v.1.2.5) and qgraph (v.1.9), and further graphical editing was
done using Cytoscape**.

Protein complex prediction

To predict protein complexes of pairwise interactions, we used the
FoldDock pipeline™ based on AlphaFold2 (ref."’). We used the option
of fused + paired MSAs and ran the model configuration m1-10-1as this
provides the highest success rate accompanied by a20-fold speed-up.
Both the fused and paired MSAs were constructed by running HHblits
oneverysingle chain against Uniclust30. The fused MSA was generated
by simply concatenating the output of each of the single-chain HHblits
runs for two interacting chains. The paired MSA was constructed by
combining the top hit for each matching OX identifier between two
interacting chains, using the output from the single-chain HHblits runs.

pDockQ confidence score

To score models, we used features from the predicted complexes to
calculate the predicted DockQ score, pDockQ. This score is defined
with the following sigmoidal equation:

0.707

pDockQ = 1+ e-0.03148(x—388.06)

+ 0.03138
where
x = average interface pIDDT*log(number of interface contacts).
The parameters were optimized to predict the DockQ score using
the dataset fromref. **. The number of interface contacts is defined as
elsewhere in this paper (any residues with an interface atom within
10 A of the other chain), and the pIDDT is the predicted IDDT score
from AlphaFold2 taken over the interface residues as defined by the
interface contacts.

Building larger complexes from binary protein interactions

A simple procedure to build larger complexes from a set of paired
models was developed. All dimers in the set are by default ranked by
their pDockQ values.

1. Thebuilding s started from a single dimer, by default the
dimer with the highest pDockQ value. This is referred to as
the ‘complex’.

2. Allother dimersin the set are then tried to be added to the
‘complex’. Starting with the one with the second highest
pDockQ, a chainis added to the complex if:

(a) Exactly one chain of the dimer is identical to one chain in the
complex

(b)The structure of these two chains is similar enough (default
TM-score > 0.8)

(c) The dimer is then rotated so that the two chains overlap

(d)The second chain in the dimer does not clash with more than
25% of its residues (Ca-Ca distance < 5 A) with any chainin the
complex.

3. Ifachainisadded, the procedure is started over again and
repeated until no more chains can be added.

Analysis of phosphosites in the protein-protein interfaces
Phosphosite residues in interfaces were identified from a previously
published comprehensive list of known human phosphosites®. Kinases
associated with phosphorylation of interface residues were obtained
from the PhosphositePlus database, and over-representation analysis
of kinases was performed using a hyper-geometric test. Highly regu-
lated interface phosphosites were defined as those with more than
twofold change in phosphorylation in more than two perturbation
conditions across a collated phosphoproteomics dataset comprising
arange of physiological conditions and drug treatments®. Pearson
correlationwas calculated amongst these regulated phosphosites and
clusters of co-regulated phosphosites wereidentified using hierarchi-
cal clustering (‘Ward” method) of Euclidean distances of the correlation
matrix. Phosphosite clusters were created by cutting the dendrogram
at the appropriate level using the cutree (h =17) function in R. Phos-
phosite clusters that were significantly regulated in each perturba-
tion condition were identified by a Z-test from the comparison of fold
changesin phosphosite measurements of all phosphositesina cluster
against the overall distribution of phosphorylation fold changes across
the condition. Gene ontology over-representation of each cluster was
performed separately using a hyper-geometric test in R. The gene
ontology terms were obtained from the c5 category of the Molecular
Signature Database (MSigDBv7.1)*. All over-representation analyses
were performed using the enricher function of the clusterProfiler
package (v.3.12.0)°inR.

Comparison with other databases

Allproteins used here were mapped to UniProt* to retrieve subcellular
localization, STRING*® for coexpression and other interaction data, and
gtex* for tissue-specific expression.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All datasets and meta-dataare available from https://doi.org/10.17044/
scilifelab.16866202.v1. Further, all models generated as well as some
of the multiple sequence alignments can be found at https://archive.
bioinfo.se/huintaf2/. Source data are provided with this paper.

Code availability

All code used in this project can be found at https://gitlab.com/Elofs-
sonlLab/huintaf2/. Tools to run AlphaFold2 for combined folding and
docking can be found at https://gitlab.com/ElofssonLab/FoldDock/.
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Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.




Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  gme any commonly misidentified cell lines used in the study and provide a rationale for their use.
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Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species, sex and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[ ] Public health

|:| National security

|:| Crops and/or livestock
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community

repository, provide accession details.




Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.qg.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).




Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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